Publications

Export 54 results:
Author Title Type [ Year(Asc)]
Filters: Author is Jörg H. Kappes  [Clear All Filters]
2011
Andres, B, Kappes, J H, Beier, T, Köthe, U and Hamprecht, F A (2011). Probabilistic Image Segmentation with Closedness Constraints. ICCV, Proceedings. 2611 - 2618PDF icon Technical Report (8.18 MB)
Andres, B, Kappes, J H, Beier, T, Köthe, U and Hamprecht, F A (2011). Probabilistic Image Segmentation with Closedness Constraints. Proceedings of ICCVPDF icon Technical Report (2.95 MB)
Savchynskyy, B, Kappes, J H, Schmidt, S and Schnörr, C (2011). A Study of Nesterov's Scheme for Lagrangian Decomposition and MAP Labeling. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon Technical Report (408.99 KB)
Savchynskyy, B, Kappes, J H, Schmidt, S and Schnörr, C (2011). A Study of Nesterov's Scheme for Lagrangian Decomposition and MAP Labeling. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), accepted as oral presentation. 1817 - 1823
Becker, F, Lenzen, F, Kappes, J H and Schnörr, C (2011). Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences. 2011 IEEE International Conference on Computer Vision ICCV. 1692-1699
Becker, F, Lenzen, F, Kappes, J H and Schnörr, C (2011). Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences. 2011 IEEE International Conference on Computer Vision (ICCV). 1692 -- 1699PDF icon Technical Report (4.9 MB)
2010
Andres, B, Kappes, J H, Köthe, U, Schnörr, C and Hamprecht, F A (2010). An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM. Pattern Recognition, Proc.~32th DAGM SymposiumPDF icon Technical Report (218.43 KB)
Andres, B, Kappes, J H, Köthe, U, Schnörr, C and Hamprecht, F A (2010). An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM. Pattern Recognition, Proc.~32th DAGM Symposium. 353-362
Andres, B, Kappes, J H, Köthe, U and Hamprecht, F A (2010). The Lazy Flipper: MAP Inference in Higher-Order Graphical Models by Depth-limited Exhaustive Search. ArXiv e-prints. http://arxiv.org/abs/1009.4102PDF icon Technical Report (625.06 KB)
Kappes, J H, Schmidt, S and Schnörr, C (2010). MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation. European Conference on Computer Vision (ECCV). Springer. 6313 735--747
Kappes, J H, Schmidt, S and Schnörr, C (2010). MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation. European Conference on Computer Vision (ECCV). Springer Berlin / Heidelberg. 6313 735--747PDF icon Technical Report (1.49 MB)
Bergtholdt, M, Kappes, J H, Schmidt, S and Schnörr, C (2010). A Study of Parts-Based Object Class Detection Using Complete Graphs. Int.~J.~Comp.~Vision. 87 93-117. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s11263-009-0209-1PDF icon Technical Report (2.18 MB)
2009
Lellmann, J, Kappes, J H, Yuan, J, Becker, F and Schnörr, C (2009). Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation. Scale Space and Variational Methods in Computer Vision (SSVM 2009). Springer. 5567 150-162PDF icon Technical Report (1.75 MB)
Lellmann, J, Kappes, J H, Yuan, J, Becker, F, Schnörr, C, Mórken, K and Lysaker, M (2009). Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation. Scale Space and Variational Methods in Computer Vision (SSVM 2009). Springer. 5567 150-162
2007
Karim, R, Bergtholdt, M, Kappes, J H and Schnörr, C (2007). Greedy-Based Design of Sparse Two-Stage SVMs for Fast Classification. Pattern Recognition -- 29th DAGM Symposium. Springer. 4713 395-404PDF icon Technical Report (491.56 KB)
Schmidt, S, Kappes, J H, Bergtholdt, M, Pekar, V, Dries, S, Bystrov, D and Schnörr, C (2007). Spine Detection and Labeling Using a Parts-Based Graphical Model. Proc. 20th International Conference on Information Processing in Medical Imaging (IPMI 2007). Springer. 4584 122-133PDF icon Technical Report (1.46 MB)

Pages