Publications

Export 1943 results:
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
V
Vlasenko, A and Schnörr, C (2009). Variational Approaches for Model-Based PIV and Visual Fluid Analysis. Imaging Measurement Methods for Flow Analysis. Springer. 106 247-256
Vlasenko, A and Schnörr, C (2009). Variational Approaches for Model-Based PIV and Visual Fluid Analysis. Imaging Measurement Methods for Flow Analysis. Springer. 106 247-256PDF icon Technical Report (3.39 MB)
Schnörr, (1998). Variational approaches to Image Segmentation and Feature Extraction. University of Hamburg, Comp. Sci. Dept., Hamburg, Germany
Haußmann, M, Hamprecht, F A and Kandemir, M (2017). Variational Bayesian Multiple Instance Learning with Gaussian Processes. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 6570-6579PDF icon Technical Report (1.29 MB)
Becker, F (2009). Variational Correlation and Decomposition Methods for Particle Image Velocimetry. Heidelberg University, Faculty of Mathematics and Computer Sciences, Heidelberg, Germany. http://www.ub.uni-heidelberg.de/archiv/9766/
Becker, F, Wieneke, B, Yuan, J and Schnörr, C (2008). Variational Correlation Approach to Flow Measurement with Window Adaption. 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics. 1.1.3PDF icon Technical Report (3.37 MB)
Becker, F, Wieneke, B, Yuan, J and Schnörr, C (2008). Variational Correlation Approach to Flow Measurement with Window Adaption. 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics. 1.1.3
Becker, F, Wieneke, B, Yuan, J and Schnörr, C (2008). Variational Correlation Approach to Flow Measurement with Window Adaption. 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics. 1.1.8
Kohlberger, T, Mémin, E and Schnörr, C (2003). Variational Dense Motion Estimation Using the Helmholtz Decomposition. Scale Space Methods in Computer Vision. Springer. 2695 432–448
Ruhnau, P, Stahl, A and Schnörr, C (2007). Variational Estimation of Experimental Fluid Flows with Physics-Based Spatio-Temporal Regularization. Measurement Science and Technology. 18 755-763PDF icon Technical Report (842.06 KB)
Ruhnau, P, Stahl, A and Schnörr, C (2007). Variational Estimation of Experimental Fluid Flows with Physics-Based Spatio-Temporal Regularization. Measurement Science and Technology. 18 755-763
Heitz, D, Mémin, E and Schnörr, C (2010). Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp.~Fluids. 48 369-393PDF icon Technical Report (1.91 MB)
Heitz, D, Mémin, E and Schnörr, C (2010). Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp. Fluids. 48 369-393
(2005). Variational, Geometric and Level Sets in Computer Vision (VLSM'05). lncs. Springer, Beijing, China. 3752
Lenzen, F, Becker, F, Lellmann, J, Petra, S and Schnörr, C (2012). Variational Image Denoising with Adaptive Constraint Sets. LNCS. Springer. 206-217PDF icon Technical Report (649.03 KB)
Lenzen, F, Becker, F, Lellmann, J, Petra, S and Schnörr, C (2012). Variational Image Denoising with Adaptive Constraint Sets. Proceedings of the 3rd International Conference on Scale Space and Variational Methods in Computer Vision 2011. Springer. 206-217
Lenzen, F, Becker, F, Lellmann, J, Petra, S and Schnörr, C (2011). Variational Image Denoising with Adaptive Constraint Sets. Proceedings of the 3nd International Conference on Scale Space and Variational Methods in Computer Vision 2011, in press. Springer. 6667 206-217
Schnörr, C and Weickert, J (2000). Variational Image Motion Computation: Theoretical Framework, Problems and Perspectives. Mustererkennung 2000. Springer, Kiel, Germany
Swoboda, P and Schnörr, C (2013). Variational Image Segmentation and Cosegmentation with the Wasserstein Distance. Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer. 8081 321–334
Swoboda, P and Schnörr, C (2013). Variational Image Segmentation and Cosegmentation with the Wasserstein Distance. Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer. 8081 321--334PDF icon Technical Report (8.06 MB)
Wanner, S and Goldlücke, B (2014). Variational light field analysis for disparity estimation and super-resolution. IEEE Trans. Pattern Analysis Machine Intelligence. 36 606--619
Schnörr, (1999). Variational Methods for Adaptive Image Smoothing and Segmentation. Handbook on Computer Vision and Applications: Signal Processing and Pattern Recognition. Academic Press, San Diego. 2 451–484
Bruhn, A, Weickert, J, Feddern, C, Kohlberger, T and Schnörr, C (2005). Variational optic flow computation in real-time. IEEE Trans. Image Proc. 14 608–615
Bruhn, A, Weickert, J, Feddern, C, Kohlberger, T and Schnörr, C (2003). Variational Optic Flow Computation In Real-Time. Dept. Math. and Comp. Science, Saarland University, Germany
Weickert, J and Schnörr, C (2001). Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint. J. Math. Imaging and Vision. 14 245–255
Ruhnau, P, Kohlberger, T, Nobach, H and Schnörr, C (2005). Variational Optical Flow Estimation for Particle Image Velocimetry. Experiments in Fluids. 38 21–32
Ruhnau, P, Kohlberger, T, Nobach, H and Schnörr, C (2005). Variational Optical Flow Estimation for Particle Image Velocimetry. Experiments in Fluids. 38 21--32PDF icon Technical Report (1.21 MB)
Ruhnau, P, Kohlberger, T, Nobach, H and Schnörr, C (2004). Variational Optical Flow Estimation for Particle Image Velocimetry. Proc. Lasermethoden in der Strömungsmeßtechnik. Deutsche Gesellschaft für Laser-Anemometrie GALA e.V., Karlsruhe
Savarino, F and Schnörr, C (2019). A Variational Perspective on the Assignment Flow. Proc. SSVM. Springer
Schnörr, C, Schüle, T and Weber, S (2007). Variational Reconstruction with DC-Programming. Advances in Discrete Tomography and Its Applications. Birkhäuser, Boston
Becker, F, Lenzen, F, Kappes, J H and Schnörr, C (2013). Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences. International Journal of Computer Vision. Springer US. 105 269--297. http://dx.doi.org/10.1007/s11263-013-0639-7PDF icon Technical Report (15.4 MB)
Becker, F, Lenzen, F, Kappes, J H and Schnörr, C (2011). Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences. 2011 IEEE International Conference on Computer Vision (ICCV). 1692 -- 1699PDF icon Technical Report (4.9 MB)
Becker, F, Lenzen, F, Kappes, J H and Schnörr, C (2013). Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences. International Journal of Computer Vision. Springer US. 105 269–297. http://dx.doi.org/10.1007/s11263-013-0639-7
Becker, F, Lenzen, F, Kappes, J H and Schnörr, C (2011). Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences. 2011 IEEE International Conference on Computer Vision (ICCV). 1692 – 1699
Becker, F, Lenzen, F, Kappes, J H and Schnörr, C (2013). Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences. International Journal of Computer Vision. 105 (3) 269-297

Pages