Errors-In-Variables Regression with Arbitrary Covariance and its Application to Optical Flow Estimation
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Introduction

Linear inverse problems in computer vision, including shape fitting and
motion estimation, give rise to parameter estimation problems with highly cor-
related errors in variables. Established total least squares methods estimate
the most likely corrections A and b to a given data matrix [A,b] perturbed
by additive (Gaussian noise, such that there exists a non-zero solution y with

A+ A, b+ by = 0. In practice,

— regression imposes a more restrictive constraint, namely the existence
of a solution x with [A + Alx = [b+ b|.

— complicated correlations arise canonically from the use of linear filters.

We, therefore, propose a maximum likelihood (ML) estimator for regression in
the more general case of arbitrary positive definite covariance.

Errors-In-Variables (EIV) Model

Given m,n € N, noisy variables
AeRrR™ beR" (1)

and a symmetric positive definite matrix

= R(anrm) X (mn+m) (2>

modeling the covariance of the entries of A and b, the linear additive Gaus-
sian errors-in-variables (EIV) model (A, b, Y) is specified by the following
assumptions:

1. There exist latent variables A; € R™*", b; € R" and additive errors in variables
A, € R™" b, € R™ such that

A=A +A andb=0b+1b, . (3)

2. Let vec(|Ae, be|) denote the column-wise vectorization of the composite matrix
(Ag, be]. Then, the errors A, b. are realizations of a random matrix A/ and a
random vector b, whose entries are normally distributed with zero mean and
covariance matrix 2

vec([AL, D)) ~ N(0,Y) | ie. (4)
1 /! 1./ 2
exp ( —35 ||vec(|A., b,
P(vec([Ac, be])) = s eclid Bl - (5)
V (@m)mnm det 33
with ||-||s; : R™™"*™ — Ry such that
Yo € R™ ol = VTSl | (6)

which denotes the Mahalanobis norm for given ..

3. The latent vector b; linearly depends on the columns of A, i.e.
dr e R": Az =19 : (7)

making this system of equations solvable.

Equilibrated Total Least Squares (ETLS)

From the wide range of subspace estimators, we compare directly against ETLS
7]. In ETLS, the data is equilibrated, [A/, 0] := Wi[A, bW}, before TLS is
performed on [A’, ] (yielding a solution 3’ € R™™!), and finally y := Wgy/
is understood as a solution to the initial problem. ETLS equals MLE iff
cov(vec(Wr[A, b|W4)) = 1. However,

COV (V@C(WL[A, b]Wg)) = (Wgr ® Wp)cov(vec(|A, b)) (Wi ® WL)T :

and due to the structure of (Wr® W), covariance matrices cov(vec(|A, b])) exist
such that W and Wx cannot be chosen to equilibrate them.

Maximum-Likelihood Estimation (MLE)

A AN

Maximum likelihood estimates A, b, of AL b, are the most likely (w.r.t. (5))
errors satisfying (3) and (7). The solution & then follows from (A— A,)& = b—b..
For an observed A.b, maximum likelihood estimation of A; and b; hence reduces
to the optimization problem

argmin [[vee([Ae, b)) 8)
A eRmxn b eR™
subject to dr e R": (A—A)xz=b—10b, . (9)

Substituting for b, (9) in the objective function (8) yields equivalently

argmin p(d) , (10)

d ERmn—i—n

with p : R™*" — R such that VA, € R™*"Vx € R™
p(vec(|Ae, ) = [[vec(|Ae, b — (A = Ac)z])]ly - (11)

Now, p is a multivariate polynomial in the (unconstrained) entries of A, and
x. The largest exponent of any of the free variables is two while (mixed) terms of
order one through four occur. Depending on A, b, and X, p may be non-convex.

Plane Fitting

The plane fitting problem amounts to solving an over-determined linear system
Az =b, A € R"™? b € R™, x € R? approximately. As ground truth, we draw
a matrix A; and a vector x and let b; = A;jx. A; and b; are then perturbed,

vec(|A, b]) = vec(|A;, by]) + L vee(D) | (12)

with vec(D) ~ N(0,0?) and L € R*™**™ guch that 3 = o°?LL*. Graphs below
depict the distributions of the Euclidean distance between x and estimates x,
accumulated over 100 random plane fitting problems.
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Algorithm

We use two maps as a data structure to represent the multivariate polynomial p.

— For each monomial, all variable indices are mapped to their powers

— Monomials are mapped to their leading coefficients

Thereby, the first and second derivatives of p can be computed algebraically. The
second partial derivatives of p are linear forms. This suggests the use of one of
the following numerical optimizers.

— Newton optimization with subspace trust region

— Cyclic coordinate descent, iteratively minimizing the polynomial
with respect to a single variable, globally

In principle, the minimization of p can be reduced to root-finding of univariate
polynomials by the construction of a Grobner basis. However, Buchberger’s
algorithm 2] exhibits exponential runtime in the worst case, so this approach is
suitable only for very small problems with highly structured covariance.
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Local Optical Flow Estimation

Let N € N and g € RY be a vector of all gray values in a sequence of images.
Moreover, consider linear shift invariant filters with finite impulse response which
approximate partial derivatives,

0:9 = L.y, ayg = Lyg, Org = Ltg . (13)

Suppose now the existence of latent gray values g; € R and errors g. € RY
which are realizations of random variables distributed according to A (0,3,),
such that ¢ = g; + g.. Then, the brightness change constraint equation (BCCE)
for locally constant displacement |4, 1| imposes the existence of optical flow
fz, fy € R which is constant with respect to the chosen patch, i.e.

( (3xgz)1 (9ygz)1\ ( faz) ( (3tgz)1\

o HEI IR (14)
\\ (O g1) (Oygi)i ) / \\ (O:g1)k J

A by

_J/ J/

Note that A, A, € R™*? and b,b, € R™ can be defined by replacing g; by g
and g., respectively, in eq. (14). Statistically appropriate motion estimation now
means solving the EIV problem (A, b, ) with

(LY, LT LY, LT L5, LT
¥ = cov(vec([A, b)) = | L,S,L, L,X,L, LY,Li | . (15)
\ LS, LT L%, Ll Lis,LT
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Conclusion

We propose a ML estimator for linear EIV regression under additive Gaussian
noise with zero-mean and arbitrary positive-definite covariance. This es-
timator requires the minimization of a non-convex multivariate polynomial which
18 carried out by cyclic coordinate descent and a Newton method, respectively.

— MLE clearly outperforms TLS and ETLS [7] in a simulation where
planes are fitted to clouds of points jittered by correlated noise.

— In optical flow estimation, ETLS is a good approximation to MLE
(outperforming TLS).

— In very small, highly structured problems, a Grobner basis can be con-
structed [2] to reduce MLE to root-finding of univariate polynomials.
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