Publications

Export 223 results:
Author [ Title(Desc)] Type Year
Filters: Author is Christoph Schnörr  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Scale Space and Variational Methods (SSVM 2013), 2013.PDF icon Technical Report (159.71 KB)
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Scale Space and Variational Methods (SSVM 2013), 2013.
F. A. Hamprecht, Schnörr, C., and Jähne, B., Eds., Pattern Recognition – 29th DAGM Symposium, LCNS, vol. 4713. Springer, 2007.
F. A. Hamprecht, Jähne, B., and Schnörr, C., Eds., Pattern Recognition, 29th DAGM Symposium, Heidelberg, Germany, September 12-14, 2007, Proceedings, vol. 4713. Springer, 2007.
C. Schnörr and Jähne, B., Pattern Recognition, 29th DAGM Symposium, Heidelberg, Germany, September 12-14, vol. 4713. Springer, 2007.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Persistency by Pruning for General Graphical Models, in submitted to NIPS 2013., 2013.
A. Denitiu, Petra, S., Schnörr, C., and Schnörr, C., Phase Transitions and Cosparse Tomographic Recovery of Compound Solid Bodies from Few Projections, Fundamenta Informaticae, vol. 135, p. 73--102, 2014.PDF icon Technical Report (2.24 MB)
A. Denitiu, Petra, S., Schnörr, C., and Schnörr, C., Phase Transitions and Cosparse Tomographic Recovery of Compound Solid Bodies from Few Projections, Fundamenta Informaticae, vol. 135, pp. 73–102, 2014.
A. Vlasenko and Schnörr, C., Physically Consistent and Efficient Variational Denoising of Image Fluid Flow Estimates, IEEE Trans.~Image Proc., vol. 19, pp. 586-595, 2010.PDF icon Technical Report (2.65 MB)
A. Vlasenko and Schnörr, C., Physically Consistent Variational Denoising of Image Fluid Flow Estimates, in Pattern Recognition -- 30th DAGM Symposium, 2008, vol. 5096, p. 406--415.PDF icon Technical Report (1.6 MB)
E. Bodnariuc, Schiffner, M. F., Petra, S., and Schnörr, C., Plane Wave Acoustic Superposition for Fast Ultrasound Imaging, International Ultrasonics Symposium. 2016.
J. H. Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C., Probabilistic Correlation Clustering and Image Partitioning Using Perturbed Multicuts, in Proc.~SSVM, 2015.PDF icon Technical Report (1.1 MB)
J. Hendrik Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C., Probabilistic correlation clustering and image partitioning using perturbed Multicuts, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, vol. 9087, pp. 231–242.
F. Rathke, Schmidt, S., and Schnörr, C., Probabilistic Intra-Retinal Layer Segmentation in 3-D OCT Images Using Global Shape Regularization, Med. Image Anal., vol. 18, pp. 781–794, 2014.
F. Rathke, Schmidt, S., and Schnörr, C., Probabilistic Intra-Retinal Layer Segmentation in 3-D OCT Images Using Global Shape Regularization, Medical Image Analysis, vol. 18, pp. 781-794, 2014.PDF icon Technical Report (4.07 MB)
S
J. Berger, Neufeld, A., Becker, F., Lenzen, F., and Schnörr, C., Second Order Minimum Energy Filtering on SE(3) with Nonlinear Measurement Equations, in Scale Space and Variational Methods in Computer Vision (SSVM 2015), 2015.PDF icon Technical Report (364.01 KB)
J. Berger, Neufeld, A., Becker, F., Lenzen, F., and Schnörr, C., Second Order Minimum Energy Filtering on SE(3) with Nonlinear Measurement Equations, in Scale Space and Variational Methods in Computer Vision (SSVM 2015), 2015.
J. Berger, Lenzen, F., Becker, F., Neufeld, A., and Schnörr, C., Second-Order Recursive Filtering on the Rigid-Motion Lie Group SE(3) Based on Nonlinear Observations. 2015.PDF icon Technical Report (4.42 MB)
J. Berger, Lenzen, F., Becker, F., Neufeld, A., and Schnörr, C., Second-Order Recursive Filtering on the Rigid-Motion Lie Group SE(3) Based on Nonlinear Observations. 2015.
B. Andres, Hamprecht, F. A., and Garbe, C. S., Selection of Local Optical Flow Models by Means of Residual Analysis, in Pattern Recognition, 2007, vol. 4713, pp. 72-81.PDF icon Technical Report (229.64 KB)
B. Andres, Garbe, C. S., Schnörr, C., and Jähne, B., Selection of local optical flow models by means of residual analysis, in Proceedings of the 29th DAGM Symposium on Pattern Recognition, 2007, p. 72--81.
L. Görlitz, Menze, B. H., Weber, M. - A., and Kelm, B. Michael, Semi-Supervised Tumor Detection in MRSI With Discriminative Random Fields, in Pattern Recognition, 2007, vol. 4713, pp. 224-233.PDF icon Technical Report (872.46 KB)
M. Bergtholdt and Schnörr, C., Shape Priors and Online Appearance Learning for Variational Segmentation and Object Recognition in Static Scenes, Pattern Recognition, Proc. 27th DAGM Symposium, vol. 3663. Springer, pp. 342–350, 2005.
D. Cremers, Kohlberger, T., and Schnörr, C., Shape Statistics in Kernel Space for Variational Image Segmentation, Pattern Recognition, vol. 36, p. 1929--1943, 2003.PDF icon Technical Report (1.67 MB)
D. Cremers, Kohlberger, T., and Schnörr, C., Shape Statistics in Kernel Space for Variational Image Segmentation, Pattern Recognition, vol. 36, pp. 1929–1943, 2003.
C. Schnörr, Signal and Image Approximation with Level-Set Constraints, Computing, vol. 81, pp. 137-160, 2007.PDF icon Technical Report (506.8 KB)
J. Yuan, Schnörr, C., and Steidl, G., Simultaneous Optical Flow Estimation and Decomposition, SIAM J.~Scientific Computing, vol. 29, pp. 2283-2304, 2007.PDF icon Technical Report (1.16 MB)
F. Lenzen, Lellmann, J., Becker, F., and Schnörr, C., Solving Quasi-Variational Inequalities for Image Restoration with Adaptive Constraint Sets, SIAM J.~Imag.~Sci., vol. 7, p. 2139--2174, 2014.PDF icon Technical Report (802.13 KB)
F. Lenzen, Lellmann, J., Becker, F., and Schnörr, C., Solving QVIs for Image Restoration with Adaptive Constraint Sets, SIAM Journal on Imaging Sciences (SIIMS), in press, 2014.
D. Breitenreicher, Lellmann, J., and Schnörr, C., Sparse Template-Based Variational Image Segmentation, Advances in Adaptive Data Analysis, vol. 3, pp. 149-166, 2011.PDF icon Technical Report (866.28 KB)
D. Breitenreicher, Lellmann, J., and Schnörr, C., Sparse Template-Based Variational Image Segmentation, Advances in Adaptive Data Analysis, vol. 3, pp. 149-166, 2011.
S. Petra, Schröder, A., Wieneke, B., and Schnörr, C., On Sparsity Maximization in Tomographic Particle Image Reconstruction, in Pattern Recognition -- 30th DAGM Symposium, 2008, vol. 5096, p. 294--303.PDF icon Technical Report (1014.71 KB)

Pages