Publications

Export 1514 results:
Author Title Type [ Year(Desc)]
2018
Kiechle, M, Storath, M, Weinmann, A and Kleinsteuber, M (2018). Model-based learning of local image features for unsupervised texture segmentation. IEEE Transactions on Image Processing. 27 1994-2007
Beier, T (2018). Multicut Algorithms for Neurite Segmentation. Heidelberg University
Wolf, S, Pape, C, Bailoni, A, Rahaman, N, Kreshuk, A, Köthe, U and Hamprecht, F A (2018). The Mutex Watershed: Efficient, Parameter-Free Image Partitioning. ECCV. Proceedings, in press
Lang, S and Ommer, B (2018). Reconstructing Histories: Analyzing Exhibition Photographs with Computational Methods. Arts, Computational Aesthetics. 7, 64PDF icon arts-07-00064.pdf (4.6 MB)
Lang, S and Ommer, B (2018). Reflecting on How Artworks Are Processed and Analyzed by Computer Vision. European Conference on Computer Vision (ECCV). Springer
Kawetzki, D (2018). Semantic Segmentation Of Urban Scenes Using Deep Learning. Heidelberg University
Rahaman, N, Arpit, D, Baratin, A, Draxler, F, Lin, M, Hamprecht, F A, Bengio, Y and Courville, A (2018). On the spectral bias of deep neural networks. arXiv preprint arXiv:1806.08734
Sanakoyeu, A, Kotovenko, D, Lang, S and Ommer, B (2018). A Style-Aware Content Loss for Real-time HD Style Transfer. Proceedings of the European Conference on Computer Vision (ECCV) (Oral)
Bredies, K, Holler, M, Storath, M and Weinmann, A (2018). Total Generalized Variation for Manifold-valued Data. SIAM Journal on Imaging Sciences. 11 1785 - 1848
Esser, P, Haux, J, Milbich, T and Ommer, B (2018). Towards Learning a Realistic Rendering of Human Behavior. European Conference on Computer Vision (HBUGEN)
Schilling, H, Diebold, M, Rother, C and Jähne, B (2018). Trust your Model: Light Field Depth Estimation with inline Occlusion Handling. CVPR. ProceedingsPDF icon Technical Report (5.46 MB)
Zern, A, Zisler, M, Aström, F, Petra, S and Schnörr, C (2018). Unsupervised Label Learning on Manifolds by Spatially Regularized Geometric Assignment. GCPR. Proceedings. 698-713PDF icon Technical Report (5.23 MB)
Esser, P, Sutter, E and Ommer, B (2018). A Variational U-Net for Conditional Appearance and Shape Generation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (short Oral). https://compvis.github.io/vunet/
Blum, O, Brattoli, B and Ommer, B (2018). X-GAN: Improving Generative Adversarial Networks with ConveX Combinations. German Conference on Pattern Recognition (GCPR) (Oral). Stuttgart, GermanyPDF icon Article (6.65 MB)PDF icon Supplementary material (7.96 MB)PDF icon Oral slides (14.96 MB)
2019
Haußmann, M, Gerwinn, S and Kandemir, M (2019). Bayesian Prior Networks with PAC Training. arXiv preprint arXiv:1906.00816
Bendinger, A L, Debus, C, Glowa, C, Karger, C P, Peter, J and Storath, M (2019). Bolus arrival time estimation in dynamic contrast-enhanced magnetic resonance imaging of small animals based on spline models, in press. Physics in Medicine and Biology. 64
Kotovenko, D, Sanakoyeu, A, Lang, S and Ommer, B (2019). Content and Style Disentanglement for Artistic Style Transfer. Proceedings of the Intl. Conf. on Computer Vision (ICCV)
Haußmann, M, Hamprecht, F A and Kandemir, M (2019). Deep Active Learning with Adaptive Acquisition. IJCAI. Proceedings, in press
Bollweg, S, Haußmann, M, Kasieczka, G, Luchmann, M, Plehn, T and Thompson, J (2019). Deep-Learning Jets with Uncertainties and More . arXiv preprint arXiv:1904.10004
Sanakoyeu, A, Tschernezki, V, Büchler, U and Ommer, B (2019). Divide and Conquer the Embedding Space for Metric Learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://github.com/CompVis/metric-learning-divide-and-conquer
Kiefer, L, Storath, M and Weinmann, A (2019). An efficient algorithm for the piecewise affine-linear Mumford-Shah model based on a Taylor jet splitting. IEEE Transactions on Image Processing. 29PDF icon Technical Report (2.04 MB)
Cerrone, L, Zeilmann, A and Hamprecht, F A (2019). End-to-End Learned Random Walker for Seeded Image Segmentation. CVPR. Proceedings. 12559-12568
Hehn, T M, Kooij, J F P and Hamprecht, F A (2019). End-to-End Learning of Decision Trees and Forests. International Journal of Computer Vision. 1-15
Berg, S, Kutra, D, Kroeger, T, Straehle, C N, Kausler, B X, Haubold, C, Schiegg, M, Ales, J, Beier, T, Rudy, M, Eren, K, Cervantes, J I, Xu, B, Beuttenmüller, F, Wolny, A, Zhang, C, Köthe, U, Hamprecht, F A and Kreshuk, A (2019). ilastik: interactive machine learning for (bio)image analysis. Nature Methods
Remme, R (2019). Instance Segmentation Via Associative Pixel Embeddings. Heidelberg University
Hanslovsky, P (2019). Isotropic Reconstruction of Neural Morphology from Large Non-Isotropic 3D Electron MIcroscopy. Heidelberg University
Kirschbaum, E, Haußmann, M, Wolf, S, Sonntag, H, Schneider, J, Elzoheiry, S, Kann, O, Durstewitz, D and Hamprecht, F A (2019). LeMoNADe: Learned Motif and Neuronal Assembly Detection in calcium imaging videos. ICLR. Proceedings
Bengio, Y, Deleu, T, Rahaman, N, Ke, R, Lachapelle, S, Bilaniuk, O, Goyal, A and Pal, C (2019). A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms. arXiv preprint arXiv:1901.10912PDF icon Technical Report (871.59 KB)
Brattoli, B, Roth, K and Ommer, B (2019). MIC: Mining Interclass Characteristics for Improved Metric Learning. Proceedings of the Intl. Conf. on Computer Vision (ICCV)
Kirschbaum, E (2019). Novel Machine Learning Approaches for Neurophysiological Data Analysis. Heidelberg University
Snajder, R (2019). Pipeline Für Die Automatisierte Objektsegmentierung Von 3D Lightshet Mikroskopiebildern. Heidelberg University
Li, J (2019). Robust Single Object Tracking Via Fully Convolutional Siamese Networks. Heidelberg University
Haußmann, M, Hamprecht, F A and Kandemir, M (2019). Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation. UAI. Proceedings, in press
Li, Y (2019). Semantic Instance Segmentation With The Multiway Mutex Watershed. Heidelberg University
Fita, E (2019). Semi-Supervised Distance-Based Segmentation. Heidelberg University

Pages