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Abstract. Tracking by assignment is well suited for tracking a varying
number of divisible cells, but suffers from false positive detections. We
reformulate tracking by assignment as a chain graph–a mixed directed-
undirected probabilistic graphical model–and obtain a tracking simul-
taneously over all time steps from the maximum a-posteriori configura-
tion. The model is evaluated on two challenging four-dimensional data
sets from developmental biology. Compared to previous work, we obtain
improved tracks due to an increased robustness against false positive
detections and the incorporation of temporal domain knowledge.
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1 Introduction

One grand challenge of developmental biology is to find the lineage tree of all
cells in a growing organism, i.e. the complete ancestry of each cell [17]. The chal-
lenges encountered include (i) simultaneously tracking an unknown and variable
number of cells; (ii) allowing for cell division; and (iii) high accuracy, because
each tracking error affects a complete subtree of the lineage.

We propose a tracking by assignment solution contributing these novelties:

1. In recent years graphical models proved to be exceptionally successful in
computer vision [4]. We adopted the approach and present the first proba-
bilistic graphical model for cell tracking which can track an unknown number
of divisible objects that may appear or disappear and which can cope with
false detections.

2. The model achieves robustness against noise detections by solving the track-
ing problem for all time steps at once taking the expected time between
divisions into account. The most likely cell lineage is obtained as the model
configuration with maximum a-posteriori (MAP) probability.
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Fig. 1: Maximum intensity projection of a
Drosophila embryo and tracking: common
ancestry is indicated by common color.

Our model
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Manual tracking Bise et al. [3]

Fig. 2: Lineage trees for
Drosophila: exemplary manually
tracked lineage trees are compared to
the results of Bise et al. [3] and our
model.

3. While all literature with similar data focuses on single organisms, we present
results on zebrafish and–for the first time–on Drosophila together with gold
standard lineages and benchmarking tools (as a supplementary).

We obtain the exact MAP solution by integer linear programming (ILP), and–
when comparing to the gold standard lineages–obtain results that are superior
to existing methods.

2 Related Work

Tracking in science comprises many different application domains and approaches
[23]. Our work is concerned with the tracking of a varying number of divisible ob-
jects with similar appearance in images with its main application in cell lineage
reconstruction. It has to be distinguished from tracking many similar particles
that are not dividing [21].

When the temporal resolution of the raw data is high compared to the rate
of change, derivative-based methods such as optical flow [18] or level sets [20]
can be used to simultaneously segment and track the evolution of one or more
targets in spacetime.

A lower temporal resolution–as it is the case in our application–makes the
problem harder and in response, most algorithms then separate the detection / seg-
mentation from the tracking problem: detections are found in each time step and
fed into a tracking routine. Two different kinds of models are typically used: state
space models and assignment models. The Kalman filter, a linear Gaussian state
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space model, is the archetype of the former class, which interprets detections as
caused by a hidden target. It has been generalized in a number of ways allowing
for nonlinear motion models, discrete state spaces, non-Gaussian distributions
[2, 7], multiple target hypotheses, or even an unknown (but fixed) number of
targets [8]. While state space models easily accommodate target properties such
as velocity, size, and appearance and are robust against noisy detections by de-
sign, they are unfortunately hard to coax into dealing with a variable number of
dividing objects.

Tracking by assignment, on the other hand, treats every detection as a poten-
tial target itself. It easily accommodates multiple or dividing objects; however,
this increased flexibility must be reined in by enforcing the consistency (see sec-
tion 3) of a tracking. This difficulty has so far been addressed in three ways.
Firstly, approximate methods can be applied that forego a consistency guaran-
tee [10]. Secondly, tracks can be generated hierarchically from tracklets [3, 15, 6],
akin to the use of superpixels in image processing. Thirdly, tracking is performed
across pairs of frames only [11, 12, 19, 16].

Approach [3] is most similar to ours since it is–to our best knowledge–the
only other global model of detections and assignments over many time steps.
Therefore we chose this method to compare with.

3 Graphical Model for Global Tracking by Assignment

Both state space and assignment models treat detection (segmentation) and
tracking as separate problems. We will focus on tracking in this article and
assume given detections with a high misdetection rate (≈ 10%).

Specifically, we propose a probabilistic model for the tracking problem that
meets the requirements set out in the introduction and can give limited feedback
to the detection step by incorporating the possibility of spurious detections, i.e.
allows to switch off erroneous detection hypotheses to address the high misde-
tection rate. The model takes the form of a chain graph [9]—a directed graphical
model (Bayesian network) of “supernodes”, each of which consists of a condi-
tional random field over a set of “subnodes”. A chain graph model turns out to
be necessary because neither Bayesian networks nor Markov random fields alone
are compatible with the independence assumptions imposed by tracking.

Our model contains two types of random variables: detection variables and

assignment variables. A binary detection variable X
(t)
i is associated with the ith

detected object (cell candidate) at time step t, and X (t) denotes the set of all
detection variables at time t. Values of these variables determine if the corre-
sponding detections are accepted as a true object (cell) (and hence incorporated
into the tracking interpretation), or rejected as a false alarm.1 Binary assign-

ment variables Y
(t)
ij are associated with every pair of cell candidates i, j at times

t ∈ [1, . . . , T − 1], t + 1, and Y(t) is the set of all assignment variables between

1 We deliberately do not model missed detections (i.e. objects, that are not visible in
the data) since they are very rare in the 3d images of typical applications.
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steps t and t+ 1. A value of 1 expresses the belief that cell candidate j at time
step t + 1 is identical with, or a child of, cell candidate i at time step t, and a
value of 0 says that i and j are unrelated.

In addition, a number of natural consistency constraints are imposed on these
variables by our application in developmental biology: First, each cell must have

at most one predecessor, i.e.
∑

i Y
(t)
ij ≤ 1. Second, each cell must have a unique

fate—if it does not disappear (by leaving the data frame or other reasons), it
can either move to (be assigned to) a unique cell candidate in the next time
frame, or it can divide and be associated with exactly two cell candidates in
the next time frame. These children, in turn, may not have any other nonzero
incoming assignment variables. Third, there is a biological upper bound on the
distance traveled between time frames, excluding all assignments that are too far
apart. This leads to a significant reduction in the number of required assignment
variables.

These consistency constraints define which configurations are impossible, i.e.
have zero probability. In the next two subsections, we describe how the proba-
bilities of feasible configurations are defined by connecting variables into a chain
graph whose factors encode our knowledge about the plausibility of different
trackings as a function of data-dependent properties such as distance traveled,
probability of being a misdetection, etc.

Conditional random field over assignment variables Let us pretend for
the moment that the optimal values of the detection variables are already known.
Then the probability of a configuration Y(t) of assignment variables connecting
frames t and t+1 given the detection variables X (t) and X (t+1) can be expressed
with an undirected graphical model, in particular a conditional random field
(CRF):

CRF(t) : P (t)(Y(t) | X (t),X (t+1)) (1)

where

P (t)(Y(t)|X (t),X (t+1)) =
1

Z(t)

∏
X

(t)
i ∈X (t)

φ
(t)
i→(X

(t)
i ,Y(t)

i→)
∏

X
(t+1)
j ∈X (t+1)

φ
(t)
→j(Y

(t)
→j , X

(t+1)
j ) , (2)

and φ
(t)
i→ and φ

(t)
→j denote the factors for outgoing and incoming transitions re-

spectively. Note that the CRF partition function Z(t)(X (t),X (t+1)) is only calcu-
lated over the assignment variables, since the detection variables are considered
as given. A factor graph [14] representation of eq. (2) is shown in Fig. 3a. Each of
the maximal cliques of the underlying undirected graph corresponds to a factor
in the CRF. These CRFs will form the supernodes of the chain graph, while the
individual assignment variables are the subnodes.

Analyzing the graph with d-separation the implicit independence assump-

tions of the CRF can be identified: an assignment Y
(t)
ij is conditionally indepen-

dent of all assignments Y
(t)
kl involving different detection variables k 6= i, l 6= j,
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(a) Undirected part of the chain
graph. A single assignment CRF is
shown as a factor graph [14]. The dark
nodes represent fixed detection vari-
ables X (at t and t+1) and the smaller,
light nodes assignment variables Y.

(b) Directed part of the chain graph.
The boxes symbolize supernodes containing
assignment CRFs according to Fig. 3a.

Fig. 3: Chain graphical model for global tracking by assignment.

provided that all incoming assignments Y(t)
→j of detection j and all outgoing

assignments Y(t)
i→ of detection i are given:

Y
(t)
ij ⊥⊥ Y

(t)
kl | Y

(t)
→j ,Y

(t)
i→ l 6= j, i 6= k . (3)

In other words, the assignment decisions only influence a small neighborhood of
other assignment variables directly. By fixing enough variables the CRF can even
decouple in two or more completely independent tracking problems—promoting
the tractability of the chain graph model.

Combining assignment CRFs in a chain graph In order to get rid of the
requirement that detection variables are already known, we connect all CRFs
defined above by means of directed edges from detection variables to factors, in
a manner analogous to a Bayesian network. The joint probability over all time
steps can now be factorized as

P (X ,Y) =

T∏
t=1

∏
X

(t)
i ∈X (t)

Pdet(X
(t)
i ) ·

T−1∏
t=1

P (t)(Y(t)|X (t),X (t+1)) , (4)

where Pdet(X
(t)
i ) is the probability that a detection hypothesis should be ac-

cepted into the tracking. The corresponding chain graphical model is sketched
in Fig. 3b. By treating each CRF as a single random variable (supernode)
with as many states as configurations of the assignment variables (subnodes),
d-separation can be easily applied to the directed part of the model. The (unob-
served) supernodes have only incoming edges and are blocking the path between
detection variables, revealing the following conditional independence relations:
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1. Detection variables are independent from each other, i.e.Xi ⊥⊥ (X\Xi) ,∀Xi.
2. Consecutive assignment variables are conditionally independent given the

connecting detection variables, i.e. Y(t) ⊥⊥ Y(t+1) | X (t+1).

These are rather strong independence assumptions and–of course–only an ap-
proximation to the real world. Later, we introduce an extension (eqs. (11), (10))
that, on the one hand, improves the model accuracy but, on the other hand,
weakens these relations and makes inference harder.

Inference by Integer Linear Programming Under the above model, the
single most likely tracking is given by the maximum a-posteriori (MAP) config-
uration of variables. Finding this configuration can equivalently be restated as
an energy minimization problem, by expressing the probability in eq. (4) as a
Gibbs distribution P (X ,Y) = 1

Z e
−E(X ,Y) such that

argmax
X ,Y

P (X ,Y) = argmin
X ,Y

E(X ,Y) . (5)

Rewriting the chain graph distribution in (4) as a sum of energies E allows us to
apply integer linear programming (ILP) for minimization. This approach has two
advantages. Firstly, it allows us to use state-of-the-art ILP solvers that are able to
determine globally optimal solutions of (5). Any remaining shortcomings of our
tracking results can thus be attributed to our model and are not a consequence of
approximate optimization. Secondly, we can easily exclude biological impossible
trackings by incorporating appropriate constraints in the linear program.

Application: Cell tracking Applying (5) to the chain graph model equa-
tions (2) and (4) gives the energy function

E(X ,Y) =

T∑
t=1

∑
X

(t)
i ∈X (t)

Edet(X
(t)
i )+

T−1∑
t=1

∑
i

Eout(X
(t)
i ,Y(t)

i→) +
∑
j

Ein(Y(t)
→j , X

(t+1)
j )


(6)

where Edet, Eout, and Ein are the energies corresponding to the factors Pdet,

φ
(t)
i→, and φ

(t)
→j respectively.

The first term allows to incorporate evidence from the raw data regarding
the presence or absence of a cell at a location where a potential target was de-
tected. In our experiments, we use Random Forest [5] to estimate the probability

P̂det

(
X

(t)
i

)
of a detection being truly a cell, based on features such as intensity

distribution and volume of each cell candidate found by the detection module.
In keeping with the definition of the Gibbs distribution, we get

Edet

(
X

(t)
i

)
=

− ln
(
P̂det

(
X

(t)
i

))
, X

(t)
i = 1

− ln
(

1− P̂det

(
X

(t)
i

))
, X

(t)
i = 0

(7)
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The assignment energies Ein and Eout need to embody two kinds of prior
knowledge: firstly, which trackings are consistent; and secondly, amongst all con-
sistent trackings, which ones are plausible. To enforce consistency zero probabil-
ity / infinite energy is assigned to cells dividing into more than two descendants,
cells arising from the merging of two or more cells from the previous frame, and
cell candidates that are regarded as misdetections.

To penalize implausible trackings, we need to parameterize our model ap-
propriately. The model equations expose exactly five free parameters (Cinit,
Cterm, Copp, w, d̄). Cinit imposes a penalty for track initiation (i.e. when a
cell (re-)appears in the data frame) and Cterm for track termination (i.e. when
a cell disappears from the data frame or is lost due to cell death). To discour-
age trivial solutions where too many objects are explained as misdetections, we
exact a opportunity cost of Copp for the lost opportunity to explain more of the
data. Furthermore, each move is associated with a cost dependent on the squared
length of that move. For cell divisions, finally, it is known that the descendants
tend to be localized at an average distance d̄ from the parent cell, and punish
deviations from that expected distance.

All of the above can be summarized in the following assignment energies:

Eout(X
(t)
i ,Y(t)

i→) =



∞ , X
(t)
i = 1 ∧

∑
j Y

(t)
ij > 2 > 2 children

w
(
(d− d̄)2

+(d′ − d̄)2
), X(t)

i = 1 ∧
∑

j Y
(t)
ij = 2 division

wd2 , X
(t)
i = 1 ∧

∑
j Y

(t)
ij = 1 move

Cterm , X
(t)
i = 1 ∧

∑
j Y

(t)
ij = 0 disappearance

Copp , X
(t)
i = 0 ∧

∑
j Y

(t)
ij = 0 opportunity

∞ , X
(t)
i = 0 ∧

∑
j Y

(t)
ij > 0 tracked misdetection

(8)

Ein(Y(t)
→j , X

(t+1)
j ) =



∞ , X
(t+1)
j = 1 ∧

∑
i Y

(t)
ij > 1 > 1 parent

0 , X
(t+1)
j = 1 ∧

∑
i Y

(t)
ij = 1 move

Cinit, X
(t+1)
j = 1 ∧

∑
i Y

(t)
ij = 0 appearance

0 , X
(t+1)
j = 0 ∧

∑
i Y

(t)
ij = 0 misdetection, no parent

∞ , X
(t+1)
j = 0 ∧

∑
i Y

(t)
ij > 0 misdetection with parent

(9)

Note that more informative features could be extracted from the raw data: for
instance, besides the length of a move, one could consider the similarity of the
associated cell candidates to obtain an improved estimate of their compatibility.
However, it is then no longer possible to select appropriate values for the pa-
rameters with a simple grid. Instead, a proper parameter learning strategy will
be needed, which will be a subject of our future research.

Domain specific knowledge: minimal cell cycle length The model may be
extended further by incorporating domain specific knowledge. For instance, cells
must pass through specific cell cycle states (interphase, prophase, metaphase,
anaphase, telophase) and thus, there is a biological lower bound for the dura-
tion of a cell cycle. In other words, it is impossible to observe a cell dividing
twice within a number of subsequent frames as it is the case in Fig. 5a. This
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biological constraint can be integrated in our cell tracking model by expanding

the detection variables X
(t)
i to obtain the number of time steps since the last

division of an individual cell, i.e. X
(t)
i ∈ {0, 1, ..., τ}, where X

(t)
i = 0 still stands

for misdetection and τ is a parameter for the minimal duration between division
events of an individual cell. Hence, the energy functions given above change only

slightly in that X
(t)
i = 1 becomes X

(t)
i ≥ 1 and X

(t)
i = τ for the division energy.

Besides, another two factors need to be introduced to incorporate the counting
between successive detections. The corresponding energy functions are given by

Ecnt→(X
(t)
i ,Y(t)

i→,X
(t+1)
i→ ) =


∞ , Y

(t)
ij = 1 ∧

∑
k Y

(t)
ik = 2 ∧X(t+1)

j 6= 1

∞ , Y
(t)
ij = 1 ∧

∑
k Y

(t)
ik = 1 ∧X(t)

i < τ ∧X(t+1)
j 6= X

(t)
i + 1

∞ , Y
(t)
ij = 1 ∧

∑
k Y

(t)
ik = 1 ∧X(t)

i = τ ∧X(t+1)
j 6= τ

0 , otherwise

,

(10)

Ecnt←(X
(t+1)
j ,Y(t)

→j) =

{
∞ ,

∑
k Y

(t)
kj = 0 ∧X(t+1)

j 6= 0 ∧X(t+1)
j 6= τ

0 , otherwise
, (11)

where X (t+1)
i→ are the detection variables connected to X

(t)
i through Y(t)

i→. Tech-
nically, these rules are implemented as hard constraints on indicator variables
each representing a possible state of the detection variables. It should be noted
that with this modification, the detection variables are no longer independent.
For that reason and due to the increased number of variables, computation time
increases by a factor of 10.

4 Experiments

We applied the chain graph model to track cells during early embryogenesis of
zebrafish (Danio Rerio) and fruit fly (Drosophila): the GFP-stained nuclei were
imaged with different light sheet fluorescence microscopes.

4.1 Zebrafish Dataset

Keller et al. [13] recorded time-lapse volumetric images of developing zebrafish
embryos (3d+t). A first cell lineage reconstruction of the blastula period based on
that data was reported by [16]. Its segmentation-based cell detection method has
high recall (false negative rate of 4±1% for cell detection) but suffers in precision
due to segmentation errors and noise. Cell tracking was done by matching the
time slices with minimal cost by integer linear programming. The test dataset
consisted of 80 frames of the animal pole from 66 cells up to ca. 2400 cells. Its
low segmentation precision warrants the application of the chain graph, which
explicitly models noisy detections.

We implemented the method of Lou et al. [16] and replicated its benchmark
for tracking the cells in the zebrafish dataset. The benchmark measures per-
formance in terms of precision, recall, and f-measure2 of the reconstructed cell

2 precision: true pos./(true pos. + false pos.); recall: true pos./(true pos. + false neg.);
f-measure: harmonic mean of precision and recall
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Fig. 4: Drosophila dataset: syn-
opsis of raw data and correspond-
ing segmentation; shown is a detail
of slice 33 at time step 7.

Table 1: Tracking results on the Ze-
brafish dataset: our chain graph model
shows improved performance in terms of f-
measure compared to [16].

Lou et al.[16] Chain Graph

precision 0.807 0.897
recall 0.861 0.850
f-measure 0.833 0.873

movements and divisions between two time slices against a manually obtained
tracking on the first 25 time slices. We use the segmentation result of [16] for a
fair comparison of the two tracking methods.

4.2 Drosophila Dataset

The other dataset consists of 3d image stacks of a fruit fly syncytial blastoderm
(cf. Fig. 1) over 40 time steps. We segmented the cells with the freely avail-
able ILASTIK software [22]. Subsequently we obtained a manual tracking to
benchmark the automatic methods.

Compared to the zebrafish dataset the fruit fly dataset has lower contrast
resulting in more ill-shaped cell segmentations and false positive detections that
are hard to distinguish from the actual cells (see Fig. 4). On the other hand,
cells reside only near the surface of the embryo, lowering the chance of wrong
assignments to neighboring cells compared to the zebrafish embryo.

We examine the difference of our holistic approach over all time steps com-
pared to a time slice by time slice tracking on that dataset. For the latter, we
take the Random Forest predictions to filter out false alarms beforehand (0.5
probability threshold), add detection variables for all remaining objects to the
graphical model and fix them as ’active’. Under these conditions the single assign-
ment random fields are independent and the model reduces to a time step-wise
tracking approach. Finally, we implemented the method of Bise et al. [3] and
evaluated it with the same dataset and benchmark.

4.3 Implementation

We implemented the chain graph model in C++ using the OpenGM [1] library
and wrote a MAP inference backend based on CPLEX.3

Parameter values are set according to an optimal f-measure of successfully
reconstructed move, division, appearance, and disappearance events relative to
a manually obtained tracking. We initialize the parameters with a reasonable
setting and fine-tune them with a search on a grid in parameter space.

3 A commercial (integer) linear programming solver. Free for academic use.
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Table 2: Tracking results on the Drosophila dataset: a timestep-wise tracking
with previously filtered misdetections (first col.) is inferior to our full chain graph model
optimized over all time steps (second col.). The third column shows the results of the
extended chain graph with the condition that division events of a cell must at least
be 3 time steps apart from each other. Finally, the method of [3] (fourth col.) shows
decent recall but suffers in precision.

Fixed
Detections

Unconditioned
Chain Graph

Chain Graph
with τ = 3

Bise et al.[3]

precision 0.889 0.953 0.956 0.550
recall 0.933 0.957 0.960 0.718
f-measure 0.911 0.955 0.958 0.623

Runtimes on the presented datasets are of the order of minutes—obviating
the need for approximate inference at the current problem size.

Finally, we implemented the methods by [16] and [3] in C++ and found
optimal parameters via grid search (improving over the ad hoc parametrization
approach of [3]). Source code and parameters are provided as a supplementary.

4.4 Results

We perform experiments on two datasets. First, we compare our tracker against
a previously published method [16] on the zebrafish dataset. The results are
summarized in table 1. Second, we investigate the performance of the model on
the Drosophila dataset, comparing a chain graph having fixed detection variables
with an unconditioned chain graph and a chain graph with 4-state detection
variables satisfying a minimal duration of 3 time steps between division events
of a particular track. Additionally we put the chain graph model in perspective
by comparing with a state-of-the-art cell tracking method by Bise et al. [3]. The
tracking results are presented in table 2.

Finally, table 3 shows the Drosophila results in terms of correctly and incor-
rectly identified cells for both variants of the chain graph in contrast to human
annotations and the Random Forest classifier alone (which was used to fix the
variables).

5 Discussion

The MAP solution of the chain graph is obtained from all time steps at once
considering properties of complete tracks. In particular a track needs a minimal
number of active transitions to overcome the track initialization and termina-
tion costs together with the cost for misdetections. Cells that are only shortly
present–due to low signal to noise or due to entering/leaving the data frame–
will consequently be labeled as misdetections. On the other hand, cells that were
badly segmented and were classified as misdetections by the Random Forest may
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Table 3: Cell identification performance on Drosophila dataset: compared to
an object classifier, the chain graph recovers less actual cells (true positives), but finds
significantly more misdetections (true negatives). The unconditioned chain graph and
the variant with a minimal cell cycle length don’t differ significantly in identification
performance (but in tracking performance: see table 2).

Classifier
Unconditioned
Chain Graph

Chain Graph
with τ = 3

Human

true positive 12391 12330 12346 12493
true negative 1284 1607 1598 1810

false negative 102 163 147 -
false positive 526 203 212 -

be set active as long as they reasonably continue a track (see Fig. 6 for an il-
lustration of this behavior). The chain graph model can therefore be seen as a
regularizer on the pure classifier output that trades some true positives (decreas-
ing recall) against a significantly reduced number of false positives (increasing
precision).

The above interpretation is supported by the results. Compared to the perfor-
mance of method [16] on the zebrafish dataset, our method loses 1.1 percentage
points (pp) in recall but gains 9pp in precision leading to an overall better perfor-
mance. More insight into this precision-recall trade-off can be gained by looking
at the cell vs. misdetection identification performance. Compared to the classifier
alone, the (unconditioned) chain graph retrieves 61 less cells (less true positives),
but labels 323 more misdetections correctly (more true negatives). (The chain
graph controlling for minimal cell cycle length exposes the same behavior with
nonsignificant differences in performance.)

Since correct cell identifications are a precondition for a successful recovery
of move, division, appearance, and disappearance events, the higher object iden-
tification rate should directly transfer to the tracking performance. The results
on the zebrafish are supporting this assumption, but could also be caused by the
fact that our method employs a Random Forest classifier whereas the method of
[16] just treats every segmented object as a cell. To exclude the influence of the
random forest we examined another variant of the chain graph model, where we
fix the detection variables as a preprocessing step using the very same Random
Forest predictions. Compared to the chain graph with previously fixed detection
variables, the full (unconditioned) model gains 2.4pp and 4pp in terms of recall
and precision, respectively. This is clear evidence that the performance gain over
the previously published step-by-step method is not only caused by the Random
Forest classifier, but also by the holistic chain graph model that is optimized
over many time steps at once.
Further improvements can be obtained by requiring a minimal time between two
divisions. Table 2 shows an increase in f-measure by 0.3pp for a minimal tem-
poral distance of three (τ = 3) compared to the unconditioned model. At a first
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(a) Impossible
division

1 2 3 4 5
0.945

0.950

0.955

0.960

p
e
rf
o
rm

a
n
ce

precision
recall
f-measure
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0.84
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0.88
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precision divisions
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(b) Performance on Drosophila depending on τ

Fig. 5: Extending the cell tracking model by the requirement of a minimal
duration between division events: (a) shows a biologically implausible tracking
(left) and the result of our model when requiring a minimal duration of τ = 3 (right).
Performance results on the Drosophila dataset with varying τ are depicted in (b):
shown is the performance for all events (left panel) and for division events only (right
panel).

glance the gain seems nonsignificant, but the f-measure puts the same impor-
tance on every type of tracking event. Since the number of move events exceeds
the number of divisions by a factor of 20, it is dominated by the former. Yet, the
f-measure for divisions (exclusively) improves from 0.883 (precision 0.941, recall
0.832) to 0.917 (precision 0.923, recall 0.911). This is a significant gain and very
important for an accurate assessment of cell ancestry since a single mistracked
division can spoil a whole subsequent lineage. In practice, setting τ to a low
value will already give a boost in performance with an acceptable overhead. The
effect on the overall and the division performance when varying parameter τ is
depicted in Fig. 5b. The method of Bise et al. [3] shows convincing results in
regions with high data quality (cf. Fig. 2). However, its f-measure is 33pp worse
compared to the chain graph. This is most likely caused by the high misdetection
rate of 13% and can be seen from the low precision of 0.550 and Fig. 2.

Still the performance of our approach could be further improved. A manual
inspection of incorrectly tracked divisions reveals that the tracker can be con-
fused by divisions happening in close local proximity. A better model for divisions
that also incorporates the change in shape and the geometric motion pattern—
descendants move away from the ancestor in roughly opposite directions—could
prevent such mistakes. Future datasets may contain cells that move in a more co-
ordinated fashion. The presented move energies are optimal in case of Brownian
motion, but will most likely underperform for directed motions. In that case the
model can be extended with discrete momentum variables that are associated
with the detected objects–analogous to our extension that controls the minimal
cell cycle length. Finally, the model can easily be extended to consider merging
objects (due to undersegmentation or 2d applications) by allowing more than
one active incoming variable.

6 Conclusion

We presented a chain graph model for tracking by assignment over many time
slices simultaneously. This model is highly robust against misdetections and
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Fig. 6: Sample tracking sequence obtained with the chain graph model.
The eight consecutive time steps show a detail of the Drosophila dataset projected to
2d. The colored spots are segmented objects, where objects with the same color are
assigned to each other. Dark gray objects are misdetections as indicated by ’inactive’
detection variables. Ill-shaped objects will be treated as active, if they are bridging
two tracks in a sensible manner. On the contrary, cell-shaped objects may be labeled
inactive, if they do not constitute a track of a certain length.

can consider temporal domain knowledge. It has been applied in the context
of 3d+t cell tracking and achieved better performance than two recently pub-
lished methods ([16], [3]). Furthermore, it showed that globally optimal tracking
by assignment over many time slices is superior to the popular time step-wise
approach. The performance could be further improved by introducing better
motion models for cell movements and divisions.
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