Export 1913 results:
Author Title Type [ Year(Desc)]
Snajder, R (2019). Pipeline Für Die Automatisierte Objektsegmentierung Von 3D Lightshet Mikroskopiebildern. Heidelberg University
Bhowmik, A, Gumhold, S, Rother, C and Brachmann, E (2019). Reinforced Feature Points: Optimizing Feature Detection and Description for a High-Level Task.
Li, J (2019). Robust Single Object Tracking Via Fully Convolutional Siamese Networks. Heidelberg University
Haußmann, M, Hamprecht, F A and Kandemir, M (2019). Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation. UAI. ProceedingsPDF icon Technical Report (1.04 MB)
Zisler, M, Zern, A, Petra, S and Schnörr, C (2019). Self-Assignment Flows for Unsupervised Data Labeling on Graphs. preprint: arXiv.
Li, Y (2019). Semantic Instance Segmentation With The Multiway Mutex Watershed. Heidelberg University
Fita, E (2019). Semi-Supervised Distance-Based Segmentation. Heidelberg University
Voigt, P (2019). Simulation And Measurement Of The Water-Sided Viscous Shear Stress Without Waves. Institut für Umweltphysik, Universität Heidelberg, Germany
Storath, M, Kiefer, L and Weinmann, A (2019). Smoothing for signals with discontinuities using higher order Mumford-Shah models. Numerische Mathematik. 143(2) 423-460PDF icon Technical Report (1.09 MB)
Desana, M and Schnörr, C (2019). Sum-Product Graphical Models. Machine Learning.
Censor, Y, Petra, S and Schnörr, C (2019). Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least Squares Case. preprint: arXiv.
Großkinsky, (2019). Synaptic Cleft Prediction On Electron Microsope Images. Heidelberg University
Esposito, M, Hennersperger, C, Göbl, R, Demaret, L, Storath, M, Navab, N, Baust, M and Weinmann, A (2019). Total variation regularization of pose signals with an application to 3D freehand ultrasound. IEEE Transactions on Medical Imaging. 38(10) 2245-2258
Xiao, S (2019). Tracking Dividing Cells Using Spatio-Temporal Embeddings. Heidelberg
Zern, A, Zisler, M, Petra, S and Schnörr, C (2019). Unsupervised Assignment Flow: Label Learning on Feature Manifolds by Spatially Regularized Geometric Assignment. preprint: arXiv.
Zisler, M, Zern, A, Petra, S and Schnörr, C (2019). Unsupervised Labeling by Geometric and Spatially Regularized Self-Assignment. Proc. SSVM. Springer
Lorenz, D, Bereska, L, Milbich, T and Ommer, B (2019). Unsupervised Part-Based Disentangling of Object Shape and Appearance. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Oral + Best paper finalist: top 45 / 5160 submissions)
Esser, P, Haux, J and Ommer, B (2019). Unsupervised Robust Disentangling of Latent Characteristics for Image Synthesis. Proceedings of the Intl. Conf. on Computer Vision (ICCV).
Kotovenko, D, Sanakoyeu, A, Lang, S, Ma, P and Ommer, B (2019). Using a Transformation Content Block For Image Style Transfer. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Savarino, F and Schnörr, C (2019). A Variational Perspective on the Assignment Flow. Proc. SSVM. Springer
Ufer, N, Lui, K To, Schwarz, K, Warkentin, P and Ommer, B (2019). Weakly Supervised Learning of Dense SemanticCorrespondences and Segmentation. German Conference on Pattern Recognition (GCPR)PDF icon article (6.1 MB)
Pandey, N (2019). Weakly Supervised Semantic Segmentation. Heidelberg University
Wolny, A, Cerrone, L, Vijayan, A, Tofanelli, R, A Barro, V, Louveaux, M, Wenzl, C, Steigleder, S, Pape, C, Bailoni, A, Duran-Nebreda, S, Bassel, G W, Lohmann, J U, Hamprecht, F A, Schneitz, K, Maizel, A and Kreshuk, A (2020). Accurate and versatile 3D segmentation of plant tissues at cellular resolution. eLife, in press
Krull, A, Hirsch, P, Rother, C, Schiffrin, A and Krull, C (2020). Artificial-intelligence-driven scanning probe microscopy. Communications Physics. 3
Schnörr, (2020). Assignment Flows. Handbook of Variational Methods for Nonlinear Geometric Data. Springer. 235—260.
Zern, A, Zeilmann, A and Schnörr, C (2020). Assignment Flows for Data Labeling on Graphs: Convergence and Stability. preprint: arXiv.
Radev, S T, Mertens, U K, Voss, A, Ardizzone, L and Köthe, U (2020). BayesFlow: Learning complex stochastic models with invertible neural networks. icon PDF (5.36 MB)
Kamann, C and Rother, C (2020). Benchmarking the Robustness of Semantic Segmentation Models. CVPR 2020. icon PDF (3.61 MB)
Kluger, F, Brachmann, E, Ackermann, H, Rother, C, Yang, M Ying and Rosenhahn, B (2020). CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus. CVPR 2020. icon PDF (9.95 MB)
Bollweg, S, Haußmann, M, Kasieczka, G, Luchmann, M, Plehn, T and Thompson, J (2020). Deep-Learning Jets with Uncertainties and More. SciPost Phys. 8. icon Technical Report (1.65 MB)
Sorrenson, P, Rother, C and Köthe, U (2020). Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN). Intl. Conf. Learning Representations (ICLR). icon PDF (2.43 MB)
Esser, P, Rombach, R and Ommer, B (2020). A Disentangling Invertible Interpretation Network for Explaining Latent Representations. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). icon Article (13.07 MB)
Milbich, T, Roth, K, Bharadhwaj, H, Sinha, S, Bengio, Y, Ommer, B and Cohen, J Paul (2020). DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning. IEEE European Conference on Computer Vision (ECCV).
Ardizzone, L, Mackowiak, R, Rother, C and Köthe, U (2020). Exact Information Bottleneck with Invertible Neural Networks: Getting the Best of Discriminative and Generative Modeling. icon PDF (2.87 MB)
Zeilmann, A, Savarino, F, Petra, S and Schnörr, C (2020). Geometric Numerical Integration of the Assignment Flow. Inverse Problems. 36 034004 (33pp)