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Abstract. This paper offers a formal investigation of the measurerpentiple of time-of-flight
(TOF) 3D cameras using correlation of amplitude-modula@ttinuous-wave signals. These sen-
sors can provide both depth maps and IR intensity picturasii&aneously and in real-time. We
examine the theory of the data acquisition in detail. Théavae of the range measurements is de-
rived in a concise way and we show that the computed rangenslan Offset Normal distribution.
The impact of quantization of that distribution is discuksell theoretically investigated errors
like the behavior of the variance, depth bias, saturatiahgurantization effects are supported by
experimental results
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1 Introduction

Laser scanners are an established and robust technologlgefabservation of 3D scenes (e.g.
[1]). However, they rely on moving parts and can acquire aldemp only consecutively by scan-
ning over the rows. In contrast, time-of-flight (TOF) 3D caaseusing correlation of amplitude-
modulated active continuous-wave illumination can acgairtire depth maps and intensity images
atonce. An elaborate CMOS technology [2, 3] detects and psesghe signals on-chip in real-time
for all pixels simultaneously. These inexpensive sens@saw becoming a promising candidate
for a wide range of applications, from industrial produntgurveillance to obstacle detection in
the automotive sector. However, since the technique iy/fagw, many available cameras still
have prototype character and some aspects of the undethgogy are not yet completely under-
stood. This paper seeks to clarify by offering a theordficabund and compact formulation of
the signal genesis and of the algorithms that estimate ramgglitude and intensity. We show that
the estimated range follows an Offset Normal distributiamc we study the impact of the signal’'s
modulation amplitude and the on-chip quantization on thremated range, both theoretically and
experimentally.

The remainder of the paper is organized as follows: Secti@fi€2ences past work. In section 3,
the mathematical properties of the range acquisition eseudsed in detail. Section 4 focuses on
error propagation and systematic errors. In this contegtquantization error and its impact on the
probability distribution of the range is investigated. &y, section 5 presents measurements that
allow to observe all the effects discussed.

2 Related work

TOF systems using the correlation of amplitude-modulatattiouous light to record 3D scenes
have been known at least since 1976 [4]. In [4], the dependehthe range error on the signal
amplitude was derived using Gaussian error propagatidiovidag this relation, it was proposed
to adapt the number of samples that are used to estimate &lse pks a function of the modulation
amplitude.

In [5], a system using multiple diodes was introduced thaiatked scanning and avoided mov-
ing mechanical parts. A range sensor that modulates thalfigiguency was presented in [6]. A
very good overview of different active range finding consdptluding amplitude-modulated con-
tinuous wave sensors existing at that time was given in [Aloerview of possible algorithms for
phase computation from interferograms was presented im {Ble context of phase measurement
interferometry.

The first sensors using pixelwise on-chip correlation weesented in 1995 in [2, 3]. A good
introduction to the working principle of a CMOS chip using dityale-modulated continuous-wave
correlation is given in [9, 10], a short overview can be foumfL1]. In [12], measurements were
performed to investigate the error as a function of the sigrmalulation amplitude. In [13, 14, 16],
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Gaussian error propagation was used to derive that depeyd&ipractical implementation of a
chip-based range finder is presented in [17]. A broad overoie laser radars that additionally to
amplitude-correlated time-of-flight sensors covers senfay pulsed, chirped and coherent signals
Is given in [18]. In [19], applications for Optical Coherentemography are shown that use the
same phase estimation principle on another CMOS chip. Thesimée of non-orthogonal reflecting
surfaces is discussed in [20]. A calibration technique fOFIcameras is proposed in [21]. Finally,
the experimental setup from section 5 was first described2h [

3 Computation of Range, Amplitude and Intensity

The basic principle of a time-of-flight camera is to send owignal and to measure the time
required until its reflection can be detected by the camareohtrast to systems with pulsed signals
(e. g. [23]) the described method makes use of modulatednemnis light in order to determine
that time. The modulated lightptical signa) emitted by infrared diodes is reflected from a surface
in the scene and returns after the time-of-flightThe TOF is proportional to the distande= 5t,

of the object surface from the camera, and to the phase delay

4
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of the optical signal which is correlated (mixed) with tleéerence signabf the same modulation
frequencyf. This method resembles the concept of Phase Shifting arterfetry (PSI), where a
coherent light beam interferes with a reference beam atalgviease shifts in order to retrieve the
phase: For each phase shift a different interferogram igilnétl and from these so-callbdckets
the phase can be computed in several ways [8]. For 3D TOF eantlee concept is slightly dif-
ferent: The reference signal is electronic and has radouéacy. The signal drives the emitting
diodes such that the amplitude of the optical signal is mateidl with the same frequency. Opposed
to methods based on optical interference, the emitted tiges not have to be coherent which
avoids errors such as speckle noise [24] and allows for gocladsication of such ranging systems.
On the camera chip the backscattered optical signal is ctwa/& an electronic signal and immedi-
ately correlated with the original reference signal at ssyghase shifts,,, = 2”7" n=0...N—1.
Each pixel acquires alV correlated signals for the computation of its range valughdVt suitable
unwrapping of the phase delay, the range can be measurediguarasly only up to the distance
corresponding to an angle 0f, ... = 27, i.€.dyar = ﬁqﬁd,ma:c =57 =T7.5m.

The following calculations in this section derive the exgsiens for the correlated signal — the
raw intensitiesor raw signal— assuming an arbitrary number of phase shifts and a gerfeapés
of the reference signal. In turn, formulas for retrieving fpthase, amplitude and intensity of the
signal are derived assuming harmonic and anharmonic sigfai the measured raw intensities
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n=1...N — 1, the following (correlation) formula holds:

t

1 Q
I, = —— | R{t——|S(t+ty) dt
ta—ta/ ( 27Tf) (t+1a)
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tl_tO/R(t)S(t+27Tf+td) dt (2)

to

whereT = t| — t{ = t; — t, represents the integration time, S is the optical signal Rritde
reference signal.

Since both the optical sign&l and the reference sign& are modulated with the same frequency
[ = 5=, itis natural to expand both of them into a Fourier series:

R(t)= > Rje"™ S(t)= >  Spe™. (3)

j=—o00 k=—o00

Plugging both series into the correlation formula leads to
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If j = —Fk the termn computes td; — t,. If j # —k, we have

—1

tl — to)(] + k)w (

n = ( pilHhwt _ ez‘(j—l—k)wto) . (5)
The maximal magnitude that this expression can talgg_m. Since typical integration times
t1 —to ~ 5 ms are much larger than the modulation per?gd: 50 ns, the summands with # —k&
are negligible. This can be interpreted as follows: theadttegration interval has no influence to
the final intensity if the time is chosen to be long comparethéomodulation frequency — even if
the integration is not performed over whole periods. Thas, finally arrives at

Iy~ Y R_Spetontoa), (6)



3.1 Amplitude, Phase and Offset of Harmonically Modulated Optical Signals

Assuming the optical signal and the reference signal to b@dwically modulated,

S(t) = 4+ Acos(wt+6)
o A
— 36—10 e—zwt + C/ + ?ezﬁ ezwt7 (7)

the raw intensities are of the same form:

In = c+ é (GQWi%ei(d)cﬁ—@) + 6_27”:%76_7:((15(14-9))

= ¢+ Acos(a, + ¢pq+0), (8)

wherec = Ry, A = |R;|A" andf = 0" — arg(R,).

To recover theoffsetc (intensity), thephase delays, (range information) and theamplitude A
(modulation amplitude) the following formulas can be used:

N-1
2 ‘n
A = = T —2mi 5
N | &
n=0
N-1
bg+6 = arg( [nezﬂz@)
n=0
1 Nfll (9)
cC = — n
anO

This solution is optimal in the least-squares sense, simtgg/the expressions for the raw inten-
sities in matrix notation yields

1 1
lo w W 1 éz
S AR (10)
I : : : .
N-1 wN-1 @N-1 1
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with z = ¢i(®at9) gndw = e~ .

Using the fact that the™’s are theN'" roots of unity? it is easy to see that the coefficient ma-
trix B that they constitute satisfid$* B = diag(N, N, N).

1Up to some constant phase offgethat can easily be eliminated by camera calibration. THisetis due to the

time that the internal signal needs to propagate.
N—-1
2In particular, >~ w*™ = 0 for any integerk

n=0



Thus, the Moore-Penrose inverse [15®fs (B*B)~'B* = - B*, and the least-squares solution
(Az, Az, ¢)T = < B*I together withp, + 0 = arg(Az) andA = |Az| yields the result above. Note
that this is a meaningful result only fo¥ > 3 — otherwise the number of equations does not suffice
to determine a unique least squares solution.

3.2  Anharmonic Modulated Signals

For nonharmonically modulated optical signals, the sofutabove is no longer valid. In [16] a

formula for calculating the phase delay information froomharmonic signals is derived with the

help of an analytic regression argument. This formula iy wmilar to the expression for har-

monic signals but involves the higher harmonics of the msigdal. Here, we derive these results
algebraically: Assume

!
I, = c+ Z Agcos(kay, + kog + 0Of)

k=1

l
= c+ E 7743 <ezka"€z/€¢d+19k + e—zkane—quﬁd—zﬁk,) (11)
k=1

with some maximal bandwidth This leads to the system of linear equations (the coefficnetrix
is of dimensiong N x (2l +1)))

; 1 1 1 1 4z
.0 W wooe w! w' 1 : 5
B SN | T (12)
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. . . 27
with z, = e*®at% andw = e~ .

By arguments similar to those above, the least squares@okmimputes to the one stated in [£0]:

9 N-1
Ak _ N ]ne—27rik]\L,
n=0
N-1
kpa+ 0, = arg( InezﬂikJZ)

n=0

1 N-1

n=0

3By means of the formularg(z + iy) = arctan (£) — which is only valid for vectorgz, y) with an angle in the

T
interval [ 7, 7]



Again, this solution is only valid folv > 2] + 1; that is, if the signal has sufficiently low band-
width compared to the number of sampling points — which isesally the sampling theorem. For
nonharmonically modulated signals, we propose to use saioe kmowledge about the Fourier
coefficients to obtain an improved estimator for the phasayddhis knowledge can be inferred
from the actual wave forms of the optical signal and the ezfee signal. In this context, asym-
metric wave forms pose a particular problem since the phtiset®d, differ. Without knowing
those offsets, the computation of the phase delay is implesand it is necessary to model the
range-phase relationship on empirical grounds.

4  Error Analysis for Harmonically Modulated Signals

The raw values that are used to compdtand¢ are subject to noise. Hence, the modulation am-
plitude and the range information that one gets from the camme noisy, as well. In the following
section we give an analysis of this resulting variance. & laee different ways to derive it. In section
4.1, we perform Gaussian error propagation for the four @ladgorithm with four raw channels as
in [16, 25] but with a more compact notation using matricagrinciple, this derivation can also be
performed with eight or more raw channels but becomes tedloen. In 4.2, we employ the prob-
ability distribution of the raw values and derive directietresulting phase probability distribution
and its spread for the four phase algorithm with four and teigiv channels, respectively. Both
derivations neglect the fact that the raw intensities asntjmed after the AD conversion. Finally,
in section 4.3 we discuss the impact of this quantizatioseon the range bias and show numer-
ically how it affects the probability distribution of the @be. Usually, quantization is considered
to cause an error with uniformly distributed magnitude Whieads to a variance cfg in units of
the rounded numbers. However, since in the genesis of treeplata the rounded raw signals are
further processed in a particular way, the impact of quatibn can be much higher. Neglecting
saturation effects due to overexposure — which can be ceregicas a technical deficiency rather
than being caused by the algorithm itself — the noise andubetigation of the raw values are the
factors affecting the quality of the range data the most.

4.1 Gaussian Error Propagation for 4-Phase-Shifting Technique with 4 Raw Channels

Once an algorithm for calculating the values far$ andc or other quantities (like amplitudes from
higher Fourier modes for nonharmonically modulated sigjnalchosen, those quantities can be re-
garded as functiong of the random vector of measurements (I, ..., Ix_1)?. Itis well-known
[26] that the variance matrix of the random vecifdl) = (A, ¢, )T can be computed approxi-
mately byVar(f(I)) ~ Df(u)Var(I)Df(u)T. Herein,D f is the Jacobian (first derivative) gf
andyp = (I) is the mean off which in practice is substituted by the measured raw intessor
some other unbiased estimafobased for example on averaging multiple frames.
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Estimating the mean of(7) by setting(f(/l\)) = f(i1) is generally biasefi For each component
fi this bias can be calculated approximately Wias;, ~ 1Trace(Hessy, (i1)Var(I)). Herein,
Hessy, stands for the Hessian (second derivative) ofitfiecomponent off.

Writing down the formulas for the offset, amplitude and t@hasep) = ¢, + 6 for harmonically
modulated signals specifically for the caSe= 4, one has:

1 .
= 5‘[0—[2+l([3—]—1)|
gb = arg(]o—]2+i(]3—]1))

1
cC = Z_L(IO+II+I2+]3) (14)

Assumingg to take values in the interval-7, 7], one can writep = arctan (ﬁg:g) which is the
usual formula found in the literature. However, such a retsdn is not permissible. Therefore, we
use eq. 14 to calculate phase delays in the whole unambigaogs| —, ].

Thus, we seff : R* — Rt x SL xR, f: [ — (A, ¢,¢)T andf = x, o x1 with x; being the

linear map

L9 1y
xil=10 —3 0 3|I (15)
1 1 11
4 4 4 4
and
X2($7 Y, C) = ((I)il(xv y)7 C)T7 (16)

where® is the polar coordinates map( A, ¢) = (A cos(¢), A sin(¢)).

The Jacobian of can be calculated via the usual differentiation rulg®—1)(® (A4, ¢)) = (DP(A, ¢))~*
andDf(I) = Dxa(xa({)) - Dx1(I) = Dxa(x1I) - x11, which finally leads to

cos () —sin(¢) —cos(p) sin(o)

Df(y) = % —%sz’n(qﬁ) —%cos(@ %sin@) %cos(@ a7
1 1 1 1
2 2 2 2

with j being some point in the preimage ©4, ¢, )™ which will be omitted from now on. Also,
we will not distinguish estimators / measurements notaflgrirom “real” values anymore.

Now assume the simple case where the measurements 6f'shere independent and identically

“For example, if one measures the lengthf one side of a “perfect” square with an eregrthe bias for computing
the aread of that square by assuming= (z)* is (22) — (z)* = Var(z) = o>.
5See [26]. Note that therein the fac@)ris missing.



distributed. such that ar(I) = diag(c?, ..., o?) for some errow. In this case, one computes

Var(A,¢,¢) = DfVar(I) Df" =Df Df" o?

A T T A
= diag <§, A2 Z) o, (18)
or explicitly:
o2 2 o2
Var(A) = T Var(¢) = SYVL Var(c) = 5 (19)

4.2 The Phase Probability Distribution

The variance of the phase can also be obtained directly bgftyteming the probability distributions
of the raw values to the distribution of the phase. The regyulipread shows the same behavior
as with the first order approximate error propagation inisect.1. Here we derive that the phase
¢q calculated with the four phase algorithm (eq. 22, eq. 23p¥ed an Offset Normal distribution.
The derivation shows how its variance relates to given wagao,” of the raw signald,, for
phase calculations in 4 channel mode and 8 channel modectasgty. Additionally we take into
account here that each pixel on the chip physically has tferdnt gates A and B where the
reference signal at gate B is shifted bwith respect to the signal at gate A;, = I,,; B, = I,,12.
In the derivation above this was neglected by assuming e@ui@nces of the raw values. Here we
consider that the gates may have different variamceando .

Assuming a harmonically modulated reference signal, thevedues are

Ly = cphys + Aphys 0s(¢q + ). (20)
They are shifted by the angles = 2”7”; n=0,...,N—1[16].
= A, — B, = 24,5 cos(¢q) (22)

Here, A,,,, is the amplitude of the physical signal which we will distingh from the amplitude
A of the computed signal in the later equations. The phase eaoMmputed from the raw signals
with

¢q=arg(Re+1i-Im) (22)
where
By — Ay; 4 channels
Im =
As — B3+ By — Ay; 8 channels
Ap — By; 4 channels
Re — 0 0 (23)
Ag — By + By — As; 8 channels
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Thus, in principle, one needs to acquire only two raw valuesaah gate respectively. The eight-
channel mode is used for two reasons. One advantage is ¢hatriplitude of the modulation signal
is doubled, which leads to a smaller variance as shown bytlusving derivation. The other reason
Is that it is robust to unequal sensitivities of the two diffiet gates at each pixel. We will deal with
this in section 4.3.1.

The recording of electrons in the two gates A and B correspaodh Poisson process. In the
limit of many accumulated charges (that is: with reasonalfgsure time) the values of the raw
channels are normally distributed with ando s, whereo, ;= 1/ %% . Sincelm and Re are
the sum of an equal number of raw signals from gate A and gatesBelctlver (eqg. 23) we have
(with eq. 21) thatd = \/m = \/ Im)® = 2A,ys for four channelsd = 4A,,,,
for eight channels) and = o, = og \/_omw for four channels4 = 20,4, for eight
channels) .

Therefore the tupl€ = (Im, Re) follows an isotropic bivariate Gaussian distribution wittriance
o? and meany(,v):

G(Z; p, v, 0)dzdy
S [—% ((x —n)° il U ”>2>] dady (24)

2mo? o
Going to polar coordinates = r (cos(¢q), sin(¢q))”, dz dy = r dr dpg we obtain

GPOZ<T7 (bdv w, v, U) rdr d(bd

9 ba)+vsin(dy)) —r? — u?— 12
o ),
= rG ((u, I/)T;O,O,U> -exp[ 212(7° — 2m(¢d))}dr dopg (25)

wherea(pg) = pcos(¢q) + vsin(oq).

The probability distribution of the angles is obtained bgjpcting G (7, ¢a4; 11, v, o) on the unit
circle (that is: by integrating out). In Fig. 1 (left) this is illustrated graphically. Using

/OO; exp{—p;(r2 - 27’q)1dr = pi {1 + qp\/z F (1 + erf {%D} (26)

this leads to

GC(¢d;H’7ya0> :/ pol( gbd,M,V O')Td?"
0

= o%G((n, )" 0,0,0) [1 +\f2 (fd) exp{“;ﬁq(uerf{\(/?ﬂ)] (27)
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Figure 1 lllustration of the genesis of the phase distribution. The raw intensities lead to an isotropic bivariate
Gaussian in the complex plane. Points of equal phase lie on rays emanating from the origin (like the three
red examples). Left: Neglecting quantization, the phase distribution can be obtained by simply integrating
over points of constant phase. Right: With quantized raw values different angles have different densities of
allowed values, which leads to the characteristic shape of the resulting phase distributions (compare Fig. 6)

Since G.(¢q; 1, v, o) is equivariant under rotations around the origin we can idenghe case
v =0 = pu = A without loss of generality. The general case can then beeszpd by simply
rotating the basis (that is: by substituting with (gbd — ¢_d)). However, in order to keep equations
short we seth; = 0. With havingr andy: fixed, we will denote the distribution in the following as

GC (¢d;A/O'):
Ge(pg; AJo) == Ge(daq; A,0,0)

- %QXpbf;H” %?Coswd)expﬂ%z(ﬂ(”e”[m}—ﬂ)] -

This is a specific instance of the Offset Normal distributfeee Fig. 2). Now that the probability
distribution of the phase is known, its exact varianter (¢;) = |"_ ¢*G. (¢q; A/0) dp can be
numerically computed. Doing this, we found that it is fedsito approximate it as the reduced
spread parameter,., := % for reasonablé;.

In this formulation it is intuitive to see that the variancktloe phase strongly depends on the
physical modulation amplitudg,;,; of the modulation.

2
55— 4 channels

ﬁ)hys 29
—“raw_- 8 channels (29)

2
4AphyS

Var (¢q) ~ erd =

Without much effort, one finds that the limit behavior@f (¢4; A/o) with respect to the reduced

amplitudeA, ., = A/o is
1
li cAreg) = — 30
Ari?io Gc (gbda Ted) o ( )
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amplitude

phase

Figure 2 The probability distribution of the phase as a function of the modulation amplitude. Neglecting
guantization effects, the phase follows an Offset Normal distribution (see text) that converges to the uniform
distribution in the limit of low amplitudes.

lim Gc (¢d7 Ared) =9 (¢d - di) (31)

Apeq—00
In practice, both limiting cases cannot be observed direntthe range distributions due to two
effects. In the case of high amplitudes the PMD sensor shawsation effects and delivers ex-
tremely noisy and strongly biased signals. At low amplisijdae quantization of the raw signals
soon leads to a population of only a small number of phasgsir&ill illustrates these two effects
with measured data.

Since the mathematical form of the projected normal digtrdm may seem inconvenient for
some applications, one may prefer to use a simpler probabiistribution that does not differ
much in shape. Note for this purpose that the shape of theqies) normal distribution is very
close to that of the von Mises distribution which is typigalsed in the context of circular data [27].
Whereas the Offset Normal distribution is derived by profegan isotropic bivariate Gaussian onto
the unit circle the genesis of the von Mises distributionlighgly different. Here the probabilities
on the unit circle are cutted out of the Gaussian and are #r@rmalized by Bessel functions. Or
in shorter terms: given a bivariate Gaussian distribu€idn, ) the Offset Gaussian is the marginal
G(¢) and the von Mises is the renormalized conditional distidutz(¢|r = 1). The spread
parameter of the latter corresponds % [27].

4.3 Numerical Computation of the Quantization Error

After data acquisition, the analog raw signalsare converted to digital numbers before the phase
¢qis computed as in eq. 23 and eq. 22. The rounding errors dwa@rsion propagate through the
calculation and finally lead to errors in phase. Here we shamvarically the extent of the resulting
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error. It turns out that it does not only depend on the regmiuif the analog-digital conversion but
also on the amplitude and even on the phase itself. In additve show that at a given amplitude
A,nys only a few different phase values can be populated. Thisséxpthe frequent occurrence of
only a few several depth valudsat low amplitude as one can observe in the data (see for restan
Fig. 3). In our first numerical calculation we compute theut@sg quantization bias o, as a
function of A,,,, and¢,., for noiseless raw signals. Then the discrete probabilgyrithution of

¢q 1S computed for several amplitudes given noisy raw signals.

Figure 3 Indoor scene as observed by a conventional digital camera and by a 3D camera system at 5ms
exposure time. The output is displayed by the software CamVisPro. The spurious “walls” at discrete depths
are artifacts produced by pixels with low amplitude, see section 4.3.2.

4.3.1 The Impact of Quantization on the Range Bias

Neglecting noise in the raw signals, the result of the phakautation for a given phasgand am-
plitude A, with harmonically modulated reference signal can be sitedlaumerically. Again
we assume a harmonically modulated reference signal sathhté raw values arg, = cpp,s +
Aphys cos(¢p+ay,) and shifted by the angles, = %*; n = 0,..., N —1. Thereby, thd,, come from

the two different gates A, B (shifted with) that are subject to different pixel dependent systematic
errors due to different sensitivities, b;

A, =al, +ap, By =bil,42+ by (32)

The advantage of the eight-channel mode is that the fixedmpatbise due to different sensitivities
of the gates cancel i%, as shown by [25] (one can see this by substituting4his and B,,’s in

eq. 23). Values of the signal offset,,; are usually between 2000-4000 in arbitrary units for the
PMD|vision]® 19k camera system. Using these units, the quantizatiorrfierpged with accuracy

1, i.e. thel, are rounded to integers. All further calculations will usege arbitrary units. Taking

13



this quantization into account the raw values at channeldABaare now

A, = rounda; (Cpnys + Apnys cos(d + a,)) + ag)
B, = roundb; (cpnys + Aphys cos(d + anya)) + bo) (33)

The phase can again be computed from the raw signals via thepfase algorithm eq. 22 and
eq. 23. Thereby, one needs to keep the information whichrganathe vectof Im, Re)T lies in.

Range in 8-ch:; I-mode with Intensity = 4000

Computed Range - True Range in 8-channel-mode with Intensity = 4000
5

amplitude A
amplitude A

0.2 04 06 08 1
|

Figure 4 The range - numerically computed from 8 raw channels (left) and the bias (right) in units of meters.
The bias is due to quantization of the 8 raw values. The computation of the range amplifies this rounding
error especially at low amplitudes. In this regime only a few range values can be occupied. It is evident that
the bias does not only depend on the modulation amplitude but also on the range itself.

Comp!
5

amplitude A
amplitude A

Figure 5 Bias of the expected range for a constant intensity offset of 10 (left) and 100 (right). Given a
difference in the sensitivity between gate A and B of about 1 percent the 4-channel calculation produces

systematic errors depending strongly on the overall intensity. The same color scale as in Fig. 4 (right) was
used for the sake of comparability.

In Fig. 4 the resulting phasg; was computed for small amplitudes and for phaseseo, < 2«
which corresponds to all possible ranges from 0 to 7.5m. dieioto give an idea of the range bias,
we have plotted the resulting rangeeomputed from its relation to the phase delgy= %d where
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cis the speed of light andl is the modulation frequency of the diodes and the refereigoalk The
plotillustrates very well the poor range resolution at gamg amplitude due to quantization. Since
only a few phase values can be populated at a giverdgyy;, the bias depends on the phase itself
and decreases as,,,;; rises. In order to keep this visible for all amplitudes ugt@olor scale in
Fig. 4 (right) has been truncated to a maximum bias of 40 cnte M@t this makes absolute values
higher than 40 cm as for amplitudesl invisible.

Figure 5 shows two plots of the bias for ranges computed i tblegannel mode. Two different
signal intensities,;, s were used. In all calculations we used a small linear diffeegn sensitivity
between gate A and B of about one percent. In the 8 channel thegldeviation is canceled as
predicted by [25] and therefore has no impact on the quardiza&rror. But regarding Fig. 5 it
is obvious, that sampling only two phases from gate A and Peetvely would lead to strong
systematic errors. This is one reason why — even if not nacg$s theory — each gate has to
acquire four raw values, each at a different time. The otbason is that taking more raw values
amplifies the physical modulation amplitude,,,s of the signal and thus reduces the variance of
the computed range (see section 4.2).

4.3.2 The Impact of Quantization on the Phase Probability Distribution.

After calculating the impact of quantization on the rangeshwith noiseless raw data in the previous
section we now focus on the probability distribution of tiesulting range under noisy input. The
raw channels4,, and B,, follow Gaussian distributions with standard deviatierig” and o’3".
Quantization of these values leads to discrete distribatid/e chose the same dimensioning of the
valuesA, s, Conys, s in the last section and sgt= 7 ando’?® = o™ = 1 in order to compute
these distributiorfs In 8 channel mode (eq. 23) two raw values of each gate A anc:Bdded
for Im and Re respectively. This leads to a discrete bivariate distibuin the plane with same
width in z- andy-direction. Taking now the phases according to eq. 22 anarsagwp all values
resulting in the same phase finally gives the probabilityridistion of ¢,4, as shown in Fig. 6 for
several amplituded,,,.

This discrete distribution substitutes the Offset Normsiribution that would be obtained with-
out quantization (section 4.2). How to characterize thsrdiution? The spread of a set of direc-
tional data can be expressed via thean resultant lengtMRL) [27]. MRL takes values between
0 and1 where( corresponds to maximal scattered angles ana zero variance. We have used
this measure to illustrate the spread of the expected lligibhs, see Fig. 7. As expected it con-
verges against with rising amplitude. However, the variation also depeodshe phase because
the quantization lattice is not isotropic.

6It would make no difference 7 # o™ since the raw values, are added as in eq. 23 bottom.
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5 Experiments

In order to verify the theoretically derived error sourcesperformed measurements with the pro-
totype camera PMD 19k from PMDtec (see appendix for spetibica This particular camera
was chosen because internal digital postprocessing cagpdas$ed by direct read-out of the raw
intensities, thus allowing for a direct investigation oétimtrinsic errors of the measurement con-
cept. These errors are representative for other prototypi@g continuous-wave correlation. The
following experiments are restricted to illustrating threoes derived in the earlier chapters. We do
not consider effects that are unique for particular retibns of the measurement principle. This
also includes the angular resolution which strongly depemdthe number of pixels that a camera
has (there are sensors that measure only one value up tansysith 1000x1000 pixels).

As atarget, a checkerboard composed of patches with fouregbfeflectivities of 84, 50, 25 and
12.5 percent was installed on a moving stage with millimptecision. The range, amplitude and
raw values from the PMD 19k camera were acquired at equigpadisplacements of the moving
target using integration times from 0.1 to 30 ms. The target @riented perpendicular to the optical
axis in all our experiments.

The moving stage can be positioned precisely, but the distaatween the camera lens and the
closest point of the target cannot be used as a ground truthdowvhole target since the camera
measures the radial distance and not the Cartesian z-catediA pinhole model was used to
determine, for each position of the moving stage, where enrttage the target should be located
and at what depth. In addition, this approach has allowedtaentrate on particular patches of
the checkerboard in order to investigate the influence ofdfiectivity. The next sections detail the
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geometrical model and the results of the measurements.

5.1 Geometrical Model

A simple pinhole model was used in order to map the depth insagéhe ground truth and thus
allow for quantitative characterization of the camera.égre conversion from Cartesian world
coordinatesgz, y, z) to the chip coordinate®n’, n’, r) is

r o= Va4 y?+ 22 (34)

wherep, is the physical size of one pixel on the chip afis the focal length. The origin of the chip
coordinates was chosen to be on the center of the chip anditie of the world coordinates is in
the lens (the pinhole). The z-axis is the optical axis. Stheecamera delivers the radial distances
r, the inverse conversion is trivial. A flat patch, describethwormal vectori and space poini,
can be transformed from world coordinates to chip cooréistat

e Transform the vertices of the object to chip coordinates
e Check which pixels are inside the resulting polygon

e For each of these pixels, compute the intersection of theabland a ray emanating from the
center of the pixel

e Transform the coordinates of the point of intersection tip cloordinates

The third and the fourth step can be performed at the samédymeting that for an arbitrary point
2 on the surface

7 = —— (p. —pam. )" (35)
Va4 (pam')? + 2
it holds that
i-(T—ay) = 0
it - iy (pan)? + (par’)? + f2
= o= (36)

nzf - nzpdn, - nypdm/

wheren’, m’ are distances from the center of the chip in pixel units.
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5.2 Amplitude Behavior

For a characterization of the camera the amplitude of thessidal modulation signal from eq. 7
Is at least as important as the range information itselfesinsheds light on the reliability of the
latter. The amplitude obviously depends on the integratioa and on the reflectivity of the object,
but also on the distance itself, see Fig. 8. This figure shbesamplitude observed from a patch
of 84% reflectivity for various integration times. For higheflectivities, the curves are merely
shifted to the right. The amplitude drops rapidly with drsta. For longer distances and for the
integration times shown here, the signal can no longer be. We have used exposure times up
to 30ms in order to get reliable data for the whole range. Heweat higher integration times a
saturation effect is observed that masks the modulatioritude. Figure 8 shows the sharp drop
from the maximum to a low value and a further slow decreasantdsvzero (see markers A and
B). Considering that the amplitude is computed from a diffeesaf 2 or 4 raw values, one can
interpret the fast drop as the region where one raw valueréady saturated and the other one
is approaching saturation. Once they are both saturatenl,difference, and hence the estimated
amplitude, becomes zero. The consequences will be distus#ee next section.
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Figure 8 Average amplitudes for various integration times. The data was acquired from a patch with 84%
reflectivity. The amplitude decreases fast with the distance. At very low distances the amplitude drops to
a low value (A) and further slow decreases towards zero (B) due to saturation effects. Curves of higher
integration times or higher reflectivities are merely shifted to the right.

Since the variance of the estimated distance strongly dispamthe amplitude, a higher dynamic
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range of the sensor would be desirable. Future systems @gBibly make use of stronger light
sources such as vertical lasers [28] and employ sensordogihithmic behavior [29].

5.3 Depth Bias and Variance

Every particular camera has its specific constant bias dael&tay between the reference signal at
the diodes and on the chip itself. We have determined thgebfince and then corrected for it in
all further measurements. All figures show corrected values

In addition to this constant bias, there is a sinusoidal makie magnitude of about 5 cm as
can be seen in Fig. 9 (right). The suspected cause is an iegpstiape of the reference signal: the
phase calculation assumes a sinusoidal reference sigridhdactual reference signal has rather
a rectangular shape. Numerical simulations show that teesatic error due to this wrong as-
sumption leads to a sinusoidal shaped bias [10, 16, 25] "Gheexact waveform of the reference
signal, the calculation of the phase could be adapted inr aodavoid this effect, as discussed in
section 3.2 . The alternative approach is to tabulate thduals and correct for them as shown for
instance in [21].

At longer distances, one can observe a large deviation frentre range for short integration
times (Fig. 9 left). Although the deviation may look like d@nher form of bias in this plot, it is in
fact the consequence of a large variance: For short iniegratnes, the signal starts to become too
small at long distances. Neglecting quantization effattsan be shown that the estimated phase
then follows a uniform distribution (section 4.2). The esdted distance then occupies values in
the whole unambiguous range. Since Fig. 9 shows the meahfcdrakes and pixels of a patch for
every position, the resulting value converges to the midtitbe unambiguous range with vanishing
signal amplitude. Note that for the highest reflectivity¥@4 all measurements with less than 5 ms
integration time show this effect.

For short distances, there is another remarkable deviéffign 9 C). It occurs at different posi-
tions for higher integrations times and is a consequenceaflaation effect (Fig. 11 bottom). The
curves have the same shape but are shifted by the distandedct everexposure first occurs for
each integration time. As discussed above, the estimatea ohepth then converges to the center
of the unambiguous measurement interval. Again, the liegulleviation of the mean value from
the ground truth is due to a high variance that can be obséfrtleel depth values are not averaged
before plotting (Fig. 11).

A method to mask overexposed pixels was proposed in [22] Bowsato observe an additional
bias at very close distances that can be explained by théaicthe light source can no longer be
considered as a point source in this region.

The1/A? law relating variance to amplitude can be verified by reauydin arbitrary static scene
and plotting the temporal variance of each pixel againstatse of1/A? (Fig. 10).
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Figure 9 Average measured distance vs. true distance (left) and bias vs. true distance (right) for various
integration times. The values are the average of 100 frames. Values were obtained from patches with 84%
reflectivity (left) and 50% reflectivity (right) respectively. In both graphs the effect of low modulation amplitude
as well as overexposure (C) can be observed. See text for discussion.
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Figure 10 Temporal variance against 4z computed from a static scene. The figure corroborates the theo-
retical relation (eq. 29) derived in section 4.2.
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5.4 Quantization Error

In all results discussed above, the measured raw valuesawveraged over many frames in order to
be able to observe systematic errors independently of lBysaveraging the information, though,
the quantization errors vanish. Therefore, the results fsongle frames are presented in Fig. 11.
Again, reflectivities of 84%, 50%, 25% and 12.5% were useti witegration times ranging from
0.1 ms to 30 ms. Fig. 11 shows the resulting curves for thetavgh 25% reflectivity. The ampli-
tude curves for the other reflectivities are shifted to tliedeto the right, but have the same shape.
At first glance one can see the sparsity of the measured destaat low modulation amplitudes
which are either due to weak signal (long distances) or aatur (short distances). For small am-
plitudes, the depth can assume only specific values, (séersdc3) that are spread over the whole
unambiguous range. Taking the mean would result in a distaalcie somewhere in the middle of
the range as can be seen in Fig. 9 (left).

6 Conclusion and Outlook

We have investigated the continuous-wave modulated tifxflight measurement principle and
its associated errors for 3D cameras. The mathematics aokthered phase estimation has been
derived in a concise fashion and it has been shown that thmapiidy distribution of the resulting
range is an Offset Normal distribution (also known as PredNormal distribution). With this,
the variance of the resulting distance estimate can be cmdgxactly and we have confirmed that
Var(d) = ﬁ IS a good approximation. By modeling the measurement anchastin process, we
have shown that in the limit of low amplitudes, the depth maip exhibit very significant artifacts
due to quantization. All theoretically derived error sastave been illustrated by measurements.
Other systematic errors such as the bias due to anharmgmalsiand overexposure have been
discussed as well.

The errors addressed are intrinsic to this kind of 3D camneatd,even future models will suf-
fer from low amplitudes due to large distances or low reflégti The noise in this regime could
be reduced with adaptive integration times, which could &lslp avoid overexposure. Adaptive
systems with two integration times already exist, and izameras will perhaps be able to adapt
continuously to the illumination conditions. The errorsedo anharmonic signals can be avoided
by using appropriate calculations, provided the actuapsha the modulation signal is known.
The quantization error could be drastically reduced if thg values were quantizedter the sub-
tractions are carried out in analog. Of course this is a teahnhallenge and a physical realization
could engender new error sources.
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Figure 11 Estimated distances and average amplitude against true distance for various integration times
and a target of 25% reflectivity. The quantization effect is clearly visible at the horizontal aligned measure-
ment points and occurs both at overexposed pixels (left sides of bottom graphs) and at high distances (upper
graphs). In both cases, the estimated amplitude of the sinusoid in eq. 7 vanishes.
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Table 1 PMD 19k datasheet.

Pixel Dimensions | 40um x 40um
Resolution 160 x 120
Optical Fill Factor 30%
Modulation Frequency 20 MHz
Max.Field of View 4@
Focal Length 12mm
lllumination Power | =~ 3 optical
Wavelength 810 nm
Frame Rate up to 15 fps
AD-Converter 12-bit
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