Publications

Export 277 results:
Author [ Title(Desc)] Type Year
Filters: Author is Christoph Schnörr  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Heiler, M, Keuchel, J and Schnörr, C (2005). Semidefinite Clustering for Image Segmentation with A-priori Knowledge. Pattern Recognition, Proc.~27th DAGM Symposium. Springer. 3663 309--317
Görlitz, L, Menze, B H, Weber, M - A and Kelm, B M (2007). Semi-Supervised Tumor Detection in MRSI With Discriminative Random Fields. Pattern Recognition. Springer. 4713 224-233PDF icon Technical Report (872.46 KB)
Bergtholdt, M and Schnörr, C (2005). Shape Priors and Online Appearance Learning for Variational Segmentation and Object Recognition in Static Scenes. Pattern Recognition, Proc.~27th DAGM Symposium. Springer. 3663 342--350
Cremers, D, Kohlberger, T and Schnörr, C (2003). Shape Statistics in Kernel Space for Variational Image Segmentation. Pattern Recognition. 36 1929--1943PDF icon Technical Report (1.67 MB)
Schnörr, (2007). Signal and Image Approximation with Level-Set Constraints. Computing. 81 137-160PDF icon Technical Report (506.8 KB)
Yuan, J, Schnörr, C and Steidl, G (2007). Simultaneous Optical Flow Estimation and Decomposition. SIAM J.~Scientific Computing. 29 2283-2304PDF icon Technical Report (1.16 MB)
Lenzen, F, Lellmann, J, Becker, F and Schnörr, C (2014). Solving Quasi-Variational Inequalities for Image Restoration with Adaptive Constraint Sets. SIAM J.~Imag.~Sci. 7 2139--2174PDF icon Technical Report (802.13 KB)
Lenzen, F, Lellmann, J, Becker, F and Schnörr, C (2014). Solving QVIs for Image Restoration with Adaptive Constraint Sets. SIAM Journal on Imaging Sciences (SIIMS), in press
Breitenreicher, D, Lellmann, J and Schnörr, C (2011). Sparse Template-Based Variational Image Segmentation. Advances in Adaptive Data Analysis. 3 149-166PDF icon Technical Report (866.28 KB)
Petra, S, Schröder, A, Wieneke, B and Schnörr, C (2008). On Sparsity Maximization in Tomographic Particle Image Reconstruction. Pattern Recognition -- 30th DAGM Symposium. Springer Verlag. 5096 294--303PDF icon Technical Report (1014.71 KB)
Lauer, F and Schnörr, C (2009). Spectral Clustering of Linear Subspaces for Motion Segmentation. Proceedings of the IEEE Conference on Computer Vision (ICCV 09) Kyoto, Japan, in press. 678-685
Lauer, F and Schnörr, C (2009). Spectral Clustering of Linear Subspaces for Motion Segmentation. Proc.~IEEE Int.~Conf.~Computer Vision (ICCV'09)PDF icon Technical Report (1.12 MB)
Schmidt, S, Kappes, J H, Bergtholdt, M, Pekar, V, Dries, S, Bystrov, D and Schnörr, C (2007). Spine Detection and Labeling Using a Parts-Based Graphical Model. Proc. 20th International Conference on Information Processing in Medical Imaging (IPMI 2007). Springer. 4584 122-133PDF icon Technical Report (1.46 MB)
Cremers, D and Schnörr, C (2003). Statistical Shape Knowledge in Variational Motion Segmentation. Image and Vision Comp. 21 77-86
Schnörr, (2001). Statistische Mustererkennung
Schnörr, (1998). A Study of a Convex Variational Diffusion Approach for Image Segmentation and Feature Extraction. J. of Math. Imag. and Vision. 8 271--292
Savchynskyy, B, Kappes, J H, Schmidt, S and Schnörr, C (2011). A Study of Nesterov's Scheme for Lagrangian Decomposition and MAP Labeling. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), accepted as oral presentation. 1817 - 1823
Savchynskyy, B, Kappes, J H, Schmidt, S and Schnörr, C (2011). A Study of Nesterov's Scheme for Lagrangian Decomposition and MAP Labeling. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon Technical Report (408.99 KB)
Yuan, J, Schnörr, C, Steidl, G and Becker, F (2005). A Study of Non-Smooth Convex Flow Decomposition. Proc.~Variational, Geometric and Level Set Methods in Computer Vision. Springer. 3752 1--12
Bergtholdt, M, Kappes, J H, Schmidt, S and Schnörr, C (2010). A Study of Parts-Based Object Class Detection Using Complete Graphs. Int.~J.~Comp.~Vision. 87 93-117. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s11263-009-0209-1PDF icon Technical Report (2.18 MB)
Schellewald, C and Schnörr, C (2003). Subgraph Matching with Semidefinite Programming. Proc.~Int.~Workshop on Combinatorial Image Analysis (IWCIA'03)
Neumann, J, Schnörr, C and Steidl, G (2004). SVM-based Feature Selection by Direct Objective Minimisation. Pattern Recognition, Proc.~26th DAGM Symposium. Springer. 3175 212-219
T
Weickert, J and Schnörr, C (2001). A Theoretical Framework for Convex Regularizers in PDE--Based Computation of Image Motion. Int.~J.~Computer Vision. 45 245--264
Kappes, J H, Petra, S, Schnörr, C and Zisler, M (2015). TomoGC: Binary Tomography by Constrained Graph Cuts. Proc.~GCPRPDF icon Technical Report (2.46 MB)
Petra, S, Schnörr, C, Schröder, A and Wieneke, B (2007). Tomographic Image Reconstruction in Experimental Fluid Dynamics: Synopsis and Problems. Proc.~6th Workshop on Modelling of Environmental and Life Sciences Problems (WMM~07). Ed Acad Romane, Bucuresti
Petra, S and Schnörr, C (2009). TomoPIV meets Compressed Sensing. Pure Math.~Appl. 20 49 -- 76. http://www.mat.unisi.it/newsito/puma/public_html/contents.phpPDF icon Technical Report (409.1 KB)
Petra, S and Schnörr, C (2009). Tomopiv Meets Compressed Sensing. IWR, University of Heidelberg. http://www.ub.uni-heidelberg.de/archiv/9760PDF icon Technical Report (646.75 KB)
Yuan, J, Schnörr, C and Steidl, G (2009). Total-Variation Based Piecewise Affine Regularization. Scale Space and Variational Methods in Computer Vision (SSVM 2009). Springer. 5567 552-564PDF icon Technical Report (478.04 KB)
Kappes, J H, Speth, M, Reinelt, G and Schnörr, C (2013). Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization. CVPRPDF icon Technical Report (623.84 KB)
Cremers, D, Sochen, N and Schnörr, C (2003). Towards Recognition-Based Variational Segmentation Using Shape Priors and Dynamic Labeling. Scale Space Methods in Computer Vision. Springer. 2695 388--400PDF icon Technical Report (451.82 KB)
Peckar, W, Schnörr, C, Rohr, K and Stiehl, H S (1997). Two-Step Parameter-Free Elastic Image Registration with Prescribed Point Displacements. Proc.~9th Int.~Conf.~on Image Analysis and Processing (ICIAP'97)
V
Ruhnau, P, Kohlberger, T, Nobach, H and Schnörr, C (2004). Variational Optical Flow Estimation for Particle Image Velocimetry. Proc. Lasermethoden in der {S}trömungsmeßtechnik. Deutsche {G}esellschaft für {L}aser-{A}nemometrie {GALA} e.V., Karlsruhe
Becker, F, Wieneke, B, Petra, S, Schröder, A and Schnörr, C (2011). Variational Adaptive Correlation Method for Flow Estimation. IEEE Transactions on Image Processing. 21, 6 3053 - 3065

Pages