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Abstract. This paper offers a formal investigation of the measurementprinciple of time-of-flight

(TOF) 3D cameras using correlation of amplitude-modulatedcontinuous-wave signals. These sen-

sors can provide both depth maps and IR intensity pictures simultaneously and in real-time. We

examine the theory of the data acquisition in detail. The variance of the range measurements is de-

rived in a concise way and we show that the computed range follows an Offset Normal distribution.

The impact of quantization of that distribution is discussed. All theoretically investigated errors

like the behavior of the variance, depth bias, saturation and quantization effects are supported by

experimental results.
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1 Introduction

Laser scanners are an established and robust technology forthe observation of 3D scenes (e.g.

[1]). However, they rely on moving parts and can acquire a depth map only consecutively by scan-

ning over the rows. In contrast, time-of-flight (TOF) 3D cameras using correlation of amplitude-

modulated active continuous-wave illumination can acquire entire depth maps and intensity images

at once. An elaborate CMOS technology [2, 3] detects and processes the signals on-chip in real-time

for all pixels simultaneously. These inexpensive sensors are now becoming a promising candidate

for a wide range of applications, from industrial production surveillance to obstacle detection in

the automotive sector. However, since the technique is fairly new, many available cameras still

have prototype character and some aspects of the underlyingtheory are not yet completely under-

stood. This paper seeks to clarify by offering a theoretically sound and compact formulation of

the signal genesis and of the algorithms that estimate range, amplitude and intensity. We show that

the estimated range follows an Offset Normal distribution;and we study the impact of the signal’s

modulation amplitude and the on-chip quantization on the computed range, both theoretically and

experimentally.

The remainder of the paper is organized as follows: Section 2references past work. In section 3,

the mathematical properties of the range acquisition are discussed in detail. Section 4 focuses on

error propagation and systematic errors. In this context, the quantization error and its impact on the

probability distribution of the range is investigated. Finally, section 5 presents measurements that

allow to observe all the effects discussed.

2 Related work

TOF systems using the correlation of amplitude-modulated continuous light to record 3D scenes

have been known at least since 1976 [4]. In [4], the dependency of the range error on the signal

amplitude was derived using Gaussian error propagation. Following this relation, it was proposed

to adapt the number of samples that are used to estimate the phase as a function of the modulation

amplitude.

In [5], a system using multiple diodes was introduced that obviated scanning and avoided mov-

ing mechanical parts. A range sensor that modulates the signal frequency was presented in [6]. A

very good overview of different active range finding concepts including amplitude-modulated con-

tinuous wave sensors existing at that time was given in [7]. An overview of possible algorithms for

phase computation from interferograms was presented in [8]in the context of phase measurement

interferometry.

The first sensors using pixelwise on-chip correlation were presented in 1995 in [2, 3]. A good

introduction to the working principle of a CMOS chip using amplitude-modulated continuous-wave

correlation is given in [9, 10], a short overview can be foundin [11]. In [12], measurements were

performed to investigate the error as a function of the signal modulation amplitude. In [13, 14, 16],
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Gaussian error propagation was used to derive that dependency. A practical implementation of a

chip-based range finder is presented in [17]. A broad overview on laser radars that additionally to

amplitude-correlated time-of-flight sensors covers sensors for pulsed, chirped and coherent signals

is given in [18]. In [19], applications for Optical CoherenceTomography are shown that use the

same phase estimation principle on another CMOS chip. The influence of non-orthogonal reflecting

surfaces is discussed in [20]. A calibration technique for TOF cameras is proposed in [21]. Finally,

the experimental setup from section 5 was first described in [22].

3 Computation of Range, Amplitude and Intensity

The basic principle of a time-of-flight camera is to send out asignal and to measure the time

required until its reflection can be detected by the camera. In contrast to systems with pulsed signals

(e. g. [23]) the described method makes use of modulated continuous light in order to determine

that time. The modulated light (optical signal) emitted by infrared diodes is reflected from a surface

in the scene and returns after the time-of-flighttd. The TOF is proportional to the distanced = c
2
td

of the object surface from the camera, and to the phase delay

φd =
4πf

c
d (1)

of the optical signal which is correlated (mixed) with thereference signalof the same modulation

frequencyf . This method resembles the concept of Phase Shifting Interferometry (PSI), where a

coherent light beam interferes with a reference beam at several phase shifts in order to retrieve the

phase: For each phase shift a different interferogram is obtained and from these so-calledbuckets

the phase can be computed in several ways [8]. For 3D TOF cameras the concept is slightly dif-

ferent: The reference signal is electronic and has radio frequency. The signal drives the emitting

diodes such that the amplitude of the optical signal is modulated with the same frequency. Opposed

to methods based on optical interference, the emitted lightdoes not have to be coherent which

avoids errors such as speckle noise [24] and allows for a cheap fabrication of such ranging systems.

On the camera chip the backscattered optical signal is converted to an electronic signal and immedi-

ately correlated with the original reference signal at several phase shiftsαn = 2πn
N

, n = 0 . . . N −1.

Each pixel acquires allN correlated signals for the computation of its range value. Without suitable

unwrapping of the phase delay, the range can be measured unambiguously only up to the distance

corresponding to an angle ofφd,max = 2π, i.e.dmax = c
4πf

φd,max = c
2f

= 7.5 m.

The following calculations in this section derive the expressions for the correlated signal – the

raw intensitiesor raw signal– assuming an arbitrary number of phase shifts and a general shape

of the reference signal. In turn, formulas for retrieving the phase, amplitude and intensity of the

signal are derived assuming harmonic and anharmonic signals. For the measured raw intensitiesIn,
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n = 1 . . . N − 1, the following (correlation) formula holds:

In =
1

t′1 − t′0

t′
1∫

t′
0

R

(

t − αn

2πf

)

S (t + td) dt

=
1

t1 − t0

t1∫

t0

R (t) S

(

t +
αn

2πf
+ td

)

dt (2)

whereT = t′1 − t′0 = t1 − t0 represents the integration time, S is the optical signal andR the

reference signal.

Since both the optical signalS and the reference signalR are modulated with the same frequency

f = ω
2π

, it is natural to expand both of them into a Fourier series:

R(t) =
∞∑

j=−∞

Rje
ijωt, S(t) =

∞∑

k=−∞

Ske
ikωt. (3)

Plugging both series into the correlation formula leads to

In =
1

t1 − t0

t1∫

t0

∞∑

j=−∞

∞∑

k=−∞

RjSke
ijωteikω(t+αn

ω
+td) dt

=
∞∑

j=−∞

∞∑

k=−∞

RjSke
ik(αn+ωtd) 1

t1 − t0

t1∫

t0

eijωteikωt dt

︸ ︷︷ ︸

=:η

. (4)

If j = −k the termη computes tot1 − t0. If j 6= −k, we have

η =
−i

(t1 − t0)(j + k)ω

(
ei(j+k)ωt1 − ei(j+k)ωt0

)
. (5)

The maximal magnitude that this expression can take is 2
(t1−t0)(j+k)ω

. Since typical integration times

t1−t0 ≈ 5 ms are much larger than the modulation period2π
ω

= 50 ns, the summands withj 6= −k

are negligible. This can be interpreted as follows: the actual integration interval has no influence to

the final intensity if the time is chosen to be long compared tothe modulation frequency – even if

the integration is not performed over whole periods. Thus, one finally arrives at

In ≈
∞∑

k=−∞

R−kSke
ik(αn+φd). (6)

4



3.1 Amplitude, Phase and Offset of Harmonically Modulated Optical Signals

Assuming the optical signal and the reference signal to be harmonically modulated,

S(t) = c′ + A′ cos(ωt + θ′)

=
A′

2
e−iθ′e−iωt + c′ +

A′

2
eiθ′eiωt, (7)

the raw intensities are of the same form:

In = c +
A

2

(
e2πi n

N ei(φd+θ) + e−2πi n
N e−i(φd+θ)

)

= c + Acos(αn + φd + θ), (8)

wherec = R0c
′, A = |R1|A′ andθ = θ′ − arg(R1).

To recover theoffsetc (intensity), thephase delayφd (range information)1 and theamplitudeA

(modulation amplitude) the following formulas can be used:

A =
2

N

∣
∣
∣
∣
∣

N−1∑

n=0

Ine
−2πi n

N

∣
∣
∣
∣
∣

φd + θ = arg

(
N−1∑

n=0

Ine
−2πi n

N

)

c =
1

N

N−1∑

n=0

In (9)

This solution is optimal in the least-squares sense, since writing the expressions for the raw inten-

sities in matrix notation yields






I0

...

IN−1




 =









1 1 1

w w̄ 1
...

...
...

wN−1 w̄N−1 1














A
2
z

A
2
z̄

c




 (10)

with z = ei(φd+θ) andw = e
2πi
N .

Using the fact that thewn’s are theN th roots of unity,2 it is easy to see that the coefficient ma-

trix B that they constitute satisfiesB∗B = diag(N,N,N).

1Up to some constant phase offsetθ that can easily be eliminated by camera calibration. This offset is due to the

time that the internal signal needs to propagate.

2In particular,
N−1∑

n=0

wkn = 0 for any integerk
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Thus, the Moore-Penrose inverse [15] ofB is (B∗B)−1B∗ = 1
N

B∗, and the least-squares solution

(Az,Az̄, c)T = 1
N

B∗I together withφd + θ = arg(Az) andA = |Az| yields the result above. Note

that this is a meaningful result only forN ≥ 3 – otherwise the number of equations does not suffice

to determine a unique least squares solution.

3.2 Anharmonic Modulated Signals

For nonharmonically modulated optical signals, the solution above is no longer valid. In [16] a

formula for calculating the phase delay information from nonharmonic signals is derived with the

help of an analytic regression argument. This formula is very similar to the expression for har-

monic signals but involves the higher harmonics of the mixedsignal. Here, we derive these results

algebraically: Assume

In = c +
l∑

k=1

Akcos(kαn + kφd + θk)

= c +
l∑

k=1

Ak

2

(
eikαneikφd+iθk + e−ikαne−ikφd−iθk

)
(11)

with some maximal bandwidthl. This leads to the system of linear equations (the coefficient matrix

is of dimensions(N × (2l + 1)) )






I0

...

IN−1




=









1 1 · · · 1 1 1

w w̄ · · · wl w̄l 1
...

... · · · ...
...

...

wN−1 w̄N−1 · · · wl(N−1) w̄l(N−1) 1






















A1

2
z1

A1

2
z̄1

...
Al

2
zl

Al

2
z̄l

c














(12)

with zk = eikφd+iθk andw = e
2πi
N .

By arguments similar to those above, the least squares solution computes to the one stated in [10]:3

Ak =
2

N

∣
∣
∣
∣
∣

N−1∑

n=0

Ine
−2πik n

N

∣
∣
∣
∣
∣

kφd + θk = arg

(
N−1∑

n=0

Ine
−2πik n

N

)

c =
1

N

N−1∑

n=0

In. (13)

3By means of the formulaarg(x + iy) = arctan
(

y
x

)
– which is only valid for vectors(x, y) with an angle in the

interval[−π
2
, π

2
]
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Again, this solution is only valid forN ≥ 2l + 1; that is, if the signal has sufficiently low band-

width compared to the number of sampling points – which is essentially the sampling theorem. For

nonharmonically modulated signals, we propose to use some prior knowledge about the Fourier

coefficients to obtain an improved estimator for the phase delay. This knowledge can be inferred

from the actual wave forms of the optical signal and the reference signal. In this context, asym-

metric wave forms pose a particular problem since the phase offsetsθk differ. Without knowing

those offsets, the computation of the phase delay is impossible and it is necessary to model the

range-phase relationship on empirical grounds.

4 Error Analysis for Harmonically Modulated Signals

The raw values that are used to computeA andφ are subject to noise. Hence, the modulation am-

plitude and the range information that one gets from the camera are noisy, as well. In the following

section we give an analysis of this resulting variance. There are different ways to derive it. In section

4.1, we perform Gaussian error propagation for the four phase algorithm with four raw channels as

in [16, 25] but with a more compact notation using matrices. In principle, this derivation can also be

performed with eight or more raw channels but becomes tedious then. In 4.2, we employ the prob-

ability distribution of the raw values and derive directly the resulting phase probability distribution

and its spread for the four phase algorithm with four and eight raw channels, respectively. Both

derivations neglect the fact that the raw intensities are quantized after the AD conversion. Finally,

in section 4.3 we discuss the impact of this quantization noise on the range bias and show numer-

ically how it affects the probability distribution of the phase. Usually, quantization is considered

to cause an error with uniformly distributed magnitude which leads to a variance of1
12

in units of

the rounded numbers. However, since in the genesis of the phase data the rounded raw signals are

further processed in a particular way, the impact of quantization can be much higher. Neglecting

saturation effects due to overexposure – which can be considered as a technical deficiency rather

than being caused by the algorithm itself – the noise and the quantization of the raw values are the

factors affecting the quality of the range data the most.

4.1 Gaussian Error Propagation for 4-Phase-Shifting Technique with 4 Raw Channels

Once an algorithm for calculating the values forA, φ andc or other quantities (like amplitudes from

higher Fourier modes for nonharmonically modulated signals) is chosen, those quantities can be re-

garded as functionsf of the random vector of measurementsI = (I0, . . . , IN−1)
T . It is well-known

[26] that the variance matrix of the random vectorf(I) = (A, φ, c)T can be computed approxi-

mately byV ar(f(I)) ≈ Df(µ)V ar(I)Df(µ)T . Herein,Df is the Jacobian (first derivative) off

andµ = 〈I〉 is the mean ofI which in practice is substituted by the measured raw intensities or

some other unbiased estimatorµ̂ based for example on averaging multiple frames.
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Estimating the mean off(I) by setting〈̂f(I)〉 = f(µ̂) is generally biased.4 For each component

fk this bias can be calculated approximately by5 Biasfk
≈ 1

2
Trace(Hessfk

(µ̂)V ar(I)). Herein,

Hessfk
stands for the Hessian (second derivative) of thekth component off .

Writing down the formulas for the offset, amplitude and totalphaseφ = φd + θ for harmonically

modulated signals specifically for the caseN = 4, one has:

A =
1

2
|I0 − I2 + i(I3 − I1)|

φ = arg(I0 − I2 + i(I3 − I1))

c =
1

4
(I0 + I1 + I2 + I3) (14)

Assumingφ to take values in the interval[−π
2
, π

2
], one can writeφ = arctan

(
I3−I1
I0−I2

)

, which is the

usual formula found in the literature. However, such a restriction is not permissible. Therefore, we

use eq. 14 to calculate phase delays in the whole unambiguousrange]−π, π].

Thus, we setf : R4 −→ R+ × S1 × R, f : I 7→ (A, φ, c)T andf = χ2 ◦ χ1 with χ1 being the

linear map

χ1I =






1
2

0 −1
2

0

0 −1
2

0 1
2

1
4

1
4

1
4

1
4




 I (15)

and

χ2(x, y, c) = (Φ−1(x, y), c)T , (16)

whereΦ is the polar coordinates mapΦ(A, φ) = (A cos(φ), A sin(φ)).

The Jacobian off can be calculated via the usual differentiation rulesD(Φ−1)(Φ(A, φ)) = (DΦ(A, φ))−1

andDf(I) = Dχ2(χ1(I)) · Dχ1(I) = Dχ2(χ1I) · χ1I, which finally leads to

Df (j) =
1

2






cos(φ) −sin(φ) −cos(φ) sin(φ)

− 1
A
sin(φ) − 1

A
cos(φ) 1

A
sin(φ) 1

A
cos(φ)

1
2

1
2

1
2

1
2




 (17)

with j being some point in the preimage of(A, φ, c)T which will be omitted from now on. Also,

we will not distinguish estimators / measurements notationally from “real” values anymore.

Now assume the simple case where the measurements of theIn’s are independent and identically

4For example, if one measures the lengthx of one side of a “perfect” square with an errorσ, the bias for computing

the areaA of that square by assumingA = 〈x〉2 is
〈
x2
〉
− 〈x〉2 = V ar(x) = σ2.

5See [26]. Note that therein the factor1

2
is missing.
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distributed. such thatV ar(I) = diag(σ2, . . . , σ2) for some errorσ. In this case, one computes

V ar(A, φ, c) = Df V ar(I) DfT = Df DfT σ2

= diag

(
1

2
,

1

2A2
,
1

4

)

σ2, (18)

or explicitly:

V ar(A) =
σ2

4
, V ar(φ) =

σ2

2A2
, V ar(c) =

σ2

2
. (19)

4.2 The Phase Probability Distribution

The variance of the phase can also be obtained directly by transforming the probability distributions

of the raw values to the distribution of the phase. The resulting spread shows the same behavior

as with the first order approximate error propagation in section 4.1. Here we derive that the phase

φd calculated with the four phase algorithm (eq. 22, eq. 23) follows an Offset Normal distribution.

The derivation shows how its variance relates to given variancesσraw
n of the raw signalsIn for

phase calculations in 4 channel mode and 8 channel mode, respectively. Additionally we take into

account here that each pixel on the chip physically has two different gates A and B where the

reference signal at gate B is shifted byπ with respect to the signal at gate A:An = In; Bn = In+2.

In the derivation above this was neglected by assuming equalvariances of the raw values. Here we

consider that the gates may have different variancesσA andσB.

Assuming a harmonically modulated reference signal, the raw values are

In = cphys + Aphys cos(φd + αn). (20)

They are shifted by the anglesαn = 2πn
N

; n=0, . . . , N−1 [16].

⇒ An − Bn = 2Aphys cos(φd) (21)

Here,Aphys is the amplitude of the physical signal which we will distinguish from the amplitude

A of the computed signal in the later equations. The phase can be computed from the raw signals

with

φd = arg (Re + i · Im) (22)

where

Im =

{

B1 − A1; 4 channels

A3 − B3 + B1 − A1; 8 channels

Re =

{

A0 − B0; 4 channels

A0 − B0 + B2 − A2; 8 channels
(23)
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Thus, in principle, one needs to acquire only two raw values at each gate respectively. The eight-

channel mode is used for two reasons. One advantage is that the amplitude of the modulation signal

is doubled, which leads to a smaller variance as shown by the following derivation. The other reason

is that it is robust to unequal sensitivities of the two different gates at each pixel. We will deal with

this in section 4.3.1.

The recording of electrons in the two gates A and B corresponds to a Poisson process. In the

limit of many accumulated charges (that is: with reasonableexposure time) the values of the raw

channels are normally distributed withσA andσB, whereσraw:=

√
σ2

A
+σ2

B

2
. SinceIm andRe are

the sum of an equal number of raw signals from gate A and gate B respectively (eq. 23) we have

(with eq. 21) thatA =
√

µ2 + ν2 :=
√

〈Im〉2 + 〈Re〉2 = 2Aphys for four channels (A = 4Aphys

for eight channels) andσ := σIm = σRe =
√

2σraw for four channels (σ = 2σraw for eight

channels) .

Therefore the tuple~x = (Im,Re) follows an isotropic bivariate Gaussian distribution withvariance

σ2 and mean (µ,ν):

G(~x; µ, ν, σ)dxdy

=
1

2πσ2
exp

[

−1

2

(

(x − µ)2 + (y − ν)2

σ2

)]

dxdy (24)

Going to polar coordinates~x = r (cos(φd), sin(φd))
T , dx dy = r dr dφd we obtain

Gpol(r, φd; µ, ν, σ) r dr dφd

=
r

2πσ2
exp

[
2r (µcos(φd)+νsin(φd))−r2−µ2−ν2

2σ2

]

dr dφd

= rG
(

(µ, ν)T; 0, 0, σ
)

· exp

[

− 1

2σ2
(r2 − 2ra(φd))

]

dr dφd (25)

wherea(φd) = µ cos(φd) + ν sin(φd).

The probability distribution of the angles is obtained by projectingGpol(r, φd; µ, ν, σ) on the unit

circle (that is: by integrating outr). In Fig. 1 (left) this is illustrated graphically. Using
∫

∞

0

r exp

[

−p2

2
(r2 − 2rq)

]

dr =
1

p2

[

1 + qp

√
π

2
e

q2p2

2

(

1 + erf

[
qp√

2

])]

(26)

this leads to

Gc(φd; µ, ν, σ) =

∫
∞

0

Gpol(r, φd; µ, ν, σ) r dr

= σ2G((µ, ν)T; 0, 0, σ)

[

1 +

√
π

2

a(φd)

σ
exp

[
a(φd)

2

2σ2

](

1 + erf

[
a(φd)√

2σ

])]

(27)
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Figure 1 Illustration of the genesis of the phase distribution. The raw intensities lead to an isotropic bivariate
Gaussian in the complex plane. Points of equal phase lie on rays emanating from the origin (like the three
red examples). Left: Neglecting quantization, the phase distribution can be obtained by simply integrating
over points of constant phase. Right: With quantized raw values different angles have different densities of
allowed values, which leads to the characteristic shape of the resulting phase distributions (compare Fig. 6)

SinceGc(φd; µ, ν, σ) is equivariant under rotations around the origin we can consider the case

ν = 0 ⇒ µ = A without loss of generality. The general case can then be expressed by simply

rotating the basis (that is: by substitutingφd with
(
φd − φ̄d

)
). However, in order to keep equations

short we set̄φd = 0. With havingν andµ fixed, we will denote the distribution in the following as

Gc (φd; A/σ):

Gc (φd; A/σ) := Gc(φd; A, 0, σ)

=
1

2π
exp

[−A2

2σ2

][

1+

√
π

2

A

σ
cos (φd) exp

[
A2cos2(φd)

2σ2

](

1+erf

[
Acos(φd)√

2σ

])]

(28)

This is a specific instance of the Offset Normal distribution(see Fig. 2). Now that the probability

distribution of the phase is known, its exact varianceV ar (φd) =
∫ π

−π
φ2Gc (φd; A/σ) dφ can be

numerically computed. Doing this, we found that it is feasible to approximate it as the reduced

spread parameterσred := σ
A

for reasonableσ
A

.

In this formulation it is intuitive to see that the variance of the phase strongly depends on the

physical modulation amplitudeAphys of the modulation.

V ar (φd) ≈ σ2
red =







σ2
raw

2A2

phys

; 4 channels
σ2

raw

4A2

phys

; 8 channels
(29)

Without much effort, one finds that the limit behavior ofGc (φd; A/σ) with respect to the reduced

amplitudeAred = A/σ is

lim
Ared→0

Gc (φd; Ared) =
1

2π
(30)
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Figure 2 The probability distribution of the phase as a function of the modulation amplitude. Neglecting
quantization effects, the phase follows an Offset Normal distribution (see text) that converges to the uniform
distribution in the limit of low amplitudes.

lim
Ared→∞

Gc (φd; Ared) = δ
(
φd − φ̄d

)
(31)

In practice, both limiting cases cannot be observed directly in the range distributions due to two

effects. In the case of high amplitudes the PMD sensor shows saturation effects and delivers ex-

tremely noisy and strongly biased signals. At low amplitudes, the quantization of the raw signals

soon leads to a population of only a small number of phases. Figure 11 illustrates these two effects

with measured data.

Since the mathematical form of the projected normal distribution may seem inconvenient for

some applications, one may prefer to use a simpler probability distribution that does not differ

much in shape. Note for this purpose that the shape of the projected normal distribution is very

close to that of the von Mises distribution which is typically used in the context of circular data [27].

Whereas the Offset Normal distribution is derived by projecting an isotropic bivariate Gaussian onto

the unit circle the genesis of the von Mises distribution is slightly different. Here the probabilities

on the unit circle are cutted out of the Gaussian and are then renormalized by Bessel functions. Or

in shorter terms: given a bivariate Gaussian distributionG(φ, r) the Offset Gaussian is the marginal

G(φ) and the von Mises is the renormalized conditional distribution G(φ|r = 1). The spread

parameterκ of the latter corresponds to 1
V ar(φd)

[27].

4.3 Numerical Computation of the Quantization Error

After data acquisition, the analog raw signalsIn are converted to digital numbers before the phase

φd is computed as in eq. 23 and eq. 22. The rounding errors due to conversion propagate through the

calculation and finally lead to errors in phase. Here we show numerically the extent of the resulting
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error. It turns out that it does not only depend on the resolution of the analog-digital conversion but

also on the amplitude and even on the phase itself. In addition, we show that at a given amplitude

Aphys only a few different phase values can be populated. This explains the frequent occurrence of

only a few several depth valuesd at low amplitude as one can observe in the data (see for instance

Fig. 3). In our first numerical calculation we compute the resulting quantization bias ofφd as a

function ofAphys andφreal for noiseless raw signals. Then the discrete probability distribution of

φd is computed for several amplitudes given noisy raw signals.

Figure 3 Indoor scene as observed by a conventional digital camera and by a 3D camera system at 5ms
exposure time. The output is displayed by the software CamVisPro. The spurious “walls” at discrete depths
are artifacts produced by pixels with low amplitude, see section 4.3.2.

4.3.1 The Impact of Quantization on the Range Bias

Neglecting noise in the raw signals, the result of the phase calculation for a given phaseφ and am-

plitudeAphys with harmonically modulated reference signal can be simulated numerically. Again

we assume a harmonically modulated reference signal such that the raw values areIn = cphys +

Aphys cos(φ+αn) and shifted by the anglesαn = 2πn
N

; n = 0, . . . , N−1. Thereby, theIn come from

the two different gates A, B (shifted withπ) that are subject to different pixel dependent systematic

errors due to different sensitivitiesai, bi

An = a1In + a0, Bn = b1In+2 + b0 (32)

The advantage of the eight-channel mode is that the fixed pattern noise due to different sensitivities

of the gates cancel inIm
Re

, as shown by [25] (one can see this by substituting theAn’s andBn’s in

eq. 23). Values of the signal offsetcphys are usually between 2000-4000 in arbitrary units for the

PMD[vision] R© 19k camera system. Using these units, the quantization is performed with accuracy

1, i.e. theIn are rounded to integers. All further calculations will use these arbitrary units. Taking
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this quantization into account the raw values at channel A and B are now

An = round(a1 (cphys + Aphys cos(φ + αn)) + a0)

Bn = round(b1 (cphys + Aphys cos(φ + αn+2)) + b0) (33)

The phase can again be computed from the raw signals via the four phase algorithm eq. 22 and

eq. 23. Thereby, one needs to keep the information which quadrant the vector(Im,Re)T lies in.

Figure 4 The range - numerically computed from 8 raw channels (left) and the bias (right) in units of meters.
The bias is due to quantization of the 8 raw values. The computation of the range amplifies this rounding
error especially at low amplitudes. In this regime only a few range values can be occupied. It is evident that
the bias does not only depend on the modulation amplitude but also on the range itself.

Figure 5 Bias of the expected range for a constant intensity offset of 10 (left) and 100 (right). Given a
difference in the sensitivity between gate A and B of about 1 percent the 4-channel calculation produces
systematic errors depending strongly on the overall intensity. The same color scale as in Fig. 4 (right) was
used for the sake of comparability.

In Fig. 4 the resulting phaseφd was computed for small amplitudes and for phases0 ≤ φd < 2π

which corresponds to all possible ranges from 0 to 7.5m. In order to give an idea of the range bias,

we have plotted the resulting ranged computed from its relation to the phase delayφd = 4πf

c
d where
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c is the speed of light andf is the modulation frequency of the diodes and the reference signal. The

plot illustrates very well the poor range resolution at vanishing amplitude due to quantization. Since

only a few phase values can be populated at a given lowAphys, the bias depends on the phase itself

and decreases asAphys rises. In order to keep this visible for all amplitudes up to5, color scale in

Fig. 4 (right) has been truncated to a maximum bias of 40 cm. Note that this makes absolute values

higher than 40 cm as for amplitudes< 1 invisible.

Figure 5 shows two plots of the bias for ranges computed in the4 channel mode. Two different

signal intensitiescphys were used. In all calculations we used a small linear difference in sensitivity

between gate A and B of about one percent. In the 8 channel modethis deviation is canceled as

predicted by [25] and therefore has no impact on the quantization error. But regarding Fig. 5 it

is obvious, that sampling only two phases from gate A and B respectively would lead to strong

systematic errors. This is one reason why – even if not necessary in theory – each gate has to

acquire four raw values, each at a different time. The other reason is that taking more raw values

amplifies the physical modulation amplitudeAphys of the signal and thus reduces the variance of

the computed range (see section 4.2).

4.3.2 The Impact of Quantization on the Phase Probability Distribution.

After calculating the impact of quantization on the range bias with noiseless raw data in the previous

section we now focus on the probability distribution of the resulting range under noisy input. The

raw channelsAn andBn follow Gaussian distributions with standard deviationsσraw
A andσraw

B .

Quantization of these values leads to discrete distributions. We chose the same dimensioning of the

valuesAphys, cphys, as in the last section and setφ̄ = π andσraw
A = σraw

B = 1 in order to compute

these distributions6. In 8 channel mode (eq. 23) two raw values of each gate A and B are added

for Im andRe respectively. This leads to a discrete bivariate distribution in the plane with same

width in x- andy-direction. Taking now the phases according to eq. 22 and summing up all values

resulting in the same phase finally gives the probability distribution of φd, as shown in Fig. 6 for

several amplitudesAphys.

This discrete distribution substitutes the Offset Normal distribution that would be obtained with-

out quantization (section 4.2). How to characterize this distribution? The spread of a set of direc-

tional data can be expressed via themean resultant length(MRL) [27]. MRL takes values between

0 and1 where0 corresponds to maximal scattered angles and1 to zero variance. We have used

this measure to illustrate the spread of the expected distributions, see Fig. 7. As expected it con-

verges against1 with rising amplitude. However, the variation also dependson the phase because

the quantization lattice is not isotropic.

6It would make no difference ifσraw
A 6= σraw

B since the raw valuesIn are added as in eq. 23 bottom.
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Figure 6 Probability distributions of φd calculated from eight Gaussian distributed raw values In for various
amplitudes A. Due to rounding of the raw values, their differences can only be located at certain points in the
complex plane (compare Fig. 1 (right)). Summing over the corresponding angles (the phase) leads to these
characteristic distributions. At high amplitudes the angles can be better resolved whereas at low amplitudes
the phases are only sparsely populated.
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Figure 7 The Mean Resultant Length (MRL) of simulated phase distributions (like those shown in 6) at
given amplitude A and mean phase φd obtained from eight raw intensities(top). Bottom: Since the complex
plane is not isotropic once the raw values are quantized, the MRL does not only depend on the amplitude
but also slightly on the phase itself. This is underlined by subtracting the overall trend of MRL with respect
to the amplitude. In the interval from π to 2π the patterns merely repeat periodically.

5 Experiments

In order to verify the theoretically derived error sources we performed measurements with the pro-

totype camera PMD 19k from PMDtec (see appendix for specification). This particular camera

was chosen because internal digital postprocessing can be bypassed by direct read-out of the raw

intensities, thus allowing for a direct investigation of the intrinsic errors of the measurement con-

cept. These errors are representative for other prototypesusing continuous-wave correlation. The

following experiments are restricted to illustrating the errors derived in the earlier chapters. We do

not consider effects that are unique for particular realizations of the measurement principle. This

also includes the angular resolution which strongly depends on the number of pixels that a camera

has (there are sensors that measure only one value up to systems with1000×1000 pixels).

As a target, a checkerboard composed of patches with four defined reflectivities of 84, 50, 25 and

12.5 percent was installed on a moving stage with millimeterprecision. The range, amplitude and

raw values from the PMD 19k camera were acquired at equispaced displacements of the moving

target using integration times from 0.1 to 30 ms. The target was oriented perpendicular to the optical

axis in all our experiments.

The moving stage can be positioned precisely, but the distance between the camera lens and the

closest point of the target cannot be used as a ground truth for the whole target since the camera

measures the radial distance and not the Cartesian z-coordinate. A pinhole model was used to

determine, for each position of the moving stage, where on the image the target should be located

and at what depth. In addition, this approach has allowed to concentrate on particular patches of

the checkerboard in order to investigate the influence of thereflectivity. The next sections detail the
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geometrical model and the results of the measurements.

5.1 Geometrical Model

A simple pinhole model was used in order to map the depth imageon the ground truth and thus

allow for quantitative characterization of the camera. Here the conversion from Cartesian world

coordinates(x, y, z) to the chip coordinates(m′, n′, r) is

m′ = round

(
f

pd

y

z

)

n′ = round

(
f

pd

x

z

)

r =
√

x2 + y2 + z2 (34)

wherepd is the physical size of one pixel on the chip andf is the focal length. The origin of the chip

coordinates was chosen to be on the center of the chip and the origin of the world coordinates is in

the lens (the pinhole). The z-axis is the optical axis. Sincethe camera delivers the radial distances

r, the inverse conversion is trivial. A flat patch, described with normal vector~n and space point~x0,

can be transformed from world coordinates to chip coordinates:

• Transform the vertices of the object to chip coordinates

• Check which pixels are inside the resulting polygon

• For each of these pixels, compute the intersection of the object and a ray emanating from the

center of the pixel

• Transform the coordinates of the point of intersection to chip coordinates

The third and the fourth step can be performed at the same timeby noting that for an arbitrary point

~x on the surface

~x =
r

√

(pdn′)2 + (pdm′)2 + f 2

(−pdn
′, − pdm

′, f)
T (35)

it holds that

~n · (~x − ~x0) = 0

⇒ r =
~n · ~x0

√

(pdn′)2 + (pdm′)2 + f 2

nzf − nxpdn′ − nypdm′
(36)

wheren′,m′ are distances from the center of the chip in pixel units.
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5.2 Amplitude Behavior

For a characterization of the camera the amplitude of the sinusoidal modulation signal from eq. 7

is at least as important as the range information itself since it sheds light on the reliability of the

latter. The amplitude obviously depends on the integrationtime and on the reflectivity of the object,

but also on the distance itself, see Fig. 8. This figure shows the amplitude observed from a patch

of 84% reflectivity for various integration times. For higher reflectivities, the curves are merely

shifted to the right. The amplitude drops rapidly with distance. For longer distances and for the

integration times shown here, the signal can no longer be used. We have used exposure times up

to 30ms in order to get reliable data for the whole range. However, at higher integration times a

saturation effect is observed that masks the modulation amplitude. Figure 8 shows the sharp drop

from the maximum to a low value and a further slow decrease towards zero (see markers A and

B). Considering that the amplitude is computed from a difference of 2 or 4 raw values, one can

interpret the fast drop as the region where one raw value is already saturated and the other one

is approaching saturation. Once they are both saturated, their difference, and hence the estimated

amplitude, becomes zero. The consequences will be discussed in the next section.

Figure 8 Average amplitudes for various integration times. The data was acquired from a patch with 84%
reflectivity. The amplitude decreases fast with the distance. At very low distances the amplitude drops to
a low value (A) and further slow decreases towards zero (B) due to saturation effects. Curves of higher
integration times or higher reflectivities are merely shifted to the right.

Since the variance of the estimated distance strongly depends on the amplitude, a higher dynamic
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range of the sensor would be desirable. Future systems will possibly make use of stronger light

sources such as vertical lasers [28] and employ sensors withlogarithmic behavior [29].

5.3 Depth Bias and Variance

Every particular camera has its specific constant bias due toa delay between the reference signal at

the diodes and on the chip itself. We have determined this offset once and then corrected for it in

all further measurements. All figures show corrected values.

In addition to this constant bias, there is a sinusoidal biasin the magnitude of about 5 cm as

can be seen in Fig. 9 (right). The suspected cause is an imperfect shape of the reference signal: the

phase calculation assumes a sinusoidal reference signal, but the actual reference signal has rather

a rectangular shape. Numerical simulations show that the systematic error due to this wrong as-

sumption leads to a sinusoidal shaped bias [10, 16, 25] . Given the exact waveform of the reference

signal, the calculation of the phase could be adapted in order to avoid this effect, as discussed in

section 3.2 . The alternative approach is to tabulate the residuals and correct for them as shown for

instance in [21].

At longer distances, one can observe a large deviation from the true range for short integration

times (Fig. 9 left). Although the deviation may look like another form of bias in this plot, it is in

fact the consequence of a large variance: For short integration times, the signal starts to become too

small at long distances. Neglecting quantization effects,it can be shown that the estimated phase

then follows a uniform distribution (section 4.2). The estimated distance then occupies values in

the whole unambiguous range. Since Fig. 9 shows the mean of all frames and pixels of a patch for

every position, the resulting value converges to the middleof the unambiguous range with vanishing

signal amplitude. Note that for the highest reflectivity (84%), all measurements with less than 5 ms

integration time show this effect.

For short distances, there is another remarkable deviation(Fig. 9 C). It occurs at different posi-

tions for higher integrations times and is a consequence of asaturation effect (Fig. 11 bottom). The

curves have the same shape but are shifted by the distance at which overexposure first occurs for

each integration time. As discussed above, the estimated mean depth then converges to the center

of the unambiguous measurement interval. Again, the resulting deviation of the mean value from

the ground truth is due to a high variance that can be observedif the depth values are not averaged

before plotting (Fig. 11).

A method to mask overexposed pixels was proposed in [22] and allows to observe an additional

bias at very close distances that can be explained by the factthat the light source can no longer be

considered as a point source in this region.

The1/A2 law relating variance to amplitude can be verified by recording an arbitrary static scene

and plotting the temporal variance of each pixel against itsvalue of1/A2 (Fig. 10).
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Figure 9 Average measured distance vs. true distance (left) and bias vs. true distance (right) for various
integration times. The values are the average of 100 frames. Values were obtained from patches with 84%
reflectivity (left) and 50% reflectivity (right) respectively. In both graphs the effect of low modulation amplitude
as well as overexposure (C) can be observed. See text for discussion.
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Figure 10 Temporal variance against 1

A2 computed from a static scene. The figure corroborates the theo-
retical relation (eq. 29) derived in section 4.2.
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5.4 Quantization Error

In all results discussed above, the measured raw values wereaveraged over many frames in order to

be able to observe systematic errors independently of noise. By averaging the information, though,

the quantization errors vanish. Therefore, the results from single frames are presented in Fig. 11.

Again, reflectivities of 84%, 50%, 25% and 12.5% were used with integration times ranging from

0.1 ms to 30 ms. Fig. 11 shows the resulting curves for the target with 25% reflectivity. The ampli-

tude curves for the other reflectivities are shifted to the left or to the right, but have the same shape.

At first glance one can see the sparsity of the measured distances at low modulation amplitudes

which are either due to weak signal (long distances) or saturation (short distances). For small am-

plitudes, the depth can assume only specific values, (see section 4.3) that are spread over the whole

unambiguous range. Taking the mean would result in a distance value somewhere in the middle of

the range as can be seen in Fig. 9 (left).

6 Conclusion and Outlook

We have investigated the continuous-wave modulated time-of-flight measurement principle and

its associated errors for 3D cameras. The mathematics of therequired phase estimation has been

derived in a concise fashion and it has been shown that the probability distribution of the resulting

range is an Offset Normal distribution (also known as Projected Normal distribution). With this,

the variance of the resulting distance estimate can be computed exactly and we have confirmed that

V ar(d) = 1
A2 is a good approximation. By modeling the measurement and estimation process, we

have shown that in the limit of low amplitudes, the depth map can exhibit very significant artifacts

due to quantization. All theoretically derived error sources have been illustrated by measurements.

Other systematic errors such as the bias due to anharmonic signals and overexposure have been

discussed as well.

The errors addressed are intrinsic to this kind of 3D camera,and even future models will suf-

fer from low amplitudes due to large distances or low reflectivity. The noise in this regime could

be reduced with adaptive integration times, which could also help avoid overexposure. Adaptive

systems with two integration times already exist, and future cameras will perhaps be able to adapt

continuously to the illumination conditions. The errors due to anharmonic signals can be avoided

by using appropriate calculations, provided the actual shape of the modulation signal is known.

The quantization error could be drastically reduced if the raw values were quantizedafter the sub-

tractions are carried out in analog. Of course this is a technical challenge and a physical realization

could engender new error sources.

22



Figure 11 Estimated distances and average amplitude against true distance for various integration times
and a target of 25% reflectivity. The quantization effect is clearly visible at the horizontal aligned measure-
ment points and occurs both at overexposed pixels (left sides of bottom graphs) and at high distances (upper
graphs). In both cases, the estimated amplitude of the sinusoid in eq. 7 vanishes.
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Table 1 PMD 19k datasheet.

Pixel Dimensions 40µm × 40µm

Resolution 160 × 120

Optical Fill Factor 30%

Modulation Frequency 20 MHz

Max.Field of View 40◦

Focal Length 12mm

Illumination Power ≈ 3W optical

Wavelength 810 nm

Frame Rate up to 15 fps

AD-Converter 12-bit
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