Publications

Export 191 results:
Author Title [ Type(Asc)] Year
Filters: Author is Fred A. Hamprecht  [Clear All Filters]
Conference Paper
Hanselmann, M, Köthe, U, Renard, B Y, Kirchner, M, Heeren, R M A and Hamprecht, F A (2009). Multivariate Watershed Segmentation of Compositional Data. Proceedings of the 15th International Conference on Discrete Geometry for Computer Imagery (DGCI), in press. Springer. 5810 180-192PDF icon Technical Report (1.25 MB)
Straehle, C, Kandemir, M, Köthe, U and Hamprecht, F A (2014). Multiple instance learning with response-optimized random forests. ICPR. Proceedings. 3768 - 3773PDF icon Technical Report (296.66 KB)
Urban, G, Bendszus, M, Hamprecht, F A and Kleesiek, J (2014). Multi-modal Brain Tumor Segmentation using Deep Convolutional NeuralNetworks. MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winningcontribution. 31-35
Menze, B H, Kelm, B M, Heck, D, Lichy, M P and Hamprecht, F A (2006). Machine-based rejection of low quality spectra and estimation of brain tumor probabilities from magnetic resonance spectroscopic images. Bildverarbeitung für die Medizin. 31-36PDF icon Technical Report (672.84 KB)
Funke, J, Hamprecht, F A and Zhang, C (2015). Learning to Segment: Training Hierarchical Segmentation under a Topological Loss. MICCAI. Proceedings, Part III. Springer. 9351 268-275PDF icon Technical Report (2.92 MB)
Kröger, T, Mikula, S, Denk, W, Köthe, U and Hamprecht, F A (2013). Learning to Segment Neurons with Non-local Quality Measures. MICCAI 2013. Proceedings, part II. Springer. 8150 419-427PDF icon Technical Report (2.87 MB)
Diego, F and Hamprecht, F A (2013). Learning Multi-Level Sparse Representation for Identifying Neuronal Activity. Signal Processing with Adaptive Sparse Structured Representations Workshop (SPARS). Book of AbstractsPDF icon Technical Report (1.05 MB)
Diego, F and Hamprecht, F A (2013). Learning Multi-Level Sparse Representation. NIPS. Proceedings. http://papers.nips.cc/paper/5076-learning-multi-level-sparse-representationsPDF icon Technical Report (2.79 MB)
Andres, B, Kappes, J H, Beier, T, Köthe, U and Hamprecht, F A (2012). The Lazy Flipper: Efficient Depth-limited Exhaustive Search in Discrete Graphical Models. ECCV 2012PDF icon Technical Report (532.64 KB)
Andres, B, Kappes, J H, Beier, T, Köthe, U and Hamprecht, F A (2012). The Lazy Flipper: Efficient Depth-Limited Exhaustive Search in Discrete Graphical Models. Computer Vision - {ECCV} 2012 - 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part {VII}. http://dx.doi.org/10.1007/978-3-642-33786-4_12PDF icon Technical Report (446.28 KB)
Straehle, C, Peter, S, Köthe, U and Hamprecht, F A (2013). K-smallest Spanning Tree Segmentations. German Conference on Pattern Recognition (DAGM/GCPR). Proceedings. Springer. 375-384PDF icon Technical Report (1.18 MB)
Kandemir, M and Hamprecht, F A (2014). Instance Label Prediction by Dirichlet Process Multiple Instance Learning. UAI. ProceedingsPDF icon Technical Report (4.26 MB)
Krasowski, N, Beier, T, Knott, G W, Köthe, U, Hamprecht, F A and Kreshuk, A (2015). Improving 3D EM Data Segmentation by Joint Optimization over Boundary Evidence and Biological Priors. 12th {IEEE} International Symposium on Biomedical Imaging, {ISBI} 2015, Brooklyn, NY, USA, April 16-19, 2015. 536-539PDF icon Technical Report (2.25 MB)
Sommer, C, Strähle, C, Köthe, U and Hamprecht, F A (2011). ilastik: Interactive Learning and Segmentation Toolkit. Eighth IEEE International Symposium on Biomedical Imaging (ISBI 2011).Proceedings. 230-233
Kleesiek, J, Biller, A, Urban, G, Köthe, U, Bendszus, M and Hamprecht, F A (2014). ilastik for Multi-modal Brain Tumor Segmentation. MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, 3rdplace. 12-17PDF icon Technical Report (405.91 KB)
Andres, B, Kröger, T, Briggmann, K L, Denk, W, Norogod, N, Knott, G, Köthe, U and Hamprecht, F A (2012). Globally Optimal Closed-Surface Segmentation for Connectomics. ECCV 2012. Proceedings, Part 3. 778-791PDF icon Technical Report (2.72 MB)
Köthe, U, Andres, B, Kröger, T and Hamprecht, F A (2010). Geometric Analysis of 3D Electron Microscopy Data. Proceedings of Workshop on Discrete Geometry and Mathematical Morphology (WADGMM). 22-26PDF icon Technical Report (1.43 MB)
Beier, T, Hamprecht, F A and Kappes, J H (2015). Fusion Moves for Correlation Clustering. CVPR. Proceedings. 3507-3516PDF icon Technical Report (1.19 MB)
Menze, B H, Kelm, B M and Hamprecht, F A (2007). From eigenspots to fisherspots -- latent spaces in the nonlinear detection of spot patterns in a highly variable background. Advances in data analysis. Springer. 33 255-262PDF icon Technical Report (248.87 KB)
Wanner, S, Sommer, C, Rocholz, R, Hamprecht, F A and Jähne, B (2011). A Framework for Interactive Visualization and Classification of Dynamical Processes at the Water Surface. 16th International Workshop on Vision, Modelling and Visualization. Eurographics Association, Germany. 199-206PDF icon Technical Report (4.67 MB)
Wanner, S, Sommer, C, Rocholz, R, Jung, M, Hamprecht, F A and Jähne, B (2011). A framework for interactive visualization and classification of dynamical processes at the water surface. 16th International Workshop on Vision, Modelling and Visualization. Eurographics Association, Germany. 199--206
Garbe, C S, Schnörr, C and Jähne, B (2007). Fluid flow estimation through integration of physical flow configurations. Proceedings of the 29th DAGM Symposium on Pattern Recognition. Springer. 92--101
Kandemir, M, Rubio, J C, Schmidt, U, Welbl, J, Ommer, B and Hamprecht, F A (2014). Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures. MICCAI. Proceedings. Springer. 154-161PDF icon Paper (2 MB)
Andres, B, Kondermann, C, Kondermann, D, Hamprecht, F A and Garbe, C S (2008). On errors-in-variables regression with arbitrary covariance and its application to optical flow estimation. IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008. IEEE. 1--6
Kandemir, M, Zhang, C and Hamprecht, F A (2014). Empowering multiple instance histopathology cancer diagnosis by cell graphs. MICCAI. Proceedings. Springer. 8674 228-235PDF icon Technical Report (1.76 MB)
Andres, B, Kappes, J H, Köthe, U, Schnörr, C and Hamprecht, F A (2010). An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM. Pattern Recognition, Proc.~32th DAGM Symposium. 353-362
Andres, B, Kappes, J H, Köthe, U, Schnörr, C and Hamprecht, F A (2010). An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM. Pattern Recognition, Proc.~32th DAGM SymposiumPDF icon Technical Report (218.43 KB)
Kausler, B X, Schiegg, M, Andres, B, Lindner, M, Köthe, U, Leitte, H, Wittbrodt, J, Hufnagel, L and Hamprecht, F A (2012). A Discrete Chain Graph Model for 3d+t Cell Tracking with High Misdetection Robustness. ECCV 2012. Proceedings. 7574 144-157PDF icon Technical Report (809.07 KB)
Decker, C and Hamprecht, F A (2014). Detecting individual body parts improves mouse behavior classification. Workshop on visual observation and analysis of Vertebrate And Insect Behavior (VAIB), 22nd International Conference on Pattern Recognition (ICPR). ProceedingsPDF icon Technical Report (1.48 MB)
Lou, X, Kaster, F, Lindner, M, Kausler, B, Köthe, U, Höckendorf, B, Wittbrodt, J, Jänicke, H and Hamprecht, F A (2011). DELTR: Digital Embryo Lineage Tree Reconstructor. Eighth IEEE International Symposium on Biomedical Imaging (ISBI). Proceedings. 1557-1560PDF icon Technical Report (1.44 MB)
Beier, T, Kröger, T, Kappes, J H, Köthe, U and Hamprecht, F A (2014). Cut, Glue and Cut: A Fast, Approximate Solver for Multicut Partitioning. 2014 {IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2014, Columbus, OH, USA, June 23-28, 2014. http://dx.doi.org/10.1109/CVPR.2014.17PDF icon Technical Report (10.06 MB)
Schiegg, M, Hanslovsky, P, Kausler, B X, Hufnagel, L and Hamprecht, F A (2013). Conservation Tracking. ICCV 2013. Proceedings. 2928--2935PDF icon Technical Report (5.22 MB)
Kaster, F, Weber, M - A and Hamprecht, F A (2011). Comparative Validation of Graphical Models for Learning Tumor Segmentations from Noisy Manual Annotations. LNCS. Springer, Heidelberg. LNCS 6533 74-85PDF icon Technical Report (544.56 KB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Sungwoong, K, Kausler, B X, Lellmann, J, Komodakis, N and Rother, C (2013). A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems. CVPR 2013. ProceedingsPDF icon Technical Report (1.35 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Lellmann, J, Komodakis, N and Rother, C (2013). A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problem. CVPRPDF icon Technical Report (1.35 MB)

Pages