Publications

Export 185 results:
Author Title [ Type(Desc)] Year
Filters: Author is Carsten Rother  [Clear All Filters]
Journal Article
H. Abu Alhaija, Mustikovela, S. Karthik, Mescheder, L., Geiger, A., and Rother, C., Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes, International Journal of Computer Vision, vol. 126, pp. 961–972, 2018.
C. Kamann and Rother, C., Benchmarking the Robustness of Semantic Segmentation Models, 2019.
V. Lempitsky, Blake, A., and Rother, C., Branch-and-mincut: Global optimization for image segmentation with high-level priors, Journal of Mathematical Imaging and Vision, vol. 44, pp. 315–329, 2012.
R. Szeliski, Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., and Rother, C., A comparative study of energy minimization methods for Markov random fields with smoothness-based priors, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, pp. 1068–1080, 2008.
R. Szeliski, Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., and Rother, C., A comparative study of energy minimization methods for Markov random fields with smoothness-based priors, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, pp. 1068–1080, 2008.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, pp. 1-30, 2015.PDF icon Technical Report (1.5 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, CoRR, 2014.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, Int.~J.~Comp.~Vision, 2015.PDF icon Technical Report (5.12 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, CoRR, vol. abs/1404.0533, 2014.PDF icon Technical Report (3.32 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
A. Arnab, Zheng, S., Jayasumana, S., Romera-paredes, B., Kirillov, A., Savchynskyy, B., Rother, C., Kahl, F., and Torr, P., Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation, Cvpr, vol. XX, pp. 1–15, 2018.
A. Criminisi, Blake, A., Rother, C., Shotton, J., and Torr, P. H. S., Efficient dense stereo with occlusions for new view-synthesis by four-state dynamic programming, International Journal of Computer Vision, vol. 71, pp. 89–110, 2007.
L. Ardizzone, Mackowiak, R., Rother, C., and Köthe, U., Exact Information Bottleneck with Invertible Neural Networks: Getting the Best of Discriminative and Generative Modeling, 2020.PDF icon PDF (2.87 MB)
A. Hosni, Rhemann, C., Bleyer, M., Rother, C., and Gelautz, M., Fast cost-volume filtering for visual correspondence and beyond, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, pp. 504–511, 2013.
V. Lempitsky, Rother, C., Roth, S., and Blake, A., Fusion moves for markov random field optimization, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, pp. 1392–1405, 2010.
V. Lempitsky, Rother, C., Roth, S., and Blake, A., Fusion moves for markov random field optimization, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, pp. 1392–1405, 2010.
A. Blake, Criminisi, A., Cross, G., Kolmogorov, V., and Rother, C., Fusion of stereo, colour and contrast, Springer Tracts in Advanced Robotics, vol. 28, 2007.
L. Ardizzone, Lüth, C., Kruse, J., Rother, C., and Köthe, U., Guided Image Generation with Conditional Invertible Neural Networks, 2019.
L. Ardizzone, Lüth, C., Kruse, J., Rother, C., and Köthe, U., Guided Image Generation with Conditional Invertible Neural Networks, 2019.
C. Rother and Kolmogorov, V., Interactive foreground extraction using graph cut, Advances in Markov \ldots, pp. 1–20, 2011.
C. Rother and Carlsson, S., Linear multi view reconstruction and camera recovery using a reference plane, International Journal of Computer Vision, vol. 49, pp. 117–141, 2002.
C. Rother, Linear Multi-View Reconstruction for Translating Cameras, Nada.Kth.Se, 2003.
F. Jug, Pietzsch, T., Kainmüller, D., Funke, J., Kaiser, M., van Nimwegen, E., Rother, C., and Myers, G., Optimal joint segmentation and tracking of escherichia coli in the mother machine, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8677, pp. 25–36, 2014.
C. Rother, Kolmogorov, V., Lempitsky, V., and Szummer, M., Optimizing Binary MRFs via Extended Roof Duality Technical Report MSR-TR-2007-46, Computing, 2007.
N. J. Mitra, Stam, J., Xu, K., Cheng, M. - M., Prisacariu, V. Adrian, Zheng, S., Torr, P. H. S., and Rother, C., Pacific Graphics 2015 DenseCut: Densely Connected CRFs for Realtime GrabCut, vol. 34, 2015.
F. Besse, Rother, C., Fitzgibbon, A., and Kautz, J., PMBP: PatchMatch Belief Propagation for correspondence field estimation, International Journal of Computer Vision, vol. 110, pp. 2–13, 2014.
F. Besse, Rother, C., Fitzgibbon, A., and Kautz, J., PMBP: PatchMatch Belief Propagation for correspondence field estimation, International Journal of Computer Vision, vol. 110, pp. 2–13, 2014.
F. Besse, Rother, C., Fitzgibbon, A., and Kautz, J., PMBP: PatchMatch Belief Propagation for correspondence field estimation, International Journal of Computer Vision, vol. 110, pp. 2–13, 2014.
V. Kolmogorov, Criminisi, A., Blake, A., Cross, G., and Rother, C., Probabilistic fusion of stereo with color and contrast for bilayer segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, pp. 1480–1492, 2006.
A. Bhowmik, Gumhold, S., Rother, C., and Brachmann, E., Reinforced Feature Points: Optimizing Feature Detection and Description for a High-Level Task, 2019.
M. Hullin, Klein, R., Schultz, T., Yao, A., Li, W., Hosseini Jafari, O., and Rother, C., Semantic-Aware Image Smoothing, Vision, Modeling, and Visualization, 2017.
C. Rother, Sparse Higher Order Functions of Discrete Variables–-Representation and Optimization, research.microsoft.com, vol. 45, 2011.
J. Shotton, Winn, J., Rother, C., and Criminisi, A., TextonBoost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context, International Journal of Computer Vision, vol. 81, pp. 2–23, 2009.

Pages