Publications

Export 1904 results:
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
Nair, R, Fitzgibbon, A, Kondermann, D and Rother, C (2015). Reflection modeling for passive stereo. Proceedings of the IEEE International Conference on Computer Vision. 2015 Inter 2291–2299
Esparza, J, Vepa, L, Helmle, M and Jähne, B (2014). Registration of a multi-camera system with a 3D laser range finder. 9th Workshop Driver Assistance Systems (FAS2014), 26.-28.03.2014, Walting. 37--46. http://www.uni-das.de/de/Veranstaltungen/fas2014.php
Jancsary, J, Nowozin, S, Sharp, T and Rother, C (2012). Regression Tree Fields An efficient, non-parametric approach to image labeling problems. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2376–2383
Jancsary, J, Nowozin, S, Sharp, T and Rother, C (2012). Regression Tree Fields An efficient, non-parametric approach to image labeling problems. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2376–2383
Spies, H, Jähne, B and Barron, J L (2000). Regularised range flow. European Conference on Computer Vision (ECCV). Springer. 2 785--799
Lellmann, J and Schnörr, C (2011). Regularizers for Vector-Valued Data and Labeling Problems in Image Processing. Control Systems and Computers. 2 43–54
Rubio, J C and Ommer, B (2015). Regularizing Max-Margin Exemplars by Reconstruction and Generative Models. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 4213--4221PDF icon Technical Report (2.8 MB)
Bhowmik, A, Gumhold, S, Rother, C and Brachmann, E (2019). Reinforced Feature Points: Optimizing Feature Detection and Description for a High-Level Task. http://arxiv.org/abs/1912.00623
Bhowmik, A, Gumhold, S, Rother, C and Brachmann, E (2020). Reinforced Feature Points: Optimizing Feature Detection and Description for a High-Level Task. CVPR 2020 (oral). http://arxiv.org/abs/1912.00623PDF icon PDF (2.74 MB)
Reinecke, H, Fantana, N L, Haußecker, H and Jähne, B (1997). Rekonstruktion von Schreiberkurven. Mustererkennung 1997. Springer. 527--536
von Schmude, N, Lothe, P and Jähne, B (2016). Relative Pose Estimation from Straight Lines using Parallel Line Clustering and its Application to Monocular Visual Odometry. Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
Garbe, C S and Jähne, B (2001). Reliable estimates of the sea surface heat flux from image sequences. Proceedings of the 23th DAGM Symposium on Pattern Recognition, München. Springer. 194--201
Köthe, (2008). Reliable Low-Level Image Analysis. Habilitation thesis. Department Informatik, University of Hamburg, HamburgPDF icon Technical Report (12.44 MB)
Withopf, D (2007). Reliable Real-Time Vehicle Detection and Tracking. IWR, Fakultät für Mathematik und Informatik, Univ.\ Heidelberg. http://d-nb.info/98745398X
Zhang, H, Hamprecht, F A and Amann, A (2005). Report about VOCs Dataset's Analysis based on Random Forests. Proceedings of the HPC-Asia05. IEEE Computer Society Press. 603-607PDF icon Technical Report (232.13 KB)
Liss, P S, Watson, A J, Bock, E J, Jähne, B, Asher, W E, Frew, N M, Hasse, L, Korenowski, G M, Merlivat, L, Phillips, L F, Schlüssel, P and Woolf, D K (1997). Report Group 1 - Physical processes in the microlayer and the air-sea exchange of trace gases. The Sea Surface and Global Change. Cambridge University Press. 1--33
Schnörr, (1996). Repräsentation von Bilddaten mit einem konvexen Variationsansatz. Mustererkennung 1996. Springer-Verlag, Berlin, Heidelberg. 21–28
Schnörr, (1996). Representation Of Images By A Convex Variational Diffusion Approach. FB Informatik, Universität Hamburg
Jähne, B, Jähne, B and Haußecker, H (2000). Representation of multidimensional signals. Computer Vision and Applications. A Guide for Students and Practitioners. Academic Press. 211--272
Jähne, B, Haußecker, H, Platt, U, Schurr, U and Stitt, M (1997). The research unit (Forschergruppe) Image Sequence Processing to Study Dynamical Processes. Proc.\ 3D Image Analysis and Synthesis'97, Erlangen (Germany), November 17--18, 1997. infix. 107--114
Saussen, B (2007). Retention Time Domain Registration Of Liquid Chromatography/mass Spectrometry Data. University of Heidelberg
Wenig, M, Kuhl, S, Beirle, S, Bucsela, E, Jähne, B, Platt, U, Gleason, J and Wagner, T (2004). Retrieval and analysis of stratospheric NO$_2$ from the Global Ozone Monitoring Experiment. J. Geophys. Res. 109 D04315, 1--11
Leue, C, Wenig, M, Platt, U, Jähne, B, Geißler, P and Haußecker, H (1999). Retrieval of Atmospheric Trace Gas Concentrations. Handbook of Computer Vision and Applications. Academic Press. 3: Systems and Applications 783-805
Heiler, M and Schnörr, C (2005). Reverse-Convex Programming for Sparse Image Codes. Proc. Int. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR'05). Springer. 3757 600-616
Roth, K, Milbich, T, Sinha, S, Gupta, P, Ommer, B and Cohen, J Paul (2020). Revisiting Training Strategies and Generalization Performance in Deep Metric Learning. https://arxiv.org/pdf/2002.08473.pdf
Álvarez, J M, Gevers, T, Diego, F and López, A M (2012). Road Geometry Classification by Adaptive Shape Models. IEEE Transactions on Intelligent Transportation Systems (ITS). 99 1-10
Breitenreicher, D and Schnörr, C (2010). Robust 3D object registration without explicit correspondence using geometric integration. Machine Vision and Applications. 21 601-611. http://www.springerlink.com/content/g20710062l014241/PDF icon Technical Report (1.65 MB)
Breitenreicher, D and Schnörr, C (2010). Robust 3D object registration without explicit correspondence using geometric integration. Machine Vision and Applications. 21 601-611. http://www.springerlink.com/content/g20710062l014241/
Vianello, A (2017). Robust 3D Surface Reconstruction from Light Fields. IWR, Univ. Heidelberg. Dissertation
Vianello, A, Ackermann, J, Diebold, M and Jähne, B (2018). Robust Hough transform based 3D reconstruction from circular light fields. Conference on Computer Vision and Pattern Recognition (CVPR)
Renard, B Y (2010). Robust Methods for the Proteomic Data Analysis Pipeline. University of Heidelberg
Antic, B and Ommer, B (2012). Robust Multiple-Instance Learning with Superbags. Proceedings of the Aian Conference on Computer Vision (ACCV) (Oral). Springer. 242--255PDF icon Technical Report (319.58 KB)
König, T, Menze, B H, Kirchner, M, Monigatti, F, Parker, K C, Patterson, T, Steen, J J, Hamprecht, F A and Steen, H (2008). Robust Prediction of the MASCOT Score for an Improved Quality Assessment in Mass Spectrometric Proteomics. Journal of Proteome Research. 7 3708-3717PDF icon Technical Report (1.16 MB)
He, X, Wang, H, Zhang, F, Wang, G and Zhou, K (2014). Robust Simulation of Small-Scale Thin Features in SPH-based Free Surface Flows. Life.Kunzhou.Net. 1 1–8. http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY http://life.kunzhou.net/2013/SPHsurfacetension.pdf
Li, J (2019). Robust Single Object Tracking Via Fully Convolutional Siamese Networks. Heidelberg University

Pages