R
P. Yarlagadda, Monroy, A., Carque, B., and Ommer, B.,
“Recognition and Analysis of Objects in Medieval Images”, in
Proceedins of the Aian Conference on Computer Vision, Workshop on e-Heritage, 2010, p. 296--305.
Technical Report (2.76 MB) P. Vincent Gehler, Rother, C., Kiefel, M., Zhang, L., and Schölkopf, B.,
“Recovering intrinsic images with a global sparsity prior on reflectance”, in
Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011, 2011.
R. Nair, Fitzgibbon, A., Kondermann, D., and Rother, C.,
“Reflection modeling for passive stereo”, in
Proceedings of the IEEE International Conference on Computer Vision, 2015, vol. 2015 Inter, pp. 2291–2299.
J. Esparza, Vepa, L., Helmle, M., and Jähne, B.,
“Registration of a multi-camera system with a 3D laser range finder”, in
9th Workshop Driver Assistance Systems (FAS2014), 26.-28.03.2014, Walting, 2014, p. 37--46.
J. Jancsary, Nowozin, S., Sharp, T., and Rother, C.,
“Regression Tree Fields An efficient, non-parametric approach to image labeling problems”, in
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2012, pp. 2376–2383.
J. Jancsary, Nowozin, S., Sharp, T., and Rother, C.,
“Regression Tree Fields An efficient, non-parametric approach to image labeling problems”, in
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2012, pp. 2376–2383.
H. Spies, Jähne, B., and Barron, J. L.,
“Regularised range flow”, in
European Conference on Computer Vision (ECCV), 2000, vol. 2, p. 785--799.
J. C. Rubio and Ommer, B.,
“Regularizing Max-Margin Exemplars by Reconstruction and Generative Models”, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, p. 4213--4221.
Technical Report (2.8 MB) H. Reinecke, Fantana, N. L., Haußecker, H., and Jähne, B.,
“Rekonstruktion von Schreiberkurven”, in
Mustererkennung 1997, 1997, p. 527--536.
C. S. Garbe and Jähne, B.,
“Reliable estimates of the sea surface heat flux from image sequences”, in
Proceedings of the 23th DAGM Symposium on Pattern Recognition, München, 2001, p. 194--201.
U. Köthe,
“Reliable Low-Level Image Analysis”,
Habilitation thesis. Department Informatik, University of Hamburg, Hamburg, 2008.
Technical Report (12.44 MB) D. Withopf,
“Reliable Real-Time Vehicle Detection and Tracking”. IWR, Fakultät für Mathematik und Informatik, Univ.\ Heidelberg, 2007.
P. S. Liss, Watson, A. J., Bock, E. J., Jähne, B., Asher, W. E., Frew, N. M., Hasse, L., Korenowski, G. M., Merlivat, L., Phillips, L. F., Schlüssel, P., and Woolf, D. K.,
“Report Group 1 - Physical processes in the microlayer and the air-sea exchange of trace gases”,
The Sea Surface and Global Change. Cambridge University Press, p. 1--33, 1997.
B. Jähne, Jähne, B., and Haußecker, H.,
“Representation of multidimensional signals”,
Computer Vision and Applications. A Guide for Students and Practitioners. Academic Press, p. 211--272, 2000.
B. Jähne, Haußecker, H., Platt, U., Schurr, U., and Stitt, M.,
“The research unit (Forschergruppe) Image Sequence Processing to Study Dynamical Processes”, in
Proc.\ 3D Image Analysis and Synthesis'97, Erlangen (Germany), November 17--18, 1997, 1997, p. 107--114.
M. Wenig, Kuhl, S., Beirle, S., Bucsela, E., Jähne, B., Platt, U., Gleason, J., and Wagner, T.,
“Retrieval and analysis of stratospheric NO$_2$ from the Global Ozone Monitoring Experiment”,
J. Geophys. Res., vol. 109, p. D04315, 1--11, 2004.
C. Leue, Wenig, M., Platt, U., Jähne, B., Geißler, P., and Haußecker, H.,
“Retrieval of Atmospheric Trace Gas Concentrations”,
Handbook of Computer Vision and Applications, vol. 3: Systems and Applications. Academic Press, pp. 783-805, 1999.
M. Heiler and Schnörr, C.,
“Reverse-Convex Programming for Sparse Image Codes”, in
Proc. Int. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR'05), 2005, vol. 3757, pp. 600-616.
K. Roth, Milbich, T., Sinha, S., Gupta, P., Ommer, B., and Cohen, J. Paul,
“Revisiting Training Strategies and Generalization Performance in Deep Metric Learning”,
International Conference on Machine Learning (ICML). 2020.
J. M. Álvarez, Gevers, T., Diego, F., and López, A. M.,
“Road Geometry Classification by Adaptive Shape Models”,
IEEE Transactions on Intelligent Transportation Systems (ITS), vol. 99, pp. 1-10, 2012.