Publications

Export 223 results:
Author [ Title(Asc)] Type Year
Filters: Author is Christoph Schnörr  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
G
B. Schmitzer and Schnörr, C., Globally Optimal Joint Image Segmentation and Shape Matching based on Wasserstein Modes. 2014.PDF icon Technical Report (2.9 MB)
B. Schmitzer and Schnörr, C., Globally Optimal Joint Image Segmentation and Shape Matching based on Wasserstein Modes, J.~Math.~Imag.~Vision, vol. 52, p. 436--458, 2015.PDF icon Technical Report (1.97 MB)
B. Schmitzer and Schnörr, C., Globally Optimal Joint Image Segmentation and Shape Matching based on Wasserstein Modes. 2014.
J. H. Kappes, Speth, M., Andres, B., Reinelt, G., and Schnörr, C., Globally Optimal Image Partitioning by Multicuts, in EMMCVPR, 2011, pp. 31-44.PDF icon Technical Report (7.3 MB)
J. H. Kappes, Speth, M., Andres, B., Reinelt, G., and Schnörr, C., Globally Optimal Image Partitioning by Multicuts, in EMMCVPR, 2011.PDF icon Technical Report (7.47 MB)
J. Hendrik Kappes, Speth, M., Andres, B., Reinelt, G., and Schnörr, C., Globally Optimal Image Partitioning by Multicuts, in EMMCVPR, 2011.
B. Savchynskyy, Kappes, J. H., Swoboda, P., and Schnörr, C., Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation, in NIPS. Proceedings, 2013, pp. 1950-1958.
B. Savchynskyy, Kappes, J. H., Swoboda, P., and Schnörr, C., Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation, in NIPS, 2013.PDF icon Technical Report (499.17 KB)
B. Savchynskyy, Kappes, J. Hendrik, Swoboda, P., and Schnörr, C., Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation, in NIPS, 2013.
A. Nicola, Petra, S., Popa, C., and Schnörr, C., On a general extending and constraining procedure for linear iterative methods, IWR, University of Heidelberg, 2009.PDF icon Technical Report (799.47 KB)
A. Nicola, Petra, S., Popa, C., and Schnörr, C., A general extending and constraining procedure for linear iterative methods, Int.~J.~Comp.~Math., 2011.PDF icon Technical Report (633.79 KB)
E
S. Petra, Popa, C., and Schnörr, C., Extended and Constrained Cimmino-type Algorithms with Applications in Tomographic Image Reconstruction, IWR, University of Heidelberg, 2008.PDF icon Technical Report (2.13 MB)
S. Petra, Popa, C., and Schnörr, C., Extended and Constrained Cimmino-type Algorithms with Applications in Tomographic Image Reconstruction, IWR, University of Heidelberg, 2008.
S. Schmidt, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Evaluation of a First-Order Primal-Dual Algorithm for MRF Energy Minimization, in EMMCVPR 2011, 2011, vol. 6819, pp. 89-103.
S. Schmidt, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Evaluation of a First-Order Primal-Dual Algorithm for MRF Energy Minimization, in EMMCVPR, 2011, vol. 6819, pp. 89-103.PDF icon Technical Report (684.13 KB)
S. Schmidt, Savchynskyy, B., Kappes, J. Hendrik, and Schnörr, C., Evaluation of a First-Order Primal-Dual Algorithm for MRF Energy Minimization, in EMMCVPR, 2011, vol. 6819, pp. 89-103.
C. Schellewald, Roth, S., and Schnörr, C., Evaluation of a convex relaxation to a quadratic assignment matching approach for relational object views, Image Vision Comp., vol. 25, p. 1301--1314, 2007.PDF icon Technical Report (439.9 KB)
A. Neufeld, Berger, J., Becker, F., Lenzen, F., and Schnörr, C., Estimating Vehicle Ego-Motion and Piecewise Planar Scene Structure from Optical Flow in a Continuous Framework, in 37th German Conference on Pattern Recognition, 2015.
A. Denitiu, Petra, S., Schnörr, C., and Schnörr, C., An Entropic Perturbation Approach to TV-Minimization for Limited-Data Tomography, in Discrete Geometry for Computer Imagery (DGCI) 2014, 2014, p. 262--274.PDF icon Technical Report (894.83 KB)
A. Denitiu, Petra, S., Schnörr, C., and Schnörr, C., An Entropic Perturbation Approach to TV-Minimization for Limited-Data Tomography, in Discrete Geometry for Computer Imagery (DGCI) 2014, 2014, pp. 262–274.
B. Andres, Kappes, J. H., Köthe, U., Schnörr, C., and Hamprecht, F. A., An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM, in Pattern Recognition, Proc.~32th DAGM Symposium, 2010, pp. 353-362.
B. Andres, Kappes, J. H., Köthe, U., Schnörr, C., and Hamprecht, F. A., An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM, in Pattern Recognition, Proc.~32th DAGM Symposium, 2010.PDF icon Technical Report (218.43 KB)
B. Savchynskyy, Schmidt, S., Kappes, J. H., and Schnörr, C., Efficient MRF Energy Minimization via Adaptive Diminishing Smoothing, UAI. Proceedings, pp. 746-755, 2012.
B. Savchynskyy, Schmidt, S., Kappes, J. H., and Schnörr, C., Efficient MRF Energy Minimization via Adaptive Diminishing Smoothing, in UAI 2012, 2012.PDF icon Technical Report (529 KB)
K. Rohr and Schnörr, C., An Efficient Approach to the Identification of Characteristic Intensity Variations, vol. 11, pp. 273–277, 1993.
D
A. Stahl, Ruhnau, P., and Schnörr, C., A Distributed Parameter Approach to Dynamic Image Motion, in ECCV 2006, International Workshop on The Representation and Use of Prior Knowledge in Vision, 2006.PDF icon Technical Report (1.24 MB)
M. Zisler, Petra, S., Schnörr, C., and Schnörr, C., Discrete Tomography by Continuous Multilabeling Subject to Projection Constraints, in Proc. GCPR, 2016.
J. Yuan, Schnörr, C., and Mémin, E., Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation, J.~Math.~Imag.~Vision, vol. 28, pp. 67-80, 2007.PDF icon Technical Report (752.44 KB)
J. Lellmann, Lellmann, B., Widmann, F., and Schnörr, C., Discrete and Continuous Models for Partitioning Problems, Int.~J.~Comp.~Visionz, vol. 104, pp. 241-269, 2013.PDF icon Technical Report (4.74 MB)
A. Bruhn, Weickert, J., Kohlberger, T., and Schnörr, C., Discontinuity-Preserving Computation of Variational Optic Flow in Real-Time, in Scale-Space 2005, 2005, vol. 3459, pp. 279–290.
D. Cremers, Schnörr, C., and Weickert, J., Diffusion–Snakes: Combining Statistical Shape Knowledge and Image Information in a Variational Framework, in IEEE First Workshop on Variational and Level Set Methods in Computer Vision, Vancouver, Canada, 2001, pp. 237–244.
D. Cremers, Schnörr, C., Weickert, J., and Schellewald, C., Diffusion Snakes Using Statistical Shape Knowledge, in Proc. Algebraic Frames for the Perception-Action Cycle, Kiel, 2000, vol. 1888, pp. 164–174.
D. Cremers, Tischhäuser, F., Weickert, J., and Schnörr, C., Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford–Shah functional, Int. J. Computer Vision, vol. 50, pp. 295–313, 2002.

Pages