
Multivariate Watershed Segmentation of

Compositional Data
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Abstract. Watershed segmentation of spectral images is typically achie-
ved by first transforming the high-dimensional input data into a scalar
boundary indicator map which is used to derive the watersheds. We pro-
pose to combine a Random Forest classifier with the watershed transform
and introduce three novel methods to obtain scalar boundary indicator
maps from class probability maps. We further introduce the multivariate
watershed as a generalization of the classic watershed approach.

1 Introduction

The watershed transform [1] is a region-based segmentation algorithm for gray-
scale images and is a popular method in image segmentation [2]. Figuratively
speaking, the gray-valued boundary indicator image is considered as a height
map which is flooded with water. Whenever two water basins that originate
from different local minima meet, a watershed is constructed. Various definitions
for the continuous and discrete case have been given, most of which operate
on scalar-valued input. Typically the gradient is used as a boundary indicator,
featuring high values at border locations and low values in homogeneous areas.

High-dimensional data is typically transformed into a scalar boundary map,
such that the conventional watershed can be applied. A direct generalization
for color images is the color gradient. Alternatively, the watershed transform is
individually performed on each color band and the obtained segmentation results
are integrated into a single segmentation map [3]. Some authors have suggested
to use color models that feature an intensity channel [4, 3]. However, most of
these approaches are based on the assumption that color channels are highly
correlated. This is typically not the case for more complex data, e.g. in remote
sensing [5], the analysis of medical data [6] and data acquired in imaging mass
spectrometry experiments [7]. In fluorescence microscopy, experimentalists often
deliberately select dyes that highlight different, uncorrelated structures [8].

To analyze such kind of data, authors have used (weighted) channel-wise
gradients [9–11] or the metric-based gradient [11]. Noyel [11] proposed the sum
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or supremum of channel-wise morphological gradients that are computed as dif-
ference between channel dilation and erosion. Malpica [12] and Karvelis [13]
construct the Jacobian matrix J of partial derivatives (in direction of the two
spatial axes) in each pixel and calculate the Eigenvalues of J ′J . The difference
between the two Eigenvalues is used as a boundary indicator. Zhang [14] uses the
spectral angle between a pixel’s underlying spectrum and a reference spectrum
to obtain a scalar boundary indicator. Angulo proposed a stochastic watershed
algorithm [15] which was later extended to multispectral images [16]. Soille [17]
combines a histogram-based clustering with shape priors and pixel-wise gradi-
ents which are used as input for the classic watershed transform. Authors have
also suggested dimensionality reduction [11, 16, 6] to reduce the effect of noise.

In many segmentation scenarios, more than two classes are of interest (e.g.
background, healthy cells, diseased cells, ...). Often, prior knowledge on the com-
position of the data exists which can be used to assign class probabilities to pix-
els. This way, the dimensionality of the data is significantly reduced. Such data,
where the probability vector in each pixel sums to one, is termed compositional

[18]. In this paper, we propose three novel methods to obtain a scalar boundary
indicator based on such compositional data, and we introduce the multivariate
watershed which is a multi-class generalization of the classic watershed trans-
form. We quantitatively compare the presented methods to three algorithms
that previously showed good performance [11, 12]: Noyel’s [11] sum/supremum
of channel-wise morphological gradients and Malpica’s [12] tensor approach.

2 Watershed segmentation of compositional data

The discrete and sequential watershed methods on scalar-valued input can be
grouped into watershed by immersion [19] and watershed by topographic dis-
tance [20]. In this paper we argue in terms of the latter, however our results also
carry over to the former setting. Watershed by topographic distance is based on
gradient descent. An efficient algorithm proceeds as follows: For each pixel we
store a reference to the neighboring pixel with the maximum slope

LS(u) = max
v∈neighbors(u)∪{u}

fu − fv

d(u, v)
(1)

where fu is the gray value at pixel u and d(u, v) is the distance between pixels u
and v. Minima pixels point towards themselves and a distinct label is assigned
to each local minimum. Starting from the minima, the constructed paths are
traversed in reverse order and all pixels are labeled with the corresponding label.
In this implementation, the resulting watersheds lie between pixels (inter-pixel
boundaries) and the algorithm has linear complexity in the number of pixels.

In the following, we work with spectral data in two spatial dimensions.
Note, however, that the methods presented below are also applicable to other
high-dimensional data. Let S = {(x1, y1), ..., (xK , yK)} be a set of available
M -dimensional training samples, i.e. K spectra xi with M channels and cor-
responding class labels yi ∈ L1, ..., LD, e.g. “cancerous”, “healthy tissue” and



Fig. 1. An excerpt of a typical mass spectrum (a) and 2 channels of the IMS dataset
(b,c). Only parts of the images are correlated. A boundary map is obtained with the sum
of channel-wise morphological gradients on the raw data (d) or the first few principal
components (e), revealing only few boundaries of the manual segmentation (f).

“blood vessels” in medical applications or “faulty” or “intact” in quality con-
trol. The Random Forest classifier [21] is a state-of-the-art supervised learning
method that features high classification performance [22], allows fast training,
can cope with a large number of input variables and is relatively robust to its
hyperparameters. We train a Random Forest on S and classify the whole data
set comprising N data points to obtain the posterior probability for each of the
D classes in each pixel. The resulting data set has D dimensions in each pixel
and is compositional since each probability vector sums to one.

We use data from an imaging mass spectrometry [7] (IMS) experiment of
human breast cancer grown in mice [23] to illustrate the performance of the
different methods. IMS allows the detailed analysis of spatial distributions of
molecules in organic samples. In each pixel a mass spectrum was acquired that
comprises several thousand mostly uncorrelated channels (see fig. 1a for an ex-
ample). Chemical staining of an adjacent slice was used to identify 5 different
tissue classes, to label parts of the data and obtain an approximate manual seg-
mentation. Random Forest classification hence yields a compositional data set
with 5 dimensions in each pixel.

Noyel’s sum of morphological gradients [11] was used to calculate boundary
indicator maps directly from the raw input and the first principal components
of the raw input (fig. 1d+e) as well as from the probability maps (fig. 2). Visual
inspection suggests that the latter contains more information. Therefore, we used
probability maps as input for all following boundary map computations.

3 Multivariate gradients

We next present three novel methods that create scalar boundary maps from
such compositional input data as well as the multivariate watershed which is a
generalization of the classic watershed definition.



Fig. 2. The probability map-based boundary indicators obtained with Noyel’s
sum/supremum of channel-wise morphological gradients, Malpica’s tensor and the
methods introduced here. The result of an approximate manual labeling is also shown.

Gini impurity. The underlying idea for the Gini impurity watershed is that
the class impurity in the classification results can be used to identify borders
between different regions. Gini impurity [21] essentially is a measure of vector
sparseness. For probability distribution fu at pixel location u it is defined by

GI(fu) = 1 −

D
∑

j=1

fu(j)2 (2)

where fu(j) is the j-th value in fu. The minimum degree of impurity is obtained if
one of the fu(j) equals one. We calculate the Gini impurity index for each pixel
and perform the conventional watershed segmentation on the obtained scalar
boundary map. Slight smoothing of the probability maps with a channel-wise
Gaussian filter (zero mean, unit variance) prior to calculation of the impurity
indices preserves the sum-constraint and ensures that the border between two
adjacent points with (different) pure components has indeed higher impurity.

Dirichlet boundary indicator. The observed probability vectors at pixel
u and its neighbors O(u) can be interpreted as realizations of a (single) Dirichlet
distribution [24] (which can be seen as the multivariate generalization of the
beta distribution). Its D-dimensional realizations sum to one as do the class
probabilities for each pixel. The Dirichlet distribution is parameterized by a
vector α = (α1, ..., αD) where αj , j = 1, ..., D is positive, i.e. f ∼ Dir with

f(x1, ..., xD|α1, ..., αD) =
Γ
(

∑D
j=1 αj

)

∏D
j=1 Γ (αj)

D
∏

j=1

x
αj−1
j (3)

for all xj > 0 with
∑D

j xj = 1 and Γ is the Gamma function. For given obser-
vations O(u) its optimal parameters α̂(u) can be estimated by maximizing the



log-likelihood of the data [24]. This maximum likelihood estimation is performed
in a neighborhood of each pixel. The shape of the distribution is determined by
the parameters α̂j . At pixel locations within homogeneous regions of the spec-
tral image their sum is high and we obtain highly peaked distributions with low
variances. In contrast, in the vicinity of borders the sum of the α̂j is low and the
distributions are broad. Thus, we propose to use the inverted precision – defined
as 1 divided by the sum of all α̂j(u) – as boundary indicator at pixel location u.
The resulting boundary indicator map is used as input for the classic watershed.

Kernel density estimate. In this method, in each pixel a kernel density
estimation [25] is performed. Here we use Gaussian kernels k, but other choices
are also possible. The density KDE at a pixel u is calculated from

KDE(u) =
c

Nσ2
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D
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N
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where ui is the i-th pixel in the data set, gu is the two-dimensional vector of
spatial components corresponding to pixel u, and c is a normalization constant.
Contributions are weighted by the distance in space (term with kspat) as well
as by distance in composition (term with kprob). σspat and σprob are the corre-
sponding (Gaussian) kernel bandwidths. The inverse density is used as boundary
indicator map for the classic watershed. The density estimation formula in eq. 4
is well known from the literature. It constitutes a link of the watershed algorithm
with the mean shift procedure [26] and bilateral filtering [27].

Multivariate watershed. In the classic watershed algorithm, only one type
of basin is known. For compositional data, we generalize this by defining one
basin type per class, i.e. basin types B1, ..., BD. Each pixel is assigned to the
class whose posterior probability dominates. In absence of prior knowledge, dom-
inance is established by a simple “winner takes all” rule (corresponding to a fair
arbitrator); but certain classes can be favored if desired by introducing bias
(corresponding to a bribed arbitrator). We first consider the two-class case (cf.
fig. 3): For pixel u the probabilities for classes 1 and 2 are equal to fu(1) and
fu(2) = 1 − fu(1). Maximum likelihood estimation (MLE) for the assignment
of pixels to basin types corresponds to introducing a threshold T = 0.5 where
u is assigned to basin type 1, i.e. wT (u) = B1, if fu(1) ≤ T , and to B2 other-
wise. By moving T , different risks can be assigned to the two classes. The basin
assignment is then obtained in a risk-weighted maximum a-posteriori decision.

When compositional data of higher dimension is analyzed, the points live
on a simplex. In the 3D case, the MLE corresponds to using the threshold
T = [1/3; 1/3; 1/3] and the perpendiculars to the lines connecting the corners
of the simplex to assign points (see fig. 7). Moving T on the simplex again
controls the emphasis of the different classes. If the threshold point is close to
one corner of the simplex, the corresponding class will be less influential in the
segmentation. In the D-dimensional case, T has D components and the set of
pixels that are assigned to basin Bk is given by Zk := {u | wT (u) = Bk}, i.e.

Zk =

{

u

∣

∣

∣

∣

1 −
fu(k)

fu(k) + fu(j)
< 1 −

T (k)

T (k) + T (j)
∀j ∈ {1, ..., D} \ {k}

}

. (5)



Fig. 3. Visualization of the multivariate watershed for D = 2. The classic approach
(top left) only has one basin type. Figuratively, rain falls from above and fills the
basins. Whenever two basins meet, a watershed is constructed (vertical lines). In the
multivariate case (bottom left), a threshold is introduced that controls the assignment
of each point to one of the two basin types. Figuratively, the rain now falls from a
higher dimension onto a surface that has been folded at the threshold value (right). New
watersheds emerge for the parts above the threshold and between basins of different
type. Classic watershed emerges as a special case in which the threshold has been set
to the maximum intensity.

For each of the D sets of points, the Euclidean distance between each point
in the set and the respective basin (i.e. corner of the simplex) is calculated.
On the resulting scalar map, a watershed-like segmentation is performed. It
differs from the conventional watershed transform in the following way. The
basin assignments define areas of influence for each basin type. Water is never
allowed to cross borders between different influence zones. This can be included
in the conventional watershed algorithm by changing its distance function d(u, v)
such that points that have been assigned to different basin types have infinite
distance: d(u, v) = ∞ ∀v ∈ neighbors(u) : wT (v) 6= wT (u). The threshold T is a
parameter which can be set by the user. Its default value is [1/D; ...; 1/D] ∈ R

D.

4 Data and Experiments

We used the topographic distance version of the watershed algorithm and a
neighborhood system with 8-connectivity. For the real data studied at the end
of this section, no exact ground truth is available; for a quantitative evaluation,
we hence resort to simulated data which is described next.

Simulation. First, three spectra from a real imaging mass spectrometry
measurement were taken and defined as “pure” spectra (see fig. 1a for an ex-
ample). Then, different mixture maps were generated that contain pure areas as
well as impure ones (fig. 4). The “observed” data was created by mixing the pure
spectra according to the mixture maps. IMS measurements typically consist of



Fig. 4. The ground truth mixture maps for the simulated experiments. In all experi-
ments we used three ground truth spectra and mixed them according to the mixture
maps shown above. White areas correspond to a pure concentration, black indicates
that this class is absent at the respective location. The correct boundaries - if unam-
biguous - are also given.

ion counts. A Poisson noise model was used to simulate instabilities in the data
acquisition process. Samples from the noisy data were used to train a Random
Forest classifier with 250 trees and 100 samples per class that were selected as
described below. After training, the whole dataset was classified and a set of
probability maps was obtained. A total of three experiments was performed: In
the first experiment, the mixture map also contained impure regions, but training
was performed with samples from pure regions only (3 classes). For experiment
2 the same setting as in experiment 1 was used, but each mixture area was con-
sidered an individual class and the classifier was trained with samples from each
of them (6 classes). Finally, the last experiment demonstrates the influence of
the threshold of the multivariate watershed on the obtained segmentation.

Real data. We also applied the methods to the imaging mass spectrometry
data set described at the end of section 2. This spectral image comprises a total
of 4000 mass over charge channels, two of which are shown in fig. 1.

Postprocessing. The segmentation maps obtained with the different water-
shed methods typically contain oversegmentation. We use watershed dynamics
[28, 29] to amend this problem. For each edge a dynamics value is calculated and
edges that correspond to a dynamics value below a given threshold are removed,
i.e. the respective basins are merged.

Evaluation criteria. The true edges as well as the watersheds obtained with
the topographic distance watershed algorithm lie between pixels of the grid. We
use inter-pixel edges represented on a half-integer grid to quantitatively compare
the estimated edge map Eest with the ground truth edge map Egt with the
Baddeley distance [30] which is calculated for all pixels u:

distBad(Egt, Eest) =

[

1

N

∑

u

(DT (u, Egt) − DT (u, Eest))
q

]1/q

. (6)



DT (u, E) is the closest distance between pixel u and any of the edges in the edge
map E [31]. In our study, q was set to 2 and we only considered distances up
to 5 pixels, i.e. pixels that were more than 5 pixels away from any edge in both
of the edge maps were ignored. The Baddeley distance penalizes both over- and
undersegmentation. Since the optimal dynamics threshold value is different for
the various watershed algorithms under consideration, for each method the best
dynamics threshold with respect to the Baddeley distance was chosen.

Besides using the Baddeley distance, we quantify the segmentation quality by
means of sensitivity and specificity. The former measures which percentage of the
true edges are identified by a method, the latter how many background points
are wrongly classified as edges. Since the edges in the obtained segmentation
maps Eesti

can be displaced from their positions in the ground truth edge map
Egt by a few pixels, we first match them to the ground truth edges. To this aim,
we employ the stable marriage algorithm [32] that uniquely assigns each pixel in
Eesti

to a close pixel in Egt as long as the maximum distance is below a given
threshold (here 2 pixels). Edge pixels in Egt without a “partner” in Eesti

are
considered false negatives (FN, indicating undersegmentation), edge pixels in
Eesti

without a partner in Egt are false positives (FP, oversegmentation), pairs
are considered true positives (TP) and the rest are true negatives (TN). We then
calculate sensitivity = TP

TP+FN and specificity = TN
FP+TN . An estimate for the

test error is obtained by testing the watershed methods on a independent test
image set where we keep the parameter settings. Training and test set differ in
geometry and class mixtures (cf. fig. 4).

In case of the kernel density estimation watershed, σspat and σprob have to be
specified. We calculated the segmentations for a variety of different parameter
settings out of a given range and the best settings in the training set were used in
the comparison. In experiment 1, the best choice was σspat = 2.0 and σprob = 1.0,
in experiment 2 σspat = σprob = 1.0. Similarly, different structuring elements can
be used for the calculation of the morphological gradient. We experimented with
discs of varying sizes and found a radius of 1 to be most adequate.

5 Discussion

We now discuss the outcome of the three experiments described in section 4.
Experiment 1. Regarding the training set, the results of Malpica’s tensor

and especially the Dirichlet approach are very close to the ground truth (cf. fig.
5 and tab. 1). The Dirichlet boundary indicator reliably finds edges between dif-
ferent pure mixtures and impure mixtures and results in straight boundary lines
(cf. fig. 6a). The optimal dynamics threshold for the kernel density-based method
leads to some oversegmentation in the lower right part of the image, but the re-
maining part of the image is well segmented. The Gini impurity watershed and
the multivariate watershed accurately identify boundaries between pure mixture
areas, but have some problems with boundaries separating impure regions (cf.
fig. 6b). This task is indeed difficult for all methods since the classifier output
shows a relatively low gradient in these areas. The Gini impurity watershed itself



Fig. 5. Experiment 1: Segmentation results on training (left) and test set (right) after
training of the classifier with samples from pure mixture regions only.

Fig. 6. Experiment 1: Zoomed-in areas of the segmentation results. See text for details.

cannot detect edges between pure and highly impure regions since highly impure
mixtures have a high Gini boundary indicator and are therefore interpreted as
boundaries instead of regions. However, in the postprocessing step, some of these
boundaries are removed by merging basins and the real edges can be recovered.

In the multivariate watershed the two regions in the lower left of fig. 6c are
both assigned to the same basin type (class) and thus, the boundary pixels are
reduced to jumps in the distance function used to construct the boundary indi-
cator maps. The oversegmentation of the 50% to 50% mixture area results from
the fact that depending on the Poisson noise, the pixels in this area are ran-
domly assigned to classes 1 and 2. Here, some smoothing prior to the watershed
segmentation could improve results. In contrast to all other methods including
the summation of morphological gradients, the multivariate watershed is able to
reconstruct the contours in areas of narrow bends (cf. fig. 6d+e).

On the test set, the morphological gradients, the Dirichlet boundary indicator
and the Gini impurity perform best. The latter leads to the best distance value,
partly because it is least oversegmented. However, some of the boundaries are
less precise, but displaced by a few pixels.

Experiment 2. One can argue that the 3 mixture areas (with 25%, 50%
and 75% contributions) show clear spatial extent and, thus, constitute classes in
their own right. To account for this effect, the classifier was trained with samples
from 6 classes. Table 1 shows that in this scenario both the Gini impurity and
the multivariate watershed achieve very good results. For example, the edges
between pure and impure areas are now much better identified by the Gini
impurity watershed (cf. fig. 6f). The multivariate watershed even results in a



Fig. 7. Experiment 3: The influence of the threshold selection on the segmentation
result of the multivariate watershed. Changing the threshold T1 = [1/3; 1/3; 1/3] to
T2 = [1/7; 3/7; 3/7] in the simplex (left) leads to an accentuation of class 1 (red). The
boundaries between classes 2 and 3 remain unchanged.

Experiment 1 Experiment 2
method threshold distance sensitivity specificity distance sensitivity specificity

morph./sum 0.0502 2.4958 0.9396 0.9864 0.2193 0.9408 0.9995

morph./supr. 0.0752 2.4835 0.9423 0.9855 0.3150 0.9253 0.9997

tensor 0.0019 3.1687 0.9710 0.9702 0.2000 0.9648 0.9996

Gini impurity 0.0576 2.3467 0.8734 0.9906 0.3755 0.9199 0.9999

Dirichlet 0.0033 2.5908 0.9311 0.9882 0.2955 0.9210 0.9999

kernel dens.e. 0.0013 3.2484 0.9206 0.9757 0.4054 0.9001 0.9998

multivariate 0.0118 4.7705 0.9965 0.8917 0.0 1.0 1.0

Table 1. The results obtained on the test set show that there is no clear winner.
However, the methods introduced here compete well with existing ones.

perfect reconstruction of all boundaries and thus in the best sensitivity and
specificity values. The kernel density and Dirichlet boundary indicators again
compete well with the existing methods.

Experiment 3. Fig. 7 shows the effect that the threshold of the multivariate
watershed has on the segmentation result. The threshold was varied so that the
proportions of classes 2 and 3 did not change, but the first class was emphasized
with respect to the other classes. It can be seen from the two segmentation results
that the border between classes 2 and 3 remains unchanged whereas the border
between classes 1 and 3 is shifted in favor of class 1. By setting the threshold
the user can control the class weights. Thus, the multivariate watershed provides
the user with more control over the segmentation result than other methods like
the watershed based on morphological gradients.

Real data. Fig. 8 shows the results of the different methods after post-
processing with watershed dynamics. The optimal parameters have been tuned
manually. Judging from the approximate manual segmentation, all approaches
lead to reasonable results. However, some oversegmentation remains that cannot
be removed with the concept of dynamics.



Fig. 8. Segmentation results on the real data (manually selected parameters).

6 Conclusion

We have introduced four watershed-based methods for segmenting multivari-
ate compositional data: the Gini impurity watershed, the Dirichlet boundary
indicator watershed, the kernel density estimate based watershed and the multi-
variate watershed. The former three approaches use novel techniques to obtain
a scalar boundary indicator map which is used as input for the classic water-
shed transform. The latter one generalizes the classic definition of the watershed
to multispectral compositional data. In our experiments on simulated data, no
overall best performing method could be identified. However, the methods in-
troduced in this paper have been shown to compete well with existing methods
and are superior in some scenarios.
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