Publications
C
Shekhovtsov, A, Kohli, P and Rother, C (2012).
Curvature prior for MRF-based segmentation and shape inpainting.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
7476 LNCS 41–51
Shekhovtsov, A, Kohli, P and Rother, C (2012).
Curvature prior for MRF-based segmentation and shape inpainting.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
7476 LNCS 41–51.
http://arxiv.org/abs/1109.1480 Vicente, S, Kolmogorov, V and Rother, C (2010).
Cosegmentation revisited: Models and optimization.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
6312 LNCS 465–479
Royer, L A, Richmond, D L, Rother, C, Andres, B and Kainmueller, D (2016).
Convexity shape constraints for image segmentation.
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
2016-Decem 402–410.
http://arxiv.org/abs/1509.02122 Kluger, F, Brachmann, E, Ackermann, H, Rother, C, Yang, M Ying and Rosenhahn, B (2020).
CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus.
CVPR 2020.
http://arxiv.org/abs/2001.02643 PDF (9.95 MB) Arnab, A, Zheng, S, Jayasumana, S, Romera-paredes, B, Kirillov, A, Savchynskyy, B, Rother, C, Kahl, F and Torr, P (2018).
Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation.
Cvpr.
XX 1–15.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.8889&rep=rep1&type=pdf%0Ahttp://dx.doi.org/10.1109/CVPR.2012.6248050 Kolmogorov, V and Rother, C (2006).
Comparison of energy minimization algorithms for highly connected graphs.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
3952 LNCS 1–15
Kolmogorov, V and Rother, C (2006).
Comparison of energy minimization algorithms for highly connected graphs.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
3952 LNCS 1–15
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015).
A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems.
International Journal of Computer Vision. 1-30
Technical Report (1.5 MB) Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2014).
A Comparative Study of Modern Inference Techniques for Structured
Discrete Energy Minimization Problems.
CoRR.
http://arxiv.org/abs/1404.0533 Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015).
A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems.
Int.~J.~Comp.~Vision Technical Report (5.12 MB) Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2014).
A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems.
CoRR.
abs/1404.0533.
http://hci.iwr.uni-heidelberg.de/opengm2/ Technical Report (3.32 MB) Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015).
A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems.
International Journal of Computer Vision.
115 155–184.
http://hci.iwr.uni-heidelberg.de/opengm2/ Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015).
A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems.
International Journal of Computer Vision.
115 155–184
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015).
A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems.
International Journal of Computer Vision.
115 155–184
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Sungwoong, K, Kausler, B X, Lellmann, J, Komodakis, N and Rother, C (2013).
A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems.
CVPR 2013. Proceedings Technical Report (1.35 MB) Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Lellmann, J, Komodakis, N and Rother, C (2013).
A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problem.
CVPR Technical Report (1.35 MB) Szeliski, R, Zabih, R, Scharstein, D, Veksler, O, Kolmogorov, V, Agarwala, A, Tappen, M and Rother, C (2008).
A comparative study of energy minimization methods for Markov random fields with smoothness-based priors.
IEEE Transactions on Pattern Analysis and Machine Intelligence. Springer-Verlag.
30 1068–1080.
http://vision.middlebury.edu/MRF. Szeliski, R, Zabih, R, Scharstein, D, Veksler, O, Kolmogorov, V, Agarwala, A, Tappen, M and Rother, C (2008).
A comparative study of energy minimization methods for Markov random fields with smoothness-based priors.
IEEE Transactions on Pattern Analysis and Machine Intelligence.
30 1068–1080
Kannan, A, Winn, J and Rother, C (2007).
Clustering appearance and shape by learning jigsaws.
Advances in Neural Information Processing Systems. 657–664
Kannan, A, Winn, J and Rother, C (2007).
Clustering appearance and shape by learning jigsaws.
Advances in Neural Information Processing Systems. 657–664
Mackowiak, R, Lenz, P, Ghori, O, Diego, F, Lange, O and Rother, C (2019).
CEREALS - Cost-Effective REgion-based Active Learning for Semantic Segmentation.
British Machine Vision Conference 2018, BMVC 2018 Mustikovela, S Karthik, Yang, M Ying and Rother, C (2016).
Can ground truth label propagation from video help semantic segmentation?.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
9915 LNCS 804–820
B
Behl, A, Hosseini Jafari, O, Mustikovela, S Karthik, Abu Alhaija, H, Rother, C and Geiger, A (2017).
Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?.
Proceedings of the IEEE International Conference on Computer Vision.
2017-Octob 2593–2602
Behl, A, Hosseini Jafari, O, Mustikovela, S Karthik, Abu Alhaija, H, Rother, C and Geiger, A (2017).
Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?.
Proceedings of the IEEE International Conference on Computer Vision.
2017-Octob 2593–2602
Hodaň, T, Michel, F, Brachmann, E, Kehl, W, Buch, A Glent, Kraft, D, Drost, B, Vidal, J, Ihrke, S, Zabulis, X, Sahin, C, Manhardt, F, Tombari, F, Kim, T Kyun, Matas, J and Rother, C (2018).
BOP: Benchmark for 6D object pose estimation.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
11214 LNCS 19–35.
http://arxiv.org/abs/1808.08319 Gehler, P Vincent, Rother, C, Blake, A, Minka, T and Sharp, T (2008).
Bayesian color constancy revisited.
26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR Pages