Publications

Export 224 results:
Author [ Title(Asc)] Type Year
Filters: Author is Fred A. Hamprecht  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
E
F. Draxler, Veschgini, K., Salmhofer, M., and Hamprecht, F. A., Essentially No Barriers in Neural Network Energy Landscape, ICML. Proceedings, vol. 80. p. 1308--1317, 2018.PDF icon Technical Report (685.93 KB)
B. Andres, Kondermann, C., Kondermann, D., Köthe, U., Hamprecht, F. A., and Garbe, C. S., On errors-in-variables regression with arbitrary covariance and its application to optical flow estimation, Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pp. 1-6, 2008.PDF icon Technical Report (1.58 MB)
B. Andres, Kondermann, C., Kondermann, D., Hamprecht, F. A., and Garbe, C. S., On errors-in-variables regression with arbitrary covariance and its application to optical flow estimation, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, 2008, p. 1--6.
T. Hehn and Hamprecht, F. A., End-to-end Learning of Deterministic Decision Trees, German Conference on Pattern Recognition. Proceedings, vol. LNCS 11269. Springer, pp. 612-627, 2018.PDF icon Technical Report (1.4 MB)
T. M. Hehn, Kooij, J. F. P., and Hamprecht, F. A., End-to-End Learning of Decision Trees and Forests, International Journal of Computer Vision, vol. 128, pp. 997-1011, 2020.
L. Cerrone, Zeilmann, A., and Hamprecht, F. A., End-to-End Learned Random Walker for Seeded Image Segmentation, CVPR. Proceedings. pp. 12559-12568, 2019.
M. Kandemir, Zhang, C., and Hamprecht, F. A., Empowering multiple instance histopathology cancer diagnosis by cell graphs, in MICCAI. Proceedings, 2014, vol. 8674, pp. 228-235.PDF icon Technical Report (1.76 MB)
B. Andres, Kappes, J. H., Köthe, U., Schnörr, C., and Hamprecht, F. A., An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM, in Pattern Recognition, Proc.~32th DAGM Symposium, 2010, pp. 353-362.
B. Andres, Kappes, J. H., Köthe, U., Schnörr, C., and Hamprecht, F. A., An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM, in Pattern Recognition, Proc.~32th DAGM Symposium, 2010.PDF icon Technical Report (218.43 KB)
M. P. Lichy, Bachert, P., Hamprecht, F. A., Weber, M. - A., Debus, J., Schulz-Ertner, D., Kauczor, H. - U., and Schlemmer, H. - P., Einsatz der 1H-MR-spektroskopischen Bildgebung in der Strahlentherapie: Cholin als Marker für die Bestimmung der relativen Wahrscheinlichkeit eines Tumorprogresses nach Bestrahlung glialer Hirntumoren, Zeitung für Röntgenforschung, vol. 178, pp. 627-633, 2006.
T. Beier, Andres, B., Köthe, U., and Hamprecht, F. A., An Efficient Fusion Move Algorithm for the Minimum Cost Lifted Multicut Problem, ECCV. Proceedings, vol. LNCS 9906. Springer, pp. 715-730, 2016.PDF icon Technical Report (4.89 MB)
S. Hader and Hamprecht, F. A., Efficient Density Clustering, Between Data Science and Applied Data Analysis. Springer, pp. 39-48, 2003.
J. Funke, Andres, B., Hamprecht, F. A., Cardona, A., and Cook, M., Efficient Automatic 3D-Reconstruction of Branching Neurons from EM Data, CVPR 2012. Proceedings, pp. 1004-1011, 2012.PDF icon Technical Report (1.64 MB)
D
V. Uhlmann, Haubold, C., Hamprecht, F. A., and Unser, M., Diverse Shortest Paths for Bioimage Analysis, Bioinformatics, pp. 1-3, 2017.
C. Haubold, Uhlmann, V., Unser, M., and Hamprecht, F. A., Diverse M-best Solutions by Dynamic Programming, GCPR. Proceedings, vol. LNCS 10496. Springer, pp. 255-267, 2017.
B. X. Kausler, Schiegg, M., Andres, B., Lindner, M., Köthe, U., Leitte, H., Wittbrodt, J., Hufnagel, L., and Hamprecht, F. A., A Discrete Chain Graph Model for 3d+t Cell Tracking with High Misdetection Robustness, in ECCV 2012. Proceedings, 2012, vol. 7574, pp. 144-157.PDF icon Technical Report (809.07 KB)
M. Kandemir, Feuchtinger, A., Walch, A., and Hamprecht, F. A., Digital Pathology: Multiple instance learning can detect Barrett'scancer, ISBI. Proceedings. pp. 1348-1351, 2014.PDF icon Technical Report (2.86 MB)
A. Vijayan, Tofanelli, R., Strauss, S., Cerrone, L., Wolny, A., Strohmeier, J., Kreshuk, A., Hamprecht, F. A., Smith, R. S., and Schneitz, K., A Digital 3D Reference Atlas Reveals Cellular Growth Patterns Shaping the Arabidopsis Ovule, eLife, 2021.
J. A. J. Steen, Steen, H., Georgi, A., Parker, K. C., Springer, M., Kirchner, M., Hamprecht, F. A., and Kirschner, M. W., Different Phosphorylation States of the Anaphase Promoting Complex in Response to Anti-Mitotic Drugs: A Quantitative Proteomic Analysis, Proceedings of the National Academy of Sciences, vol. 105, pp. 6069-6074, 2008.PDF icon Technical Report (173.02 KB)
F. A. Hamprecht, Cohen, A. J., Tozer, D. J., and Handy, N. C., Development and assessment of new exchange-correlation functionals, Journal of Chemical Physics, vol. 109, pp. 6264-6271, 1998.
X. Lou, Kirchner, M., Renard, B. Y., Köthe, U., Graf, C., Lee, C., Steen, J. A. J., Steen, H., Mayer, M. P., and Hamprecht, F. A., Deuteration Distribution Estimation with Improved Sequence Coverage for HX/MS Experiments, Bioinformatics, vol. 26(12), pp. 1535-1541, 2010.PDF icon Technical Report (518.01 KB)
L. Görlitz, Hamprecht, F. A., and Staudacher, M., Detektion von Partikeln in Intensitätsbildern mit Hilfe eines morphologischen Skalenraumes. Robert-Bosch GmbH, University of Heidelberg, 2005.
C. Decker and Hamprecht, F. A., Detecting individual body parts improves mouse behavior classification, in Workshop on visual observation and analysis of Vertebrate And Insect Behavior (VAIB), 22nd International Conference on Pattern Recognition (ICPR). Proceedings, 2014.PDF icon Technical Report (1.48 MB)
M. Frank, Plaue, M., and Hamprecht, F. A., Denoising of Continuous-Wave Time-Of-Flight Depth Images Using Confidence Measures, Optical Engineering, vol. 48, 077003, 2009.PDF icon Technical Report (2.5 MB)
X. Lou, Kaster, F. O., Lindner, M., Kausler, B. X., Köthe, U., Höckendorf, B., Wittbrodt, J., Jänicke, H., and Hamprecht, F. A., DELTR: Digital Embryo Lineage Tree Reconstructor, in Eighth IEEE International Symposium on Biomedical Imaging (ISBI). Proceedings, 2011, pp. 1557-1560.PDF icon Technical Report (1.44 MB)
M. Kandemir and Hamprecht, F. A., The Deep Feed-Forward Gaussian Process: An Effective Generalization to Covariance Priors, NIPS. Proceedings, vol. 44. pp. 145-159, 2015.PDF icon Supplementary Material (223.39 KB)PDF icon Technical Report (2.58 MB)
M. Haußmann, Hamprecht, F. A., and Kandemir, M., Deep Active Learning with Adaptive Acquisition, IJCAI. Proceedings. pp. 2470-2476, 2019.PDF icon Technical Report (137.6 KB)
C
T. Beier, Kröger, T., Kappes, J. H., Köthe, U., and Hamprecht, F. A., Cut, Glue and Cut: A Fast, Approximate Solver for Multicut Partitioning, in 2014 {IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2014, Columbus, OH, USA, June 23-28, 2014, 2014.PDF icon Technical Report (10.06 MB)
S. Peter, Diego, F., Hamprecht, F. A., and Nadler, B., Cost-efficient Gradient Boosting, NIPS, poster. 2017.
B. Maco, Holtmaat, A., Cantoni, M., Kreshuk, A., Straehle, C. N., Hamprecht, F. A., and Knott, G. W., Correlative in vivo 2 photon and focused ion beam scanning electron microscopy of cortical neurons, PloS one, vol. 8 (2), 2013.PDF icon Technical Report (2.13 MB)
M. Schiegg, Hanslovsky, P., Kausler, B. X., Hufnagel, L., and Hamprecht, F. A., Conservation Tracking, in ICCV 2013. Proceedings, 2013, p. 2928--2935.PDF icon Technical Report (5.22 MB)
M. Hanselmann, Kirchner, M., Renard, B. Y., Amstalden, E. R., Glunde, K., Heeren, R. M. A., and Hamprecht, F. A., Concise Representation of MS Images by Probabilistic Latent Semantic Analysis, Analytical Chemistry, vol. 80, pp. 9649-9658, 2008.PDF icon Technical Report (3.91 MB)
M. Kandemir and Hamprecht, F. A., Computer-aided diagnosis from weak supervision: A benchmarking study, Computerized Medical Imaging and Graphics, vol. 42, pp. 44-50, 2014.PDF icon Technical Report (4.28 MB)
M. Kirchner, Renard, B. Y., Köthe, U., Pappin, D. J., Hamprecht, F. A., Steen, J. A. J., and Steen, H., Computational Protein Profile Similarity Screening for Quantitative Mass Spectrometry Experiments, Bioinformatics, vol. 26 (1), pp. 77-83, 2010.PDF icon Technical Report (380.19 KB)
B. H. Menze, Kelm, B. Michael, Masuch, R., Himmelreich, U., Bachert, P., Petrich, W., and Hamprecht, F. A., A Comparison of Random Forest and its Gini Importance with Standard Chemometric Methods for the Feature Selection and Classification of Spectral Data, BMC Bioinformatics, vol. 10:213, 2009.PDF icon Technical Report (675 KB)

Pages