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Abstract. We address the problem of partitioning a volume image into a previ-
ously unknown number of segments, based on a likelihood of merging adjacent
supervoxels. Towards this goal, we adapt a higher-order probabilistic graphical
model that makes the duality between supervoxels and their joint faces explicit
and ensures that merging decisions are consistent and surfaces of final segments
are closed. First, we propose a practical cutting-plane approach to solve the MAP
inference problem to global optimality despite its NP-hardness. Second, we ap-
ply this approach to challenging large-scale 3D segmentation problems for neu-
ral circuit reconstruction (Connectomics), demonstrating the advantage of this
higher-order model over independent decisions and finite-order approximations.

1 Introduction

This paper studies the problem of partitioning a volume image into a previously un-
known number of segments, based on a likelihood of merging adjacent supervoxels.

We choose a graphical model approach in which binary variables are associated with
the joint faces of supervoxels, indicating for each face whether the two adjacent super-
voxels should belong to the same segment (0) or not (1). Models of low order can lead
to inconsistencies where a face is labeled as 1 even though there exists a path from one
of the adjacent segments to the other along which all faces are labeled as 0. As a result,
the union of all faces labeled as 1 need not form closed surfaces. Such inconsistencies
can be excluded by a higher-order conditional random field (CRF) [1] that constrains
the binary labelings to the multicut polytope [2], thus ensuring closed surfaces. While
the number of multicut constraints can be exponential [3], constraints that are violated
by a given labeling can be found in quadratic time [4]. The MAP inference problem
can therefore be addressed by the cutting-plane method, i.e. by solving a sequence of
relaxed problems to global optimality until no more constraints are violated [4].

Here, we show that the optimization scheme described in [1] is unsuitable for large
3D segmentations where the supervoxel adjacency graph is denser and non-planar. We
therefore extend the cutting-plane approach by adding only constraints which are facet-
defining by a property of the multicut polytope (Section 4.3), a double-ended, paral-
lel search to find violated constraints (Section 4.2) and a problem-specific warm-start
? Contributed equally.
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Fig. 1: Segmenting volume images based on a likelihood of merging adjacent supervox-
els is difficult if merging decisions are made independently. Left: Segmentation errors
remain a problem even if the model is biased optimally with β = 0.8 in Eq. 5 (note
the under-segmentation at the bottom and missing segments at the top). Right: Multicut
constraints alleviate this problem and allow for an unbiased, parameter-free model.

heuristic (Section 4.4). This approach scales gracefully to volume images that consist
of 109 voxels and are initially segmented into 106 supervoxels (Section 5).

The fact that exact MAP inference remains tractable at this scale is important for
the reconstruction of neural circuits form electron microscopic volume images (Fig. 1)
where multicut constraints substantially improve the quality of segmentations across
different imaging techniques (Section 5).

For this quantitative analysis, we manually segmented 109 voxels of two differ-
ent datasets acquired at different laboratories using different imaging techniques and
assess the performance of three models: the simplest, local model uses learned unary
conditional probabilities that state, independently, if each face should be on (establish
part of an object boundary) or off (merge adjacent supervoxels). Optimization of this
model almost always results in inconsistent labelings (Figs. 3b, 3e). The intermediate,
finite-order model guarantees consistency across a small local horizon, leading to better
results. The best results are obtained with the fully constrained model which admits only
labelings that are globally consistent. With the cutting-plane approach proposed here,
the full model is often faster to optimize than the finite-order approximation. Figs. 3, 4,
and 5 summarize why the fully constrained method is the one we recommend.

2 Related Work

The problem we address is known as the multicut problem [5] in combinatorial op-
timization and as correlation clustering [6,7] in statistics, and it is a special case of
the partition problem [2]. Both problems are NP-hard [6,8]. Instances of the multicut
problem have been solved by tightening an outer approximation of the multicut poly-
tope [9] via cutting planes [10,4]. In computer vision, this technique has been applied
in [11,12,13] where the relaxed LP is solved first, as well as in [1] where the inte-
grality constraints are kept throughout the cutting-plane loop. Cutting planes have also
been used to enforce connectivity in foreground vs. background image segmentation
[14,15,16]. Here, we build on the probabilistic formulation in [1] but without the likeli-
hood terms w.r.t. geometry that were shown to have a negligible effect on segmentations
of photographs.
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We concentrate on exact MAP inference for which we propose a cutting-plane ap-
proach that is efficient for large-scale 3D segmentation. In particular, we discuss the
efficient search for violated constraints that are facet-defining and the parallelization of
this search. We measure how the optimization runtime scales with the size of the image
and the number of variables, respectively, with and without improvements.

Results were shown in [1] for photographs in the Berkeley Segmentation Dataset
[17] which consist of 105 pixels that were initially partitioned into 104 superpixels,
leading to optimization problems with at most 104 variables. Here, we segment 3D
images of up to 109 voxels which are initially partitioned into 105 supervoxels, leading
to 100 times larger optimization problems with 106 variables.

3 Probabilistic Model

In order to make the duality between supervoxels and their joint faces explicit, we
build a cell-complex (C,≺,dim) representation [18] of the supervoxel segmentation
by connected component labeling of the finest possible grid-cell topology. This yields
disjoint sets of supervoxels C3, joint-faces between supervoxels C2, lines C1 and points
C0. The function dim : C → N maps each cell to its dimension. For any cells c, c′ ∈
C = ∪3j=0Cj , c ≺ c′ indicates that c bounds c′, which implies dim(c) < dim(c′).
This representation has the advantage that multiple disconnected joint-faces seperating
the same pair of supervoxels can be treated independently for feature extraction and
classification (see below). We model the posterior probability of a joint labeling y ∈
{0, 1}|C2| of all faces, given

– m ∈ N features fc ∈ Rm of each face c ∈ C2, summarized in a vector F ∈ Rm|C2|

– the bounding relation between faces and supervoxels, encoded in a topology matrix
T ∈ {0, 1}|C2|×|C3| in which Tcc′ = 1 if and only if c ≺ c′.

We assume that features are independent of the topology, a) F ⊥⊥ T , b) F ⊥⊥ T | y,
that features of any faces c 6= c′ are independent, c) fc ⊥⊥ fc′ , d) fc ⊥⊥ fc′ | y and that
the label of any face c is independent of the label of any face c′ 6= c given the features
fc, e) yc ⊥⊥ yc′ | fc. (Note, however, that yc 6⊥⊥ yc′ | T ). From these conditional
independence assumptions follows

p(y|F, T ) = p(F, T |y)p(y)
p(F, T )

(a,b)
=

p(F |y)p(T |y)p(y)
p(F )p(T )

(c,d)
=

p(T |y)
p(T )

∏
c∈C2

p(fc|y)p(y)
p(fc)

=
p(T |y)
p(T )

∏
c∈C2

p(y|fc)

(e)
=

p(T |y)
p(T )

∏
c∈C2

p(yc|fc) =
p(T |y)
p(T )

∏
c∈C2

p(fc|yc)p(yc)
p(fc)

∝ p(T |y)
∏
c∈C2

p(fc|yc)p(yc) . (1)

The prior p(yc) is assumed to be identical for all faces and is specified with a single
design parameter β ∈ (0, 1) as p(yc = 1) = β and p(yc = 0) = 1− β.
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The likelihood p(T |y) is the instrument that is used to enforce consistency: While
uninformative for all consistent labelings, it assigns zero probability to all inconsistent
labelings. Consistent labelings y ∈ MC, i.e. labelings inside the multicut polytope5, are
defined in (3) w.r.t. the set SC(n) of all simple cycles (s1, t1, . . . sn, tn, s1) over n ∈ N
pairwise distinct supervoxels (s1, . . . , sn) via pairwise distinct faces (t1, . . . tn). The
inequalities in (3) ensure that along each cycle either none or more than one face is
labeled as 1:

SC(n) =

 (cj)j∈N2n+1

in C

∣∣∣∣∣∣
c1 = c2n+1 ∧ ∀j ∈ Nn : c2j−1 ∈ C3 ∧ c2j ∈ C2

∧ ∀j ∈ Nn : c2j ≺ c2j−1 ∧ c2j ≺ c2j+1

∧ ∀j, k ∈ Nn : j = k ∨ (c2j 6= c2k ∧ c2j−1 6= c2k−1)


MC(n) =

{
y ∈ {0, 1}|C2|

∣∣∣ ∀(s1, t1, . . . sn, tn, s1) ∈ SC(n) : yt1 ≤
∑n

j=2 ytj

}
(2)

MC =

|C2|⋂
j=1

MC(j) (3)

The likelihood p(fc|yc) is learned by means of a random forest. More precisely,
we learn p̂(yc|fc) from class-balanced training data, i.e. with p̂(yc) = 0.5, and assume
p(fc|yc) = p̂(fc|yc). Therefore, p(fc|yc) ∝ p̂(yc|fc)p̂(fc) and thus,

p(y|F, T ) ∝ p(T |y)
∏
c∈C2

p̂(yc|fc)p(yc) . (4)

For comparison, we consider two simpler models, a local model in which p(T |y) is
uniform and thus, faces are labeled independently,

p′(y|F, T ) ∝
∏
c∈C2

p̂(yc|fc)p(yc) , (5)

and a finite-order approximation of (4) in which not all multicut constraints need to be
fulfilled but only those that correspond to cycles up to length 4. With p′′(T |y) = const.
if y ∈ ∩4j=1MC(j) and p′′(T |y) = 0, otherwise,

p′′(y|F, T ) ∝ p′′(T |y)
∏
c∈C2

p̂(yc|fc)p(yc) . (6)

4 MAP Inference

4.1 Integer Linear Programming Problem (ILP)

Instead of maximizing (4), we minimize its negative log likelihood by solving the ILP

min
y∈{0,1}|C2|

wTy

subject to y ∈ MC
(7)

5 The multicut polytope is the convex hull of MC, by Lemma 2.2 in [2].
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Fig. 2: Depicted is one slice of a supervoxel
segmentation. Supervoxels (green dots) are
bounded by joint faces which are labeled as
0 (white dots) or 1 (black dots). The simple
circles drawn in long-dashed blue (short-
dashed red) are chordless (chordal).

with w ∈ R|C2| such that ∀j ∈ {1, . . . , |C2|}:

wj = log
p(yj = 0|fj)
p(yj = 1|fj)

+ log
1− β
β

(8)

We start by solving the (trivial) ILP without multicut constraints. We then search
for constraints that are violated by the solution, add these to the constraint pool and
re-solve the constrained ILP using the branch-and-cut algorithm of a state-of-the-art
solver. This procedure is repeated until no more multicut constraints are violated and
thus, the original problem (7) has been solved to optimality.

4.2 Search for Violated Constraints

If any multicut constraints are violated by a given labeling y, then at least one can be
found by considering all faces c ∈ C2 with yc = 1 and looking for a shortest cycle
(r1, t1 = c, r2, t2, . . . , rn, tn, r1) ∈ SC(n) with n ∈ N along which all other faces
t2, . . . , tn are labeled as 0 [1,4]. Shortest cycles correspond to constraints with minimal
numbers of variables.

Double-ended search. Although a breadth-first search for such a cycle can be car-
ried out in time O(|C2| + |C3|), starting from either r1 or r2, the absolute runtime to
perform this task for all relevant faces can be comparable to that of solving the ILP
(Section 5). We therefore propose to grow two search trees, rooted at r1 and r2, simul-
taneously. This saves runtime because both trees are only half as deep as a single one
would be, at the point when a shortest cycle is found.

Parallelization. Shortest paths need to be found for many faces, from one adjacent
supervoxel to the other, and yet not so many that it would be profitable to solve the All
Pairs Shortest Path problem. We therefore propose to solve Single Pair Shortest Path
problems in parallel with a space complexity that is linear in the number of threads. In
practice, we use OpenMP for this embarrassingly parallel task.

4.3 Chordality Check

Not all inequalities in (3) define a facet of the multicut polytope due to the following

Theorem [2]: If n ∈ N and (cj) = (s1, t1, . . . sn, tn, s1) ∈ SC(n), the inequality
yt1 ≤

∑n
j=2 ytj is facet-defining if and only if (cj) is chordless6 (Fig. 2).

6 A path is chordless if each node is connected only to its successor and predecessor. Here, the
path of segments via joint faces is chordless if each segment is connected by a face only to its
successor and predecessor.
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We exploit this algorithmically by adding violated inequalities only if these correspond
to chordless cycles (Fig. 2).

4.4 Warm Start Heuristic

When violated constraints are added, the solution of the relaxed problem becomes infea-
sible and thus, the upper bound on the global minimum is lost. However, the structure
of the problem allows us to find a new feasible solution efficiently: A given labeling
y ∈ {0, 1}|C2| is mapped to a labeling on the multicut polytope by labeling all variables
of all violated inequalities as 0. Since violated inequalities have already been found, this
heuristic does not change the runtime complexity of the optimization scheme overall.

5 Applications

5.1 SBEM Volume Image

A volume image referred to as E1088 in [19] was acquired using serial block-face
electron microscopy (SBEM) [20] and shows a section of rabbit retina at the almost
isotropic resolution of 22×22×30 nm3. A small subset is shown in Fig. 3a. The bright
intra-cellular space that makes up more than 90% of the volume contrasts the stained
extra-cellular space that forms thin membranous faces. This staining [21] simplifies the
automated segmentation because no intra-cellular structures such as mitochondria or
vesicles are visible (Fig. 3d shows a different staining). A supervoxel segmentation is
obtained as described in Appendix C.

Features fc of each face c ∈ C2 described in Appendix B include statistics of voxel
features over c as well as characteristics of the two supervoxels that are bounded by c.
In order to learn p(yc|fc) by means of a random forest, 437 faces per class have been
labeled interactively in a subset of 2503 voxels in about one hour, starting with obvious
cases and continuing where the predictions needed improvement. A custom extension
of ILASTIK [22] implements this online learning workflow. The user can mark faces as
“on”, “off” or “unlabeled” via a single mouse click and inspect intermediate predictions
by viewing faces colored according to p̂(yc|fc).

Qualitative results on independent test data are shown in Fig. 3a-c. The global max-
imum of the local model (5) is inconsistent, i.e. not all surfaces are closed. A consistent
labeling with closed surfaces and thus a segmentation is obtained by merging super-
voxels transitively, i.e. whenever there exists a path from one supervoxel to the other
along which all faces are labeled as 0 (cf. Section 4.4), regardless of how many faces
between these supervoxels are labeled as 1. This mapping to the multicut polytope is
biased towards under-segmentation (Fig. 3b). In contrast, the global maximum of the
fully constrained model (4) is consistent and directly yields a segmentation with closed
surfaces (Fig. 3c). Note also the quality of the initial supervoxel segmentation from
which only 19.3% of all faces are removed in the found global optimum.

Quantitatively, the effect of introducing multicut constraints is shown in Fig. 4a
where maxima of (4), the local model (5) and the finite-order approximation (6) are
compared to a man-made segmentation of 400 × 200 × 200 voxels (Appendix A) in
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1µm

(a) SBEM raw data (b) w/o constraints, β = 0.5 (c) with constraints, β = 0.5

1µm

(d) FIBSEM raw data (e) w/o constraints, β = 0.5 (f) with constraints, β = 0.5

Fig. 3: Segmentations of the SBEM dataset (a-c, 2422 voxels) and FIBSEM dataset (d-f,
5122 voxels). Faces are colored to show if the algorithm decides that these are part of
a segment boundary (blue) or not (magenta). Importantly, yellow faces are decided to
be part of a segment boundary, but are ignored because the bounded supervoxels are
merged elsewhere.
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(b) FIBSEM (900× 900× 900 voxels)

Fig. 4: Variation of information (VI) and Rand index (RI) from a comparison of man-
made segmentations (Appendix A) with segmentations obtained as maxima of the fully
constrained model (Eq. 4), the finite-order approximation (Eq. 6), and the local model
(Eq. 5), for various priors β. Exact optimization of the finite-order approximation be-
comes intractable for most β on the FIBSEM data. In contrast, optima of the full model
are found in less than 13 minutes. (Fig. 5b).
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Dataset Problem size Runtime [min.] for optimizing (4)
[1] Our work

Voxels |C3| |C2| Cplex Gurobi Cplex Gurobi
SBEM 8003 194 809 1 603 683 249.0 299.0 11.4 12.9
FIBSEM 8003 73 099 624 747 386.2 291.7 9.2 7.2

Table 1: Globally optimal closed-surface segmentations of the SBEM and and FIBSEM
volume images of 8003 voxels are found in less than 13 minutes using the proposed
cutting-plane method that is about 22 times as fast as the optimization scheme in [1].

terms of the Variation of Information (VI) [23] and Rand Index (RI) [24]. The overall
best segmentation is obtained from (4), i.e. with all multicut constraints, and without an
artificial bias β 6= 0.5; note that the bias term in (8) vanishes for β = 0.5. Without any
multicut constraints, the best segmentation, obtained for β = 0.8, is worse in terms of
both VI and RI. Segmentations of intermediate quality are obtained from the finite-order
approximation (6).

Runtimes for optimizing (4) are shown in Fig. 5a and Tab. 1 for our C++ implemen-
tation. The ILP (7) is solved with IBM ILOG Cplex and Gurobi alternatively, with the
duality gap set to 0 in order to obtain globally optimal solutions. Global optima of (4),
for blocks of 8003 voxels with 1.6·106 and 6·105 faces (and variables), respectively, are
found in less than 13 minutes (Tab. 1), about 22 times as fast as with the optimization
scheme in [1].

Maximizing (4) can be faster than maximizing the finite-order approximation (6)
that does not guarantee closed surfaces and yields worse segmentations empirically
(runtimes not shown). We therefore recommend to use all multicut constraints.

5.2 FIBSEM Volume Image

A volume image acquired with a focused ion beam serial-section electron microscope
(FIBSEM) [25] shows a section of adult mouse somatosensory cortex at the almost
isotropic resolution of 5×5×6 nm3. A small subset is shown in Fig. 3d. Intra- and extra-
cellular space are indistinguishable by brightness and texture. Not only cell membranes
but also intra-cellular structures such as mitochondria and vesicles are visible due to
a different staining. The resolution is four times as high as that of the SBEM image.
However, intra-cellular structures have membranous surfaces themselves and thus make
the problem of segmenting entire cells more difficult. A supervoxel segmentation is
obtained as described in Appendix C.

We use the same features as for the SBEM dataset but adjusted in scale. Our labeling
strategy was to annotate membranes of both cells and mitochondria7 as yc = 1.

Qualitative results are shown in Fig. 3d-f for a slice of 5123 voxels. The MAP
labeling of the local model (5) is inconsistent and almost all faces are removed by

7 It is still possible to obtain the geometry of cells because mitochondria can be detected reliably
[26], even via their mean gray-value once a segmentation is available. Segments which are
classified as mitochondria are disregarded when computing VI [23] and RI [24].
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Fig. 5: Wall clock runtimes for optimizing (4) with β = 0.5 (on an 8-core Intel i7 at
2.8 GHz), with and without improvements to the optimization scheme in [1], for in-
creasing problem size (number of joint faces of supervoxels, left, and number of vox-
els, right), for datasets ranging in size from 1503 through 8003 voxels. all: proposed
optimization scheme, noC: no chordality check, noD: no double-ended search, noP:
no parallel search, noCDPW: no improvements. Analogous plots for Gurobi instead of
Cplex are provided as supplementary material.
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(a) frames 1285,
1950

(b) without multicut constraints,
β = 0.5

(c) with multicut constraints,
β = 0.5

Fig. 6: Color video segmentation. Supervoxel faces are colored blue if yc = 1, ma-
genta if yc = 0 and yellow if the decision is inconsistent, i.e. yc = 1 but the adjacent
supervoxels are merged. Segments are filled with their mean color.

transitivity (note the lack of blue faces in Fig. 3e). In contrast, the global maximum of
the fully constrained model (4) is consistent (Fig. 3f). In contrast to the SBEM dataset
in which only 19.3% of the faces are removed, 80.7% of all faces are removed here, due
to the inferior supervoxel segmentation.

Quantitative results are shown in Fig. 4b. VI and RI are w.r.t. a complete segmenta-
tion of 9003 voxels carried out by a neurobiologist (Appendix A). Similarly as for the
SBEM volume segmentation, the best segmentations are obtained from the full model
(4). Exact MAP inference for the finite-order approximation (6) becomes intractable for
most β.

Runtimes are shown in Fig. 5b for problem instances from blocks between 1503 and
8003 voxels. Unlike for the SBEM dataset (Fig. 5a), the overall speedup is dominated
by the chordality check.

5.3 Video Segmentation

As a proof-of-concept, we applied the same model to bottom-up video segmentation,
treating the video8 as a three-dimensional (x,y,t)-volume. Obtaining a supervoxel seg-
mentation that strikes a balance between negligible under-segmentation and a small
number of excessive supervoxels has proven difficult. We settled for a marker-based
watershed transformation of the color gradient magnitude in the Lab color space. A
486 × 360 video with 1000 frames (Fig. 6a) is thus partitioned into |C3| = 22 056
supervoxels with |C2| = 256 734 joint faces.

As features fc, we use (i) the mean (over the face c) of the 2D patch features in
[1] which are computed per frame, and (ii) the absolute distance of color histograms of
the bounded supervoxels. A training set of 153 labels per class was acquired using the

8 Frames 1000–2000 of the video at youtube.com/watch?v=YN0I-TZFn58

youtube.com/watch?v=YN0I-TZFn58
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same tool and protocol as for the SBEM dataset. Only faces intersecting frame 1015
were labeled.

Qualitative results are shown in Fig. 6. A video of the segmentation is provided as
supplementary material. While the finite-order model is intractable for this problem,
global optimization of the fully constrained model (4) with β = 0.5 takes 131 seconds.

6 Discussion

In a fully connected graph with n ∈ N nodes, the
(
n
3

)
cycle constraints of order 3

imply all
∑n−4

j=0
n!
j! higher-order cycle constraints. However, in the sparse graphs that

we consider, the higher-order constraints need to be dealt with explicitly. An example
is depicted in Fig. 2 where the constraint that corresponds to the blue cycle on the
left has order 4, excluding from the feasible set a locally closed loop that is globally
inconsistent. Our experiments have shown that including these higher-order constraints
is essential to achieve the best performance w.r.t. ground truth.

When inconsistent labelings are permitted, unlike in the fully constrained model
(4), and mapped to the multicut polytope as described in Section 4.4, the risk of false
mergers is higher in 3D than in 2D because there are on average more and shorter paths
from one supervoxel to another along which faces can be incorrectly labeled as 0. We
therefore expect multicut constraints to be more important in 3D than in 2D.

Solving (7) as proposed here requires the solution of problems of an NP-hard class.
Whether or not this is tractable in practice depends on the quality of the predictions
p̂(yc|fc). The learning of this function is therefore important.

The warm start heuristic described in Section 4.4 is biased maximally towards
under-segmentation. Smarter heuristics that explore local neighborhoods in the cell
complex are subject of future work. The model (4) can be grafted on any method, 2D
or 3D, that finds superpixels or supervoxels and probabilities that joint boundaries of
these should be preserved or removed. Whether it can improve segmentations of images
acquired by transmission electron microscopy is subject of future research.

The recontruction of neural circuits such as a neocortical column or the central ner-
vous system of Drosophila melanogaster will eventually require the segmentation of
volume images of 1012 voxels. The result that 109 voxels can be segmented by optimiz-
ing a non-submodular higher-order multicut objective exactly on a single computer in
13 minutes is encouraging.

7 Conclusion

We have addressed the problem of segmenting volume images based on a learned like-
lihood of merging adjacent supervoxels. To solve this problem, we have adapted a
probabilistic model that enforces consistent decisions via multicut constraints to 3D
cell topologies and suggested a fast scheme for exact MAP inference. The resulting
22-fold speedup has allowed us to systematically study the positive effect of multicut
constraints in large-scale 3D segmentation problems for neural circuit reconstruction.
The best segmentations have been obtained for an unbiased parameter-free model with
multicut constraints.
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(a) SBEM, 1400× 1400× 600 voxels (b) FIBSEM, 900× 900× 900 voxels

Fig. 7: The largest volume images we have segmented with multicut constraints. Shown
are 600 segments in the SBEM dataset and 50 objects in the FIBSEM dataset.

A Acquisition of Ground Truth

We manually segmented subsets of the SBEM and the FIBSEM dataset (Fig. 8) using
the interactive method [27]. Each object was segmented independently. Some indepen-
dently segmented objects needed correction because there was overlap. This asserts a
consistent ground truth and shows that the segmentation problem is non-trivial, even for
a human. For the SBEM dataset, 528 objects (90.8% of 400× 200× 200 voxels) were
segmented by one expert in two weeks. For the FIBSEM dataset, 514 objects (96.8% of
a cubic block of 9003 voxels) were segmented by a neurobiologist in three weeks.

(a) SBEM (400× 200× 200) (b) FIBSEM (9003)

Fig. 8: Man-made segmentations (ground truth). Shown are orthogonal slices in which
a random color is assigned to each segment.
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Index Feature Details
1 Size of the face
2–3 Sizes v1 and v2 of (v1 + v2)

1/3

adjacent supervoxels |v1 − v2|1/3
4–10 Bilateral filter b *
11–17 Gradient magnitude *
18–24 Hessian matrix of max. eigenvalue,*
25–31 Voxel classifier *

(a) Features of supervoxel faces

Index Feature
1 Volume image
2 Bilateral filter

wσs(r) =
1

σs(2π)3/2
exp

(
− r2

2σ2
s

)
wσv (v) =

1

1+ v2

σ2v

3–4 Gradient magnitude
5–16 Structure Tensor eigenvalues
17–28 Hessian matrix eigenvalues

(b) Features of voxel neighborhoods

Table 2: Features of supervoxel faces. The statistics (*) include the min, max, mean,
median, standard deviation, 0.25- and 0.75-quantile over all voxels adjacent to the face.

B Features

From every joint face of adjacent supervoxels, 31 features are extracted (Tab. 2a). One
of these features is the response of a Random Forest that discriminates between mem-
branes on the one hand and intra-/extra-cellular tissue on the other hand, based on 28
rotation-invariant non-linear features of local neighborhoods of 113 voxels (Tab. 2b).

C Supervoxel Segmentation

We computed supervoxels by marker-based watersheds. To obtain an elevation map and
markers for the SBEM dataset, we train a random forest classifier to distinguish between
two classes of voxels, extra-cellular space and intra-cellular space, based on rotation
invariant features of local neighborhoods (Tab. 2b and Appendix B). As training data,
1600 voxels per class were labeled interactively in two subsets of 1503 voxels which
has taken three hours using ILASTIK [22]. Predicted probabilities are used as elevation
levels. Connected components of at least three voxels classified as intra-cellular space
are used as markers. For the FIBSEM dataset, the elevation level is defined as the largest
eigenvalue of the Hessian matrix at scale 1.6. Markers are taken to be maximal plateaus
of the raw data that consist of at least two voxels.
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