Publications

Export 1904 results:
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Kluger, F, Brachmann, E, Ackermann, H, Rother, C, Yang, M Ying and Rosenhahn, B (2020). CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus. CVPR 2020. http://arxiv.org/abs/2001.02643PDF icon PDF (9.95 MB)
Schiegg, M, Hanslovsky, P, Kausler, B X, Hufnagel, L and Hamprecht, F A (2013). Conservation Tracking. ICCV 2013. Proceedings. 2928--2935PDF icon Technical Report (5.22 MB)
Nair, R (2010). Construction And Analysis Of Random Tree Ensembles. University of Heidelberg
Kotovenko, D, Sanakoyeu, A, Lang, S and Ommer, B (2019). Content and Style Disentanglement for Artistic Style Transfer. Proceedings of the Intl. Conf. on Computer Vision (ICCV)
Jähne, B, Jähne, B, Haußecker, H and Geißler, P (1999). Continuous and digital signals. Handbook of Computer Vision and Applications. Academic Press. 2 9--34
Fundana, K, Heyden, A, Gosch, C and Schnörr, C (2008). Continuous Graph Cuts for Prior-Based Object Segmentation. 19th Int.~Conf.~Patt.~Recog.~(ICPR). 1--4PDF icon Technical Report (414.89 KB)
Lellmann, J and Schnörr, C (2011). Continuous Multiclass Labeling Approaches and Algorithms. SIAM J.~Imag.~Sci. 4 1049-1096PDF icon Technical Report (4.31 MB)
Lellmann, J and Schnörr, C (2010). Continuous Multiclass Labeling Approaches And Algorithms. Univ. of Heidelberg. http://www.ub.uni-heidelberg.de/archiv/10460/
Lellmann, J and Schnörr, C (2011). Continuous Multiclass Labeling Approaches and Algorithms. CoRR. abs/1102.5448. http://arxiv.org/abs/1102.5448
Lauer, F, Bloch, G and Vidal, R (2009). A Continuous Optimization Framework for Hybrid System Identification. submitted to Automatica
Savarino, F and Schnörr, C (2019). Continuous-Domain Assignment Flows. preprint: arXiv. https://arxiv.org/abs/1910.07287
Schmitzer, B and Schnörr, C (2013). Contour Manifolds and Optimal Transport
Gosch, C (2009). Contour Methods for View Point Tracking. University of Heidelberg. http://www.ub.uni-heidelberg.de/archiv/9684/
Schlecht, J and Ommer, B (2011). Contour-based Object Detection. BMVC. 1--9PDF icon Technical Report (2.62 MB)
Heiler, M and Schnörr, C (2006). Controlling Sparseness in Non-negative Tensor Factorization. Computer Vision -- ECCV 2006. Springer. 3951 56-67PDF icon Technical Report (568.86 KB)
Yuan, J, Schnörr, C and Steidl, G (2009). Convex Hodge Decomposition and Regularization of Image Flows. J.~Math.~Imag.~Vision. 33 169-177PDF icon Technical Report (1003.75 KB)
Yuan, J, Steidl, G and Schnörr, C (2008). Convex Hodge Decomposition of Image Flows. Pattern Recognition -- 30th DAGM Symposium. Springer Verlag. 5096 416--425PDF icon Technical Report (290.72 KB)
Lellmann, J, Kappes, J H, Yuan, J, Becker, F and Schnörr, C (2009). Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation. Scale Space and Variational Methods in Computer Vision (SSVM 2009). Springer. 5567 150-162PDF icon Technical Report (1.75 MB)
Lellmann, J, Kappes, J H, Yuan, J, Becker, F and Schnörr, C (2008). Convex Multi-Class Image Labeling By Simplex-Constrained Total Variation. IWR, University of Heidelberg. http://www.ub.uni-heidelberg.de/archiv/8759/PDF icon Technical Report (2.6 MB)
Lellmann, J, Kappes, J H, Yuan, J, Becker, F, Schnörr, C, Mórken, K and Lysaker, M (2009). Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation. Scale Space and Variational Methods in Computer Vision (SSVM 2009). Springer. 5567 150-162
Lellmann, J, Becker, F and Schnörr, C (2009). Convex Optimization for Multi-Class Image Labeling with a Novel Family of Total Variation Based Regularizers. Proceedings of the IEEE Conference on Computer Vision (ICCV 09) Kyoto, Japan. 646-653
Lellmann, J, Becker, F and Schnörr, C (2009). Convex Optimization for Multi-Class Image Labeling with a Novel Family of Total Variation Based Regularizers. IEEE International Conference on Computer Vision (ICCV). 646 -- 653PDF icon Technical Report (930.18 KB)
Silvestri, F, Reinelt, G and Schnörr, C (2015). A Convex Relaxation Approach to the Affine Subspace Clustering Problem. Proc.~GCPRPDF icon Technical Report (878.63 KB)
Keuchel, J, Schellewald, C, Cremers, D and Schnörr, C (2001). Convex Relaxations for Binary Image Partitioning and Perceptual Grouping. Mustererkennung 2001. Springer, Munich, Germany. 2191 353–360
Yuan, J, Schnörr, C, Kohlberger, T and Ruhnau, P (2004). Convex Set-Based Estimation of Image Flows. ICPR 2004 – 17th Int. Conf. on Pattern Recognition. IEEE, Cambridge, UK. 1 124-127
Swoboda, P and Schnörr, C (2013). Convex Variational Image Restoration with Histogram Priors. SIAM J.~Imag.~Sci. 6 1719-1735PDF icon Technical Report (553.54 KB)
Schnörr, (1996). Convex Variational Segmentation of Multi-Channel Images. Proc. 12th Int. Conf. on Analysis and Optimization of Systems: Images, Wavelets and PDE's. Springer-Verlag, Paris. 219
Royer, L A, Richmond, D L, Rother, C, Andres, B and Kainmueller, D (2016). Convexity shape constraints for image segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2016-Decem 402–410. http://arxiv.org/abs/1509.02122
Hering, M, Körner, K and Jähne, B (2009). Correlated speckle noise in white-light interferometry: theoretical analysis of measurement uncertainty. Appl. Optics. 48 525--538
Krause, G (2017). Correlation Of Performance And Entropy In Active Learning With Convolutional Neural Networks. Heidelberg University
Maco, B, Holtmaat, A, Cantoni, M, Kreshuk, A, Straehle, C N, Hamprecht, F A and Knott, G W (2013). Correlative in vivo 2 photon and focused ion beam scanning electron microscopy of cortical neurons. PloS one. 8 (2)PDF icon Technical Report (2.13 MB)
Rother, C, Kolmogorov, V, Minka, T and Blake, A (2006). Cosegmentation of image pairs by histogram matching - Incorporating a global constraint into MRFs. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1 994–1000. http://research.microsoft.com/vision/cambridge/
Vicente, S, Kolmogorov, V and Rother, C (2010). Cosegmentation revisited: Models and optimization. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 6312 LNCS 465–479
Peter, S, Diego, F, Hamprecht, F A and Nadler, B (2017). Cost-efficient Gradient Boosting. NIPS, poster
Güssefeld, B, Honauer, K and Kondermann, D (2016). Creating Feasible Reflectance Data for Synthetic Optical Flow Datasets. Advances in Visual Computing - 12th International Symposium, {ISVC} 2016, Las Vegas, NV, USA, December 12-14, 2016, Proceedings, Part {I}

Pages