J. Lellmann, Kappes, J. H., Yuan, J., Becker, F., Schnörr, C., Mórken, K., and Lysaker, M.,
“Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation”, in
Scale Space and Variational Methods in Computer Vision (SSVM 2009), 2009, vol. 5567, pp. 150-162.
J. Lellmann, Kappes, J. H., Yuan, J., Becker, F., and Schnörr, C.,
“Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation”, in
Scale Space and Variational Methods in Computer Vision (SSVM 2009), 2009, vol. 5567, pp. 150-162.
Technical Report (1.75 MB) J. Yuan, Steidl, G., and Schnörr, C.,
“Convex Hodge Decomposition of Image Flows”, in
Pattern Recognition -- 30th DAGM Symposium, 2008, vol. 5096, p. 416--425.
Technical Report (290.72 KB) A. Bruhn, Weickert, J., and Schnörr, C.,
“Combining the Advantages of Local and Global Optic Flow Methods”, in
Pattern Recognition, Proc. 24th DAGM Symposium, Zürich, Switzerland, 2002, vol. 2449, pp. 454–462.
F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C.,
“A Class of Quasi-Variational Inequalities for Adaptive Image Denoising
and Decomposition”,
Computational Optimization and Applications (COAP), vol. 54 (2), pp. 371-398, 2013.
F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C.,
“A class of quasi-variational inequalities for adaptive image denoising and decomposition”,
Computational Optimization and Applications, vol. 54, pp. 371-398, 2013.
Technical Report (748.66 KB)