Publications of the Ommer lab

2018

Sanakoyeu, A, Kotovenko, D, Lang, S and Ommer, B (2018). A Style-Aware Content Loss for Real-time HD Style Transfer. Proceedings of the European Conference on Computer Vision (ECCV), Project URL
Esser, P, Sutter, E and Ommer, B (2018). A Variational U-Net for Conditional Appearance and Shape Generation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://compvis.github.io/vunet/, Project URL
Lang, S and Ommer, B (2018). Attesting Similarity: Supporting the Orgainzation and Study of Art Image Collections with Computer Vision. Digital Scholarship in the Humanities, Oxford University Press, Project URL
Sanakoyeu, A, Bautista, M and Ommer, B (2018). Deep Unsupervised Learning of Visual Similarities. Pattern Recognition. 78. https://authors.elsevier.com/a/1WXUt77nKSb25 PDF icon PDF (8.35 MB), Project URL
Wahl, A S, Erlebach, E, Brattoli, B, Büchler, U, Kaiser, J, Ineichen, V B, Mosberger, A C, Schneeberger, S, Imobersteg, S, Wieckhorst, M, Stirn, M, Schroeter, A, Ommer, B and Schwab, M E (2018). Early reduced behavioral activity induced by large strokes affects the efficiency of enriched environment in rats. Sage Journals. Journal of Cerebral Blood Flow & Metabolism. http://journals.sagepub.com/doi/abs/10.1177/0271678X18777661PDF icon 0271678x18777661.pdf (770.87 KB)
Büchler, U, Brattoli, B and Ommer, B (2018). Improving Spatiotemporal Self-Supervision by Deep Reinforcement Learning. Proceedings of the European Conference on Computer Vision (ECCV). (UB and BB contributed equally), Munich, GermanyPDF icon Article (5.34 MB)
Ghori, O, Mackowiak, R, Bautista, M, Beuter, N, Drumond, L, Diego, F and Ommer, B (2018). Learning to Forecast Pedestrian Intention from Pose Dynamics. Intelligent Vehicles, IEEE, 2018

2017

Ufer, N and Ommer, B (2017). Deep Semantic Feature Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon article (8.88 MB)
Bautista, M, Sanakoyeu, A and Ommer, B (2017). Deep Unsupervised Similarity Learning using Partially Ordered Sets. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon deep_unsupervised_similarity_learning_cvpr_2017_paper.pdf (905.82 KB)
Bautista, M, Fuchs, P and Ommer, B (2017). Learning Where to Drive by Watching Others. Proceedings of the German Conference Pattern Recognition. Springer-Verlag, Basel. 1, Project URL
Brattoli, B, Büchler, U, Wahl, A S, Schwab, M E and Ommer, B (2017). LSTM Self-Supervision for Detailed Behavior Analysis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (BB and UB contributed equally)PDF icon Article (8.75 MB)
Wahl, A S, Büchler, U, Brändli, A, Brattoli, B, Musall, S, Kasper, H, Ineichen, B V, Helmchen, F, Ommer, B and Schwab, M E (2017). Optogenetically stimulating the intact corticospinal tract post-stroke restores motor control through regionalized functional circuit formation. Nature Communications. (ASW & UB contributed equally; BO and MES contributed equally). https://www.nature.com/articles/s41467-017-01090-6
Sümer, Ö, Dencker, T and Ommer, B (2017). Self-supervised Learning of Pose Embeddings from Spatiotemporal Relations in Videos. Proceedings of the IEEE International Conference on Computer Vision (ICCV)PDF icon Paper (3.98 MB)PDF icon Supplementary Material (3.36 MB)
Milbich, T, Bautista, M, Sutter, E and Ommer, B (2017). Unsupervised Video Understanding by Reconciliation of Posture Similarities. Proceedings of the IEEE International Conference on Computer Vision (ICCV). https://hciweb.iwr.uni-heidelberg.de/compvis/research/tmilbich_iccv17

2016

Bautista, M, Sanakoyeu, A, Sutter, E and Ommer, B (2016). CliqueCNN: Deep Unsupervised Exemplar Learning. Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS). MIT Press, Barcelona. https://arxiv.org/abs/1608.08792PDF icon Article (5.79 MB), Project URL
Bell, P and Ommer, B (2016). Digital Connoisseur? How Computer Vision Supports Art History. Connoisseurship nel XXI secolo. Approcci, Limiti, Prospettive, A. Aggujaro & S. Albl (ed.). Artemide, Rome

2015

Yarlagadda, P and Ommer, B (2015). Beyond the Sum of Parts: Voting with Groups of Dependent Entities. IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE. 37 1134--1147. http://www.computer.org/csdl/trans/tp/preprint/06926849.pdf
Rubio, J C, Eigenstetter, A and Ommer, B (2015). Generative Regularization with Latent Topics for Discriminative Object Recognition. Pattern Recognition. Elsevier. 48 3871--3880PDF icon Technical Report (5.49 MB)
Antic, B and Ommer, B (2015). Per-Sample Kernel Adaptation for Visual Recognition and Grouping. Proceedings of the IEEE International Conference on Computer Vision. IEEEPDF icon Technical Report (1.58 MB)
Rubio, J C and Ommer, B (2015). Regularizing Max-Margin Exemplars by Reconstruction and Generative Models. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 4213--4221PDF icon Technical Report (2.8 MB)
Antic, B and Ommer, B (2015). Spatio-temporal Video Parsing for Abnormality Detection. arXiv. abs/1502.06235. http://arxiv.org/abs/1502.06235PDF icon Technical Report (4.61 MB)
Antic, B, Büchler, U, Wahl, A S, Schwab, M E and Ommer, B (2015). Spatiotemporal Parsing of Motor Kinematics for Assessing Stroke Recovery. Medical Image Computing and Computer-Assisted Intervention. SpringerPDF icon Article (2.24 MB)
Bell, P and Ommer, B (2015). Training Argus. Kunstchronik. Monatsschrift für Kunstwissenschaft, Museumswesen und Denkmalpflege. Zentralinstitut für Kunstgeschichte. 68 414--420

2014

Takami, M, Bell, P and Ommer, B (2014). An Approach to Large Scale Interactive Retrieval of Cultural Heritage. Eurographics Workshop on Graphics and Cultural Heritage. The Eurographics AssociationPDF icon Technical Report (7.94 MB)
Wahl, A S, Omlor, W, Rubio, J C, Chen, J L, Zheng, H, Schröter, A, Gullo, M, Weinmann, O, Kobayashi, K, Helmchen, F, Ommer, B and Schwab, M E (2014). Asynchronous Therapy Restores Motor Control by Rewiring of the Rat Corticospinal Tract after Stroke. Science. American Association for The Advancement of Science. 344 1250--1255. http://www.sciencemag.org/content/344/6189/1250
Kandemir, M, Rubio, J C, Schmidt, U, Wojek, C, Welbl, J, Ommer, B and Hamprecht, F A (2014). Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures. Medical Image Computing and Computer-Assisted Intervention. Springer. 154--161PDF icon Technical Report (2 MB)
Antic, B and Ommer, B (2014). Learning Latent Constituents for Recognition of Group Activities in Video. Proceedings of the European Conference on Computer Vision. Springer. 33--47PDF icon Technical Report (4.54 MB)
Monroy, A, Bell, P and Ommer, B (2014). Morphological Analysis for Investigating Artistic Images. Image and Vision Computing. Elsevier. 32 414--423PDF icon Technical Report (2.86 MB)
Takami, M, Bell, P and Ommer, B (2014). Offline Learning of Prototypical Negatives for Efficient Online Exemplar SVM. Winter Conference on Applications of Computer Vision. IEEE. 377--384. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6836075
Eigenstetter, A, Takami, M and Ommer, B (2014). Randomized Max-Margin Compositions for Visual Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 3590--3597PDF icon Technical Report (8.01 MB), Project URL

2013

Monroy, A, Bell, P and Ommer, B (2013). A Morphometric Approach to Reception Analysis of Premodern Art. Scientific Computing & Cultural HeritagePDF icon Technical Report (17.75 MB)
Arnold, M, Bell, P and Ommer, B (2013). Automated Learning of Self-Similarity and Informative Structures in Architecture. Scientific Computing & Cultural Heritage, Project URL
Antic, B, Milbich, T and Ommer, B (2013). Less is More: Video Trimming for Action Recognition. Proceedings of the IEEE International Conference on Computer Vision, Workshop on Understanding Human Activities: Context and Interaction. IEEE. 515--521PDF icon Technical Report (984.89 KB)
Bell, P, Schlecht, J and Ommer, B (2013). Nonverbal Communication in Medieval Illustrations Revisited by Computer Vision and Art History. Visual Resources Journal, Special Issue on Digital Art History. Taylor & Francis. 29 26--37. http://www.tandfonline.com/doi/abs/10.1080/01973762.2013.761111
Garbe, C S and Ommer, B (2013). Parameter Estimation in Image Processing and Computer Vision. Model Based Parameter Estimation: Theory and Applications. Springer. 311--334PDF icon Technical Report (928 KB)
Ommer, B (2013). The Role of Shape in Visual Recognition. Shape Perception in Human Computer Vision: An Interdisciplinary Perspective. Springer. 373--385PDF icon Technical Report (8.18 MB)
Yarlagadda, P, Monroy, A, Carque, B and Ommer, B (2013). Towards a Computer-based Understanding of Medieval Images. Scientific Computing & Cultural Heritage. Springer. 89--97. http://link.springer.com/chapter/10.1007/978-3-642-28021-4_10, Project URL

2012

Monroy, A and Ommer, B (2012). Beyond Bounding-Boxes: Learning Object Shape by Model-driven Grouping. IEEE Transactions on Pattern Analysis and Machine Intelligence. Springer. 7574 582--595PDF icon Technical Report (1.58 MB)
Yarlagadda, P and Ommer, B (2012). From Meaningful Contours to Discriminative Object Shape. Proceedings of the European Conference on Computer Vision. Springer. 7572 766--779PDF icon Technical Report (4.58 MB), Project URL
Yarlagadda, P, Eigenstetter, A and Ommer, B (2012). Learning Discriminative Chamfer Regularization. BMVC. Springer. 1--11. http://www.bmva.org/bmvc/2012/BMVC/paper020/paper020.pdf, Project URL

Pages