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Abstract. In his original paper on random forests, Breiman proposed
two different decision tree ensembles: one generated from “orthogonal”
trees with thresholds on individual features in every split, and one from
“oblique” trees separating the feature space by randomly oriented hy-
perplanes. In spite of a rising interest in the random forest framework,
however, ensembles built from orthogonal trees (RF) have gained most,
if not all, attention so far.

In the present work we propose to employ “oblique” random forests
(oRF) built from multivariate trees which explicitly learn optimal split
directions at internal nodes using linear discriminative models, rather
than using random coefficients as the original oRF. This oRF outper-
forms RF, as well as other classifiers, on nearly all data sets but those
with discrete factorial features. Learned node models perform distinc-
tively better than random splits. An oRF feature importance score shows
to be preferable over standard RF feature importance scores such as Gini
or permutation importance. The topology of the oRF decision space ap-
pears to be smoother and better adapted to the data, resulting in im-
proved generalization performance. Overall, the oRF propose here may
be preferred over standard RF on most learning tasks involving numeri-
cal and spectral data.

1 Introduction

Random forests have gained popularity in high-dimensional and ill-posed classi-
fication and regression tasks, for example on micro-arrays [19], time series [37],
or spectral data [39,29], but also for inference in application such as image seg-
mentation or object recognition in computer vision [9,45]. Random forests are
comparable in performance to many other non-linear learning algorithms. They
often do well with little parameter tuning [16], and are able to identify relevant
feature subsets even in the presence of a large amount of irrelevant predictors [6,
21, 25, 2]. More recently, additional properties of the random forest have gained
interest, for example in feature selection [25, 34, 23,44] or the explorative analy-
sis of sample proximities [38].

The main idea of the random forest framework, proposed by Breiman in [5],
is to learn many variable but unbiased base learners, and to reduce variance
by pooling over a whole committee of predictors. This concept is familiar from
bagging [3], when a large number of decision trees is learned from random subsets



of the training samples and their decisions are averaged in prediction. In random
forests the correlation between individual base learners is further reduced by
seeking at every node for the best prediction in a random subspace of the training
data, similar to ideas from “random subspaces” [17] and "random splits” [10].

A random forest can be generated from two different kinds of trees. Univari-
ate decision trees — such as CART or C4.5 — serve as base learners of the most
popular random forest implementations. They separate feature space by hyper-
planes that are orthogonal to single feature axes, resulting in the typical stair-
or box-like decision surfaces of these classifiers. While this characteristic shape
of the decision boundary might be advantageous for some data, one may argue
that it is suboptimal for other — potentially leading to a substantial bias of the
base learner. Collinear data with correlated features [23], for example, arising
from spectra, time series, but also micro-arrays or image patches, may reside in
subspaces that lie between the coordinate axes. In that case, class distributions
may appear inseparable when marginal distributions are evaluated in the search
for the best univariate split, and separating classes may require complex and
deeply nested trees (Fig. 1). Multivariate decision trees — trees using decision
surfaces at arbitrary, oblique orientations to the axes — may be better adapted
to decisions in such subspaces [27], leading to decision boundaries that are less
biased by geometrical constraints of the base learner. In his original paper [5],
Breiman proposed the use of decision trees with oblique splits at random ori-
entations, observing that this approach yielded “results never reached so far”
on the data sets tested. Unlike their counterparts with univariate node models,
however, these random forests have not met a wider interest, yet.

In the present work we propose to use random forests with regularized oblique
model trees as base learners. Recent results on ensemble pruning showed an ad-
vantage of choosing base learners which are optimally adapted to the data [22].
So, rather than choosing random recursive splits, as Breiman suggests in [5], we
focus on trees with task optimal recursive partitioning. In this we follow the idea
also used, for example, in probabilistic boosting trees [43], which use “strong”
discriminative model at each node to obtain overall better decision rules. Our
approach is also related to “rotation forests” [33] where oblique split directions
are sought from the principal components of feature subsets of the training data,
reportedly improving results significantly in selected classification tasks. We dif-
fer from this approach by using supervised approaches to define optimal split
directions. While we follow some of the ideas of [40,41], we refrain from using
global optimization techniques to train the oblique tree. Furthermore, we also
perform experiments to understand the benefit of learned oblique node mod-
els. For splitting feature space at a node, a wide range of linear discriminative
node models can be used, all employing somewhat different optimization ob-
jectives. We emphasize on regularized node models which may complement the
good properties of the original random forest by Breiman [5] for classifying high-
dimensional data with few samples — a domain where the random forest with
orthogonal trees performs exceptionally well. Finally, we propose feature impor-



Fig. 1. Separation of correlated data using uni-
variate decision trees. The left column shows
a synthetic binary data set, the right column
shows the same data after the samples have
been artificially correlated. The top row shows
the bivariate samples, and a segmentation using
an orthogonal decision tree (black lines, and seg-
ments indicated by 0 and 1). The classification
tree is visualized in the middle row. Marginal
distributions of the horizontal axis (top row) are
shown as histograms in the bottom row — these
are the distributions evaluated at every node
in a univariate decision tree. While the initial
segmentation problem (left column) is simple,
the strong overlap in the marginal distributions
(right column) leads to highly nested decision
rules and complex decision boundaries if fea-
tures are correlated.

tance and visualization measures for the oblique random forest, similar to the
ones proposed [5].

In the following we will shortly outline model-based oblique random forests
(oRF) (Section 2). In subsequent experiments we will compare the oRF quanti-
tatively against standard random forests with univariate trees (RF) and other
related non-linear classifiers (Section 3), and try to understand properties of
oblique random forests with learned node model (Section 4). We will finally
propose feature importance and sample proximity measures derived from the
oblique random forest (Section 5).

2 Oblique random forests

The oRF shares the ensemble generation processes with the “standard” RF [5]:
For each tree a new set of samples is drawn randomly from the training data
with replacement. At every recursive binary split, a new set of my,, features is
sampled without replacement, and the optimal split is sought in the subspace
spanned by these features. Differences to the standard procedure apply in the
way optimal splits direction are sought at each node.

Oblique model trees For oRF, we rely on multivariate models for binary splits

in each node. For a sample x = [zq,..., xmwy]T in a my,,-dimensional space,
the decision f at the node m can be formulated as:
fm(x): BT x > ¢, (1)

with coefficients (,, defining the projection for the split and threshold c,,.
Inferring the optimal (,, is more difficult than the identification of a single
optimal feature and an appropriate threshold for a split in the univariate case.
Different criteria can be used to find the linear subspace (Fig. 2). Projections for



Fig. 2. Effect of regularization on split di-
rections of the oblique node models. Lines
represent normals of the discriminating hy-
perplanes. PCA seeks for oblique splits
with maximal data support (first compo-
nent shown here) and LDA for correlation
with the class label. By using regularized
regression a multitude of alternative sub-
spaces with intermediate properties can be
defined and evaluated. Regularization bi-
ases the optimal LDA-like projection to-
wards one which has higher data-support,
-4 - 0 2 . more directing towards the PCA-like solu-
x tion.

linear splits may consider class label information only (as in logistic regression
or linear discriminant analysis), they may align with the data variation (as with
principal component analysis), or they may seek for an optimum in between,
trading class label correlation and data support (as in ridge or partial least
squares regression, or linear support vector machines). Constrained regression
methods also enjoying popularity in the classification of high dimensional data.
They perform well in tasks with less observations than predictors, and they
may help to find splits when less than my,., samples reside in a node which often
occurs in deep split nodes far from the root. We therefore choose ridge regression
for our split model:

2
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using regularization parameter A\. With this choice the node model is optimizing
for [11]

Bridge(N') ~ argmax corr®(8X,Y) * var(8X)

l1B=1| W' (3)

The regularization parameter A allows the classifier to adapt to an optimal split

direction fyiqge in between two extremes (Fig. 2): With A = 0, 3,44 may point
towards maximal correlation with class labels, similar to linear discriminant
analysis (LDA). With A > 1, it may point towards highest data variation and
data support, similar to principal component analysis (PCA).

At each node m, the model parameter A can be adapted to the out-of-bag
samples available at that node. Then all samples X,,, are projected into 3,, and
the optimal split-point ¢, on the scores s, = X,, 3, is identified using the Gini
impurity I(sp,) = 2 % (1 — > k—01 Pi(sm)). The threshold ¢,, maximizing the
decrease in Gini impurity (i.e., the minimum in I(s,, < ¢p) + I(sm > ¢p)) is
chosen and samples are separated accordingly. For both subsets the process of
finding the best split is recursively iterated until both classes are separated.



Implementation of the oblique random forest In the random forest frame-
work a large number of trees are combined. Two hyper-parameters control the
generation of the decision trees in this ensemble: subspace dimensionality my,
and ensemble size nyyee. Parameter my,, determines the number of features sam-
pled randomly at each individual node and the degree of randomness in the model
generation. Parameter my,, has to be chosen to obtain a “sufficient” variability
of the trees in the forest, ensuring that correlation between individual trees is
as low as possible. In prediction new samples are pushed down each of the ngyee
trees and are assigned the label in the terminal note and decisions can be pooled
according to different schemes [32,30]. Here we use the normalized number of
votes, or probability p € [0,1], which is relatively robust against over-fitting [5,
35, 32].

We implement two versions of the oRF in our experiment: a) oRF-ridge
optimizing regularization parameter A\ at every split, b) oRF-lda performing an
unregularized LDA-like split at every node, and ¢) oRF-rnd with random oblique
splits as proposed in [5]. Trees are generated as follows!: 1) For each tree a new
set of samples is drawn randomly from the training data with replacement.
2) Random subspaces of dimension my,, are sampled without replacement for
every node. 3) At every split, we scale variables to zero mean and unit variance
to enhance the stability of the linear model. 4a) For oRF-ridge, ridge regression
is tested using A = 10° with i = {—5,—4,...,5}, and X is optimized using the
out-of-bag samples residing at the same node. 4b) For oRF-lda we set A = 0 and
use the resulting node model. 4c) For oRF-rnd we draw random values from a
normal distribution (with zero mean and standard deviation of one) to obtain
coefficients 8 of the node model beta under a similar prior distribution as in a
Lo constrained ridge regression. For all three oRF, samples are projected into
subspace determined by the node model. 5) Optimal thresholds for splitting the
data are sought using the Gini impurity on the fitted scores of the training data,
and the samples are split accordingly. For each of the ny... trees, steps 2)-5)
are repeated until all classes are separated (oRF-1da, oRF-rnd), or no out-of-bag
test samples are available for adapting A any more (oRF-ridge).

3 Comparison of classification performances

In a first experiment we compare the performance of oRF, RF and other learning
methods on different types of data to identify and compare specific properties
of these classifiers.

Experimental data A number of binary benchmark problems are used for the
evaluation: binary classification problems of the UCI data repository (data sets
1-15, Table 1), synthetic data sets (16-20) [4], binary groupings of handwritten
digits (21-23) from the MNIST data base, binary data from detection problems
in archaeological remote sensing (24-25) [26], from the analysis of magnetic reso-
nance spectra for the detection of brain tumors or yeast infections (26-28, 32-36)

! Classifier publically available at cran.r-project.org in package obliqueRF.
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[24, 23], from the analysis of infrared spectra for BSE detection from blood serum
and food analysis (29-31, 37-40) [25, 23].

3

dimensionality m

Alternative classifiers We choose seven alternative nonlinear classifiers for
our comparison — most of them with some conceptual relation to oblique ran-
dom forests. We test two other decision tree ensembles (Table 1): adaboost [12],
the standard random forest (RF) [20] and a version of the extremely random
forests [13] with my.y, = 1 (RF-rnd), all relying on univariate decision trees.
We also test the performance of single pruned classification trees (CART), sup-
port vector machines with radial basis function (svm) and a k-nearest-neighbors
classifier (knn). For RF, the optimal number of trees is found in an internal
cross-validation of the classification error testing 10 * 2° trees with i = 1...6.
Trees are grown to full depth. For CART, model complexity is optimized in a
ten-fold cross-validation. For the support vector machine (sum) the kernel width
is obtained in a three-fold cross-validation testing the quartiles of |z — z/|? [7]
and regularization (“cost”) is found in another 3-fold cross-validation evaluat-
ing the range of A = 107°>. A binomial model is modeled on top of the binary
decisions [31]. Boosting is “discrete” adaboost, with exponential loss, and in con-
junction with a bagging of the samples. We test the performance for 10x1...5
iterations in a 3-fold internal cross-validation. The knn classifier is tested in a
threefold cross-validation testing 2¢ neighbors with i = 0...loga(P).

Processing time Processing time is critical for the generation of large ensem-
bles of classifiers. Using an implementation in native GNU R it took longer to
train an oRF than training an RF (using a Fortran implementation), or the SVM
(C); it was still faster than adaboost (C). Growing 100 oblique trees took about
10-100s for most of the learning tasks (on a standard personal computer) with
Ilda at the lower end of this time range and ridge — requiring parameter tuning —
at the upper. Training the node models on a subsampled set of observations, as
done in computer vision applications [9,45], may reduce the overall computation
time significantly for large data sets.

Choice of oRF default parameters Random forests are relatively insensitive
to the choice of model parameters, and we want to apply all oRF with the same
default parameters. We test the effect of forest size, ny,.ce, on the overall classifi-
cation performance of the classifiers (as determined in a ten-fold cross-validation;



Fig. 3, left). Overtraining by increasing ni... could hardly be provoked for any
random forest on any data set. Little improvement in classification accuracy is
observed for ny... > 100. We chose to set ny... = 300 for all further experiments.
The second tuning parameter is my,, — the number of features which are ran-

domly sampled at each node. A popular default choice for RF is mffg = VP,
with P being the number of features [20]. We find this default to perform reason-
ably well (Fig. 3, right), although larger differences can be observed for spectral
data sets. In all further experiments we use my, = VP.

Evaluation We apply all classifiers to the data set in ten repeats of a ten-fold
cross-validation (Table 1) and evaluate both the mean accuracy and the receiver-
operator-characteristics with its area-under-the-curve (ROC AUC). ROCs are
calculated on the complete test data, and individually on each of the ten re-
sampled data sets, to have a distribution of ten different ROCs which is used to
measure significance of differences. To this end we use nonparametric statistical
tests. We first identify the best method for a particular data set (defined by
the highest mean classification accuracy, underlined in Table 1), and then test
whether other classification results differed significantly from this one “best”
result. We use paired Cox-Wilcoxon tests at 5% level (on the 100 test sets for
classification accuracy and 10 repeats for AUC ROC) to compare the perfor-
mance between the “best” classifier, and any other classifier applied to the same
data set [18]. Classification results which do not differ significantly from the
approach with the highest accuracy, are indicated by bold font in Table 1.

We analyze the general behavior of the algorithms over data which share
certain properties. Trees with oblique and orthogonal perform differently on
data with factorial and numerical features [8]. Random forest perform well in
applications with many irrelevant predictors and few observations [23]. So, we
group the data into three classes (Table 1): data with factorial or discrete features
(“factorial data”, data sets 1-10 in Table 1), data with continuous numerical
features (“numerical data”,11-20), and data with many correlated numerical
features and few samples (“spectral data”, 21-40).

Results are shown in Table 1, the frequency how often a particular method
performed best or comparable to the best within the three data classes is re-
ported in Table 2. The optimal choice for factorial data are methods evaluating
univariate splits — adaboost, RF and in some classification tasks even CART
performed best. They rank — in terms of classification performance — in front of
all other methods, with adaboost being first. The advantage on factorial features
may be expected as univariate trees consider the relative ordering of observa-
tions only. They are insensitive to the arbitrary assignment of numerical values
to different factors. On numerical data oblique random forests perform slightly
better than alternative classifiers (e.g., ada, SVM). Those oRF with regularized
node model perform slightly better than the other two in terms of class separa-
tion (i.e, ROC). On spectral data, oRF is a clear first, both in terms of accuracy
and ROC. SVM, RF or adaboost perform well on few data sets (MRS tumor, IR
yeast 2) and here most oRF perform equally well. An advantage of oRF-ridge
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14 liver 30.9 32 34.1 26.8 26.8 27.8 27.8 25.8 26.2 |26.6 31.3 38.2 22.3 23.3 23.5 23.4 21.4 21.3
15 diabetes 30.7 31.7 34.2 26.6 26.7 27 27.7 26.1 26.2 [26.8 30 37.7 22.3 23.3 23.3 23.1 21.2 21.5
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22 digits 3-8 2.3 36 6 3.1 3.2 50 43 49 5.2 (0.3 2.3 44 06 0.5 30.7 0.8 1.2 1.3
23 digits even-odd | 7.4 7.2 15.8 9.1 7.8 50 9.8 16.2 16.6 |2.4 6.2 14.6 3.2 2.3 47.2 3.3 9 9.4
24 RS SRTM 2.5 32 3 0.8 0.7 1.7 1.7 07 1 0.3 27 27 0.1 0 0.1 01 O ]
25 RS ASTER 25.5 29.8 32.7 22.9 24.9 27.5 25.1 19.3 19.9 |18.7 25.4 30.1 17.4 19.6 20.8 18.6 13.2 14
26 MRS quality 6.2 6.7 18.1 6.7 7.7 9.3 84 6.2 6.2 (2.1 2.5 155 24 2.1 2.7 24 1.9 1.9
27 MRS tumor 1  [11.2 12 17.5 10.6 10.4 12.2 10.7 10.6 11 [4.9 8.4 16.8 6.2 4.6 59 4.9 4.6 4.7
28 MRS tumor 1 [19.1 19.7 22.3 18.9 19 19.1 19.1 19.7 20.1 | 28 29.5 35.4 26.8 24.7 26 25.9 26.9 25.5
29 IR BSE 1 22.5 23.1 25.2 22.1 20.5 23 23 13.1 13.4 | 22 33.6 39.3 27.4 21.3 26.8 24.5 9.2 9.9
30 IR BSE 2 27.9 42.9 24.1 25.9 25.7 29.6 34.5 15 15.5 |20.5 41.5 30 20.7 18.5 25.1 27.3 6.9 7.1
31 IR BSE 3 27.1 40.5 25.2 33.5 24.6 30.8 35.4 14.9 12.6(20.3 39 31.5 18.2 18.5 26.1 29 5 5.2
32 MRS yeast 1 4.3 9 145 7.8 7.3 89 7.9 4.1 4.3 [1.2 6.4 155 3.4 29 3.6 29 1.2 1.2
33 MRS yeast 2 2.4 32 9 83 39 44 35 3 2.8 [2.2 43 11.1 45 3.6 2.8 2.9 2.7 28
34 MRS yeast 3 3 4.9 8.7 7.2 5 5.2 4.4 3.2 3.2 3.9 4.8 13.6 9.5 4.8 5 4.8 3.2 3.2
35 MRS yeast 4 9.7 11 15.7 15.8 12 14.1 13.3 6.5 5.9 [4.2 14.2 26.9 6.1 86 8 7.1 4.5 4.2
36 MRS yeast 5 5 71 8 7.4 64 64 6.4 3.5 3.9 [3.2 86 16.2 9.9 4.3 5.6 55 3.4 3.1
37 IR wine origin 1|27.2 40.7 26 22.1 21.7 26.4 29.6 21.4 21.6 |23.5 40.6 28 16.9 14.5 19.6 23.8 13.6 13.2
38 IR wine origin 2|25.5 40.6 30.3 21.8 21.1 25.4 32.1 25.5 22.6 |23.2 41.7 31.9 27.2 15 19.2 27.5 15.6 13.9
39 IR wine grape 1|17.1 40.3 14.7 18 11.1 21.9 25.1 8.4 4.6 | 6 38.4 18.8 7.6 3 10.216.7 0 [}
40 IR wine grape 2| 18 38.2 15.3 12.5 10.3 22.1 29.5 11.6 11.1 | 6.2 35.2 18.3 5.5 2.7 10.1 21.2 0 o

Table 1. Classification accuracy (left block) and 1-ROC AUC (right block) of the
classifiers on the 40 data sets. Data sets are grouped in factorial, nominal and spectral
data. Underlined is the best results, bold results do not differ significantly from the
best.

over oRF-lda becomes apparent when comparing class separation. The somewhat
weaker general performance of the unregularized oRF suggest that the overall
performance may benefit to a large extend from the optimal choice of A and a
sufficiently strong regularization.

Overall, we find that random forests with orthogonal trees (RF) perform well
on factorial data, but they are outperformed by oblique random forests (oRF)
on numerical and spectral data. Oblique random forests with regularized node
models (oRF-ridge) rank overall first, followed by oRF with unregularized model
(oRF-1da), both outperforming Breiman’s oRF with random split model (oRF-
rnd). So, in any learning task which do not comprise discrete factorial features,

Ranking 1 2 3 4 5

Factorial Data AUC ROC| adaboost (6) RF (4) oRF-lda (2) oRF-rnd (2) knn (1)
Accuracy |adaboost (9) RF (6) oRF-lda (4) oRF-ridge (3) CART (3)

Nominal Data AUC ROC|oRF-ridge (6) oRF-lda (5) svmm (3) oRF-rnd (3) adaboost (2)
Accuracy | oRF-rnd (7) oRF-ridge (6) oRF-lda (6) adaboost (6) svm (6)

Spectral Data AUC ROC|oRF-ridge (14) oRF-lda (12) svm (7) RF (6) adaboost (1)
Accuracy [oRF-ridge (17) oRF-lda (17) svm (10) RF (9) adaboost (7)

Table 2. Ranking of the classifiers summarizing performance for the three different
data classes. The figure shows how often a classifier performed best or similar to the best
in Table 1. With the exception of of factorial data oblique random forests outperform
the alternative classifiers. Overall oRF-ridge performs best.
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Fig. 4. Visualization of decision boundaries using the mixtures of Gaussians example
from [16]. Colors indicate class assignments of the bivariate grid points when training
the classifier using the indicated samples (circles). The solid black line represents the
decision boundary learned. The dashed black line is Bayes optimal border between the
distributions generating the training samples. Shown are single univariate classification
tree (CART) and RF, and a single oblique tree and oRF. Differences can be observed
in the topology of the decision boundary, and the way decision boundaries are extrap-
olated in regions with few observations. Note that CART has been optimized using
cross-validation, while the others are applied out of the box.

the oRF may be advantageous over the regular RF and a better choice when an
“out-of-the-box” learning algorithm is required.

4 Advantages of oblique model trees

In another set of experiments we want to shed light on specific advantages of
the oRF classifier and properties of those types of data it performs well with.

Topology of the decision boundary To understand why RF and oRF be-
have differently, we visualize the actual class separation for the “mixture” data
set [16] (Fig. 4). When testing a single pruned orthogonal tree (CART) we obtain
a clear, binary separation of the feature space. However, even when pooling many
trees the boundary imposed by the RF keep their blocked, or ’stair-like’ topol-
ogy. They extrapolate the decision boundary in space with few samples through
axis-parallel, orthogonal splits. In addition to the blocked decision boundary,
this somewhat arbitrary extrapolation may not be a natural choice in high di-
mensional tasks with few samples and correlated feature, e.g., on spectral data.
The oRF adapts here closely to the training data (dots) and to the true bound-
ary of the underlying distribution (dashed lines). In this the separation of the
feature space imposed by the oRF is more similar to the SVM (not shown here)
than to the RF, both favoring smooth decision boundaries. While for the RBF-
kernel SVM the smoothness of this boundary is a parameter to be optimized
during training, the random forest framework does not require to adjust any
such parameter.

Advantage over univariate and random multivariate splits One may
argue that RF suffers from significant bias imposed through the topological
constraints of the decision boundaries of its base learners. We calculate bias and
variance for results from Table 1 using ensemble votes as for regression tasks [16].
Fig. 5 (left) reports differences in bias and variance for RF and oRF, pooled over
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the different data types. The advantage of RF on factorial data is due to a lower
bias. The higher accuracy of oRF on spectral and numerical data correlates with
a lower bias, too. Variance is slightly lower for oRF. A similar analysis can be
done to compare the oRF with learned node model — proposed in this study —
with the original oRF with random split (Fig. 5, right). Results show that the
latter (oRF-rnd) suffers from high bias when compared to the first (oRF-ridge).
This suggest that the higher variability of the oRF-rnd, and the resulting lower
variability of the ensemble, does not trade off the disadvantage (or bias) of using
random split directions.

Advantage on spectral data Oblique random forests perform well on spectral
data which shows a strong correlation among the features (Fig. 1). To study this
in a controlled fashion, we systematically increase correlation between features
for selected data sets (Fig. 6) by adding a random scalar to the features of every
single observation, drawn from a normal distribution. We then increase the size of
this random offset stepwise by a multiplicative factor (1010:1:+15}) " As visualized
in Fig. 6, this stretches the samples successively along the intersecting line of the
feature space. Both oRF and RF are tested on any of the 3*16 resulting data
sets. Similar to our general evaluation, we calculate the AUC ROC.

We observe that the performance of the orthogonal random forest decrease
at a certain point (Fig. 6, right), finally resulting in complete misclassification.
On the threenorm data (Figure 6, left), the RF drops from more than 85%
classification accuracy rapidly to a close to random prediction. At the same
time the performance of the oRF remains practically unchanged. These results
suggest, somewhat similar to our reasoning at the beginning, that in classification
tasks with collinear samples the marginal distributions of the input variables z;
—i.e., the projections of the data into the subspaces evaluated by the orthogonal
random forest in search for an optimal split — may lose their power to separate
classes (compare the two marginal distributions in Fig. 1, for example).

5 Feature importance and sample proximity

The random forest framework provides additional tools which help to illustrate
decision processes within the random forest ensemble, but which also have a
value for exploratory data analysis on their own. This are importance scores
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Fig. 6. Correlation between features (left) and performance on artificially correlated
data (right). Shown is the 'natural’ correlation between features in the yeast 2 data
set and samples of the threenorm data set with artificially induced correlation (left,
corresponding to ’step 3’ in the right figures). While the performance of the oRF
remains nearly unchanged even on highly correlated data (right), RF fails beyond a
certain point.

reporting the relevance of individual features [44] and sample proximity measures
for visualizing similarities between individual samples and for mapping natural
groupings within the data [38]. We propose similar tools for the oRF.

Feature importance Different feature importance measures exist for the ran-
dom forest framework. One score is the “Gini importance” [5]. This measure
is obtained during training by recording the decrease in Gini impurity for ev-
ery variable, whenever a variable is selected in a split. Averaging this quantity,
individually for each variable, and over all splits in a tree and all trees in the
ensemble leads to the Gini importance score. An alternative measure is the “per-
mutation importance”. It is obtained by comparing, for each variable, the regular
predictions of the classifier with those predictions obtained after randomly per-
muting the observations for this specific variable. Empirical studies suggest that
both the feature rankings — the algorithmically motivated Gini importance, and
the statistically defined permutation importance — correlate well in most clas-
sification tasks [1]. It has been observed that correlation between features may
affect both Gini [23] and permutation importance [28]. For the oRF we obtain a
feature relevance measure similar to the Gini importance by calculating analy-
sis of variance (ANOVA) tables at every split in the oblique model tree, and by
recording those variables which contribute significantly to the split (as expressed
by a sufficiently small p-value, here p < .01). For every individual variable we
record how often it was deemed significant in a split. This frequency, calculated
from all splits over a sufficiently large number of trees, is the statistic we propose
to use for visualizing feature importance in oblique random forests (Figure 7).
We refer to it as “oRF importance” in the following.

We can compare “oRF importance” and “Gini importance”. Feature selection
is highly relevant in chemometric calibration and classification tasks. So, we show
an example for the BSFE 1 data set in Figure 7, a data set where large differences
in the performance of RF and oRF can be observed (Table 1). The Gini feature
importance is obtained from an ensemble of 1500 trees, and the oRF feature
importance using an ensemble with 9000 trees. (For computational convenience
we use an oRF with logistic node model.) We chose such high numbers of trees
to guarantee a sufficient sampling of all features with a larger ensemble for the
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Fig. 7. Random forest feature importance — exemplified for a spectral data sets (BSE
1). The left plot shows different feature important measures, along with a representative
spectrum of the data set. For all three tests high values indicate important features.
The right plot compares RF and oRF feature importance scores for different data
sets. The oRF also assigned importance to a number of additional features which are
virtually ignored by the orthogonal RF (green boxes, for BSE 1 data also indicated by
green lines).

oRF, as oblique model trees need fewer splits than orthogonal decision trees. We
also compare both random forest scores with a t-test measuring class separation
individually at every feature — similar to, for example, fMRI experiments, micro-
array, or tests on spectra [15]. We observe that both random forest measures show
additional peaks when compared with the t-test that may be attributed to the
presence of patterns which are of multivariate importance [23]. While both Gini
and oRF importance show a broad correspondence for most spectral regions, a
number of features appear to be relevant to the oRF only (Fig. 7, green boxes and
spectra regions). We find such additional “peaks” for most spectral data sets,
and some of the numerical data sets (ionosphere). It suggests that oblique splits
allow the classifier to consider additional spectral regions during classification
which are “invisible” to the traditional RF and, consequently, not used during
classification.

Sample proximity The random forest framework allows one to measure a dis-
tance or “proximity” between observations, or samples, in a classification task [5].
During training of the classifier the out-of-bag samples are pushed down the tree.
The frequency of how often each pair of samples ends up in the same terminal
node — i.e., in the same partition of the feature space — is recorded. After a large
number of trees has been learned, and every pair has been tested sufficiently
often, these co-occurrence frequencies can be normalized and an affinity matrix
is obtained [5,38]. Similar to [5] the affinity matrix can be transformed to a
distance matrix counting how often a pair of sample has not been in the same
node, and the scores from projecting samples to the principal components of
this distance matrix can be visualized. It may help to uncover natural groupings



13

BSE 1 yeast 3

I
4
I

Compl Comp3 Comps Compl Comp3 Comp5

00 05 10 15 20

monks3 ionosphere

RF affinity
ORF affinity

o
ﬁII N
o I'll o “‘Ii

Comp.l Comp3 Comps Comp.l Comp3 Comps

Fig. 8. Visualization of the random forest sample proximity. Shown are sample pro-
jected to the principal eigen-spaces of the proximity matrix of RF (left, lower triangle)
and oRF (left, upper triangle) and the variation explained by RF (right, black) and
oRF (right, red) for further data sets. The oRF is void of structures resulting from the
topology of the base learner (yeast 1). For oRF, inter-sample differences of the dom-
inating first eigen-direction correlate well with learned inter-class difference. Higher
components show random noise and their contribution to inter-sample differences can
be neglected here. The RF affinity matrix reveals complex structures even for higher
components suggesting that rules by the oRF are much simpler than those induced by
the RF. The oRF proximity may be highly preferable for visualizing natural groupings.

in the data and to identify consistently misclassified sample in a very intuitive
fashion [38].

Figure 8 shows a projection of the samples to the principal eigen-spaces of
their distance matrix for both a RF (lower triangle of the pairs plot matrix) and
an oRF (upper triangle). Stark differences are visible: Inter-sample differences
in the oRF proximity correlate well with the first eigen-direction of the distance
matrix, representing the learned inter-class difference (Fig. 8, right). Higher com-
ponents show random noise only and no further grouping can be observed. This
is very different from the RF proximity, which reveals complex structures even
for higher components. This may indicate that orthogonal trees separate feature
space by splits which are not required by the learning task, but are imposed by
the topology of the base learner.

The observation from the yeast 2 data set — that oRF show complex inter-
sample differences unrelated to the imposed inter-class separation task — holds
true, to a lesser extent, for most data sets in our study. It is even visible from
the variance explained along the eigen-directions of the affinity matrices. We find
for all data sets the variance explained by the first eigen-space of the oRF to
be much larger than the variance explained by the first eigen-space of the RF.
For higher components the opposite is true indicating that some of the inter-
sample differences in the RF are not due to plain inter-class differences imposed
by the learning task, but due to a consistently over-complex segmentation of the
features space by the splits of the orthogonal trees. Again, this implies that rules
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by the oRF are much simpler than those induced by the RF and, supposedly,
void of complex structures imposed superficially by the topology of the base
learner.

6 Conclusion

Random forest with oblique node models have been somewhat neglected since
proposed by Breiman in 2001. When replacing the random node model with
learned model splits we obtain a classifier that can be implemented straightfor-
wardly, and that performs well on a large range of data sets even with default
parameterizations.

— We find random forests with orthogonal splits (RF) to perform well on fac-
torial data. On all other data random forests with oblique node model (oRF)
perform better. Here, a learned node model performs better than a random
split, and a learned node model with adaptive regularization better than
one without. On numerical and spectral data, oRFs outperform a range of
alternative classifiers even with default parametrization. The oRF does ex-
ceptionally well in separating high dimensional distributions even when large
correlations between features are present.

— The oRF can be used to define feature importance and sample proximity
measures. They may be preferable in the analysis of learning tasks where
oRF performs exceptionally well and shows less topological bias than RF.
These are learning tasks with few samples, many irrelevant features and
correlated predictors arising, for example, in biomedical diagnostics [19, 39,
29, 14,25, 23|

— The inspection of the feature importance measure suggests that the oRF
is able to consider information from variables which are “invisible” to uni-
variate split models (Fig. 1) and void of structures reflecting constraints
resulting from the geometry of the base learner. The ability to use these
additional variables and considering their contribution to the classification
problem illustrates why the oRF perform better than the “traditional” RF
on numerical and spectral data.

These results may lead to further work. Oblique decision trees show similarities
with deep learning architectures [36], and “reusing” scores from earlier splits for
decisions in later nodes would even enhance this similarity. Reusing classification
results and probabilities from earlier trees would be very similar to the “auto-
context” idea from [42]. One may assume that mixing orthogonal and oblique
splits within a tree would help to combine desired properties of both approaches.
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