Publications

Export 1501 results:
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Lou, X (2011). Biomedical Data Analysis with Prior Knowledge: Modeling and Learning. University of Heidelberg
Scholes, M C, Matrai, P A, Andreae, M O, Smith, K A, Manning, M R, Artaxo, P, Barrie, L A, Bates, T S, Butler, J H, Ciccioli, P, Cieslik, S A, Delmas, R J and Dentener, F J (2003). Biosphere-Atmosphere Interactions. Atmospheric Chemistry in a Changing World, An Integration and Synthesis of a Decade of Tropospheric Chemistry Research. Springer. 19--71
Jähne, (1999). Blätter, Wind und Wellen. Unsichtbares wird sichtbar.. computer art faszination, dot'99. dot-Verlag. 38--43
Bendinger, A L, Debus, C, Glowa, C, Karger, C P, Peter, J and Storath, M (2019). Bolus arrival time estimation in dynamic contrast-enhanced magnetic resonance imaging of small animals based on spline models, in press. Physics in Medicine and Biology. 64
Hörnlein, (2010). Boosted Feature Generation for Classification Problems Involving High Numbers of Inputs and Classes. IWR, Fakultät für Mathematik und Informatik, Univ.\ Heidelberg. http://www.ub.uni-heidelberg.de/archiv/10999
Hörnlein, T, Jähne, B and Süße, H (2009). Boosting shift-invariant features. Pattern Recognition. Springer. 5748 121--130
Jähne, (2011). Bringing the ocean inside the lab, image processing in environmental sciences. www.laborundmore.de/
Petra, S, Schnörr, C, Becker, F and Lenzen, F (2013). B-SMART: Bregman-Based First-Order Algorithms for Non-Negative Compressed Sensing Problems. Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision (SSVM) 2013. Springer. 7893 110-124PDF icon Technical Report (1.15 MB)
Petra, S, Schnörr, C, Becker, F and Lenzen, F (2013). B-SMART: Bregman-Based First-Order Algorithms for Non-Negative Compressed Sensing Problems. Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision SSVM. 110-124
Heikkonen, J, Koikkalainen, P and Schnörr, C (1994). Building Trajectories via Selforganization from Spatiotemporal Features. 12th Int. Conf. on Pattern Recognition
Kappes, J H, Savchynskyy, B and Schnörr, C (2012). A Bundle Approach To Efficient MAP-Inference by Lagrangian Relaxation. CVPRPDF icon Technical Report (430.63 KB)
Kappes, J H, Savchynskyy, B and Schnörr, C (2012). A Bundle Approach To Efficient MAP-Inference by Lagrangian Relaxation. CVPR. Proceedings. 1688-1695
C
Jähne, B and Schultz, H (1992). Calibration and accuracy of optical slope measurements for short wind waves. Optics of the Air-Sea Interface: Theory and Measurements. 1749 222--233
Rocholz, R (2010). Calibration Of The 2010-Cisg Setup At The Aeolotron. Institute of Environmental Physics, University of Heidelberg
Mersmann, S, Seitel, A, Erz, M, Jähne, B, Nickel, F, Mieth, M, Mehrabi, A and Maier-Hein, L (2013). Calibration of time-of-flight cameras for accurate intraoperative surface reconstruction. Med. Phys. 40 082701
Zechmann, C, Kelm, B M, Zamecnik, P, Ikinger, U, Waldherr, R, Röll, S, Delorme, S, Hamprecht, F A and Bachert, P (2006). Can man still beat the machine? Automated vs. manual pattern recognition of 3D MRSI data of prostate cancer patients. Proceedings of the 16th ISMRMPDF icon Technical Report (664.38 KB)
Maier-Hein, L, Mersmann, S, Kondermann, D, Bodenstedt, S, Sanchez, A, Stock, C, Kenngott, H, Eisenmann, M and Speidel, S (2014). Can masses of non-experts train highly accurate image classifiers? A crowdsourcing approach to instrument segmentation in laparoscopic images. MICCAI
Straehle, C N, Köthe, U, Knott, G and Hamprecht, F A (2011). Carving: Scalable Interactive Segmentation of Neural Volume Electron Microscopy Images. MICCAI 2011, Proceedings. Springer. 6891 653-660PDF icon Technical Report (1.69 MB)
Welbl, J (2014). Casting Random Forests as Artificial Neural Networks (and Profiting from It). GCPR. Proceedings. 765-771PDF icon Technical Report (376.24 KB)
Zhang, C, Yarkony, J and Hamprecht, F A (2014). Cell detection and segmentation using correlation clustering. MICCAI. Proceedings. Springer. 9-16PDF icon Technical Report (8.06 MB)
Kandemir, M and Hamprecht, F A (2015). Cell event detection in phase-contrast microscopy sequences from few annotations. MICCAI. Proceedings. Springer. LNCS 9351 316-323PDF icon Technical Report (564.69 KB)
Wolf, S (2016). Cell Tracking With Graphical Model Using Higher Order Features On Track Segments. University of Heidelberg
Erz, M (2011). Charakterisierung von Laufzeitkamerasystemen für Lumineszenzlebensdauermessungen. IWR, Fakultät für Physik und Astronomie, University of Heidelberg. http://www.ub.uni-heidelberg.de/archiv/11598
Hamprecht, F A, Thiel, W and van Gunsteren, W F (2002). Chemical library subset selection algorithms: a unified derivation using spatial statistics. Journal of Chemical Information and Computer Sciences. 42 414-428
Schmund, D, Münsterer, T, Lauer, H, Jähne, B and Jähne, B (1995). The circular wind wave facilities at the University of Heidelberg. Air-Water Gas Transfer - Selected papers from the Third International Symposium on Air-Water Gas Transfer. AEON. 505--516
Kelm, B M, Menze, B H, Neff, T, Zechmann, C M and Hamprecht, F A (2006). CLARET: a tool for fully automated evaluation of MRSI with pattern recognition methods.. Bildverarbeitung für die Medizin 2006 - Algorithmen, Systeme, Anwendungen. Springer. 51-55. http://www.efmi-wg-mip.net/service/bvm2006PDF icon Technical Report (275.25 KB)
Heers, J, Schnörr, C and Stiehl, H S (1998). A class of parallel algorithms for nonlinear variational image segmentation. Proc.~Noblesse Workshop on Non--Linear Model Based Image Analysis (NMBIA'98)
Lenzen, F, Becker, F, Lellmann, J, Petra, S and Schnörr, C (2013). A Class of Quasi-Variational Inequalities for Adaptive Image Denoising and Decomposition. Computational Optimization and Applications (COAP). 54 (2) 371-398
Lenzen, F, Becker, F, Lellmann, J, Petra, S and Schnörr, C (2013). A class of quasi-variational inequalities for adaptive image denoising and decomposition. Computational Optimization and Applications. Springer Netherlands. 54 371-398. http://dx.doi.org/10.1007/s10589-012-9456-0PDF icon Technical Report (748.66 KB)
Hamprecht, F A (2004). Classification. Practical Handbook on Image Processing for Scientific and Technical Applications. CRC Press. 509-519PDF icon Technical Report (320.84 KB)
Menze, B H, Wormit, M, Bachert, P, Lichy, M P, Schlemmer, H - P and Hamprecht, F A (2004). Classification of in vivo magnetic resonance spectra. Classification in ubiquitous challenge: Proceedings of the GfKl 2004. Springer. 362-369PDF icon Technical Report (240.1 KB)
Menze, B H and Ur, J A (2007). Classification of multispectral ASTER imagery in the archaeological survey for settlement sites of the Near East. Proc 10th International Symposium on Physical Measurements and Signature in Remote Sensing (ISPMRS 07), Davos, Switzerland. International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesPDF icon Technical Report (920.71 KB)
Kaster, F O, Kelm, B M, Zechmann, C M, Weber, M - A, Hamprecht, F A and Nix, O (2009). Classification of Spectroscopic Images in the DIROlab Environment. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany. Springer. 25/V 252--255PDF icon Technical Report (145.73 KB)
Bautista, M, Sanakoyeu, A, Sutter, E and Ommer, B (2016). CliqueCNN: Deep Unsupervised Exemplar Learning. Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS). MIT Press, Barcelona. https://arxiv.org/abs/1608.08792PDF icon Article (5.79 MB)
Long, S R and Klinke, J (2002). A closer look at short waves generated by wave interactions with adverse currents. Gas Transfer at Water Surfaces. American Geophysical Union. 127 121--128

Pages