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Abstract

We propose a Bayesian smoothness prior in the spectral fitting of magnetic resonance spectro-

scopic images which can be used in addition to commonly employed prior knowledge. By combin-

ing a frequency-domain model for the free induction decay with a Gaussian Markov random field

prior, a new optimization objective is derived that encourages smooth parameter maps. Using a

particular parametrization of the prior, smooth damping, frequency and phase maps can be ob-

tained while preserving sharp spatial features in the amplitude map. A Monte Carlo study based

on two sets of simulated data demonstrates that the variance of the estimated parameter maps

can be reduced considerably, even below the Cramér-Rao lower bound, when using spatial prior

knowledge. Long echo time 1H-MRSI at 1.5T of a patient with brain tumor shows that using the

spatial prior resolves the overlapping peaks of choline and creatine also when a single voxel method

fails to do so. Improved and detailed metabolic maps can be derived from high spatial resolution

short echo 1H-MRSI at 3T. Finally, the evaluation of four series of long echo time brain MRSI data

with various signal-to-noise ratios shows the general benefit of the proposed approach. (190 words)

Keywords: quantification; MRSI; spectral fitting; spatial prior knowledge
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Nomenclature

AMARES Advanced Method for Accurate Robust and Efficient Spectral fitting (5)

AQSES Automated Quantitation of Short Echo time MRS Spectra (11, 12)

Cho Choline

Cr Creatine

CRLB Cramér-Rao Lower Bound

DCE-MRI Dynamic Contrast-Enhanced Magnetic Resonance Imaging

EEG ElectroEncephaloGraphic (imaging)

FID Free Induction Decay

FITT quantification approach proposed in (8)

GAMMA A General Approach To Magnetic Resonance Mathematical Analysis (29)

GMRF Gaussian Markov Random Field

GSLIM Generalized Spectral Localization by IMaging (14)

HSVD Hankel Singular Value Decomposition

ICM Iterated Conditional Modes (algorithm)

jMRUI Java-based graphical user interface for processing MRS (39)

LCModel quantification approach proposed in (9)

MAP Maximum-A-Posteriori (estimate)

MEG MagnetoEncephaloGraphic (imaging)

NAA N-Acteylaspartate

PET Positron Emission Tomography

PRESS Point RESolved Spectroscopy

ProFit PRior-knOwledge Fitting (13)

QUEST quantitation based on semi-parametric QUantum ESTimation (10)
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RMSE Root Mean Square Error

SLIM Spectral Localization by IMaging (14)

SNR Signal-to-Noise Ratio

SPECT Single Photon Emission Computed Tomography
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1 Introduction

Accurate quantification is a crucial requirement for the study of metabolism in vivo by means of

magnetic resonance spectroscopy (MRS). The metabolic profile of a magnetic resonance spectrum

may be used in noninvasive diagnosis and the characterization of patho-physiological changes and,

thus, may serve as an important tool in clinical research. In addition to this traditional field of

application, recent approaches using hyperpolarized nuclei as tracers in molecular imaging also rely on

MR spectroscopic imaging (MRSI) (1). The accurate quantification of such MR spectroscopic signals

depends on stable approaches to spectral fitting, which is a challenging problem due to artifacts (most

notably eddy currents or ghost), overlapping peaks and baseline distortions due to macromolecules

and residual water or lipids present in MRS data (2, 3). Another, major problem is the notorious low

signal-to-noise ratio (SNR) of the MRS signal due to the generally low abundance of the metabolites

of interest (4).

A common approach to improve the quality of spectral model fitting is the use of prior knowledge.

For example the AMARES fitting algorithm, already introduced by Vanhamme et al . in 1997 (5),

allows to consider various forms of constraints on the model parameters in the non-linear optimization.

This prior knowledge may be the specification of upper and lower limits, i.e. box constraints, for

resonance line position, line width, or phase difference, but it may also impose limits on differences

or ratios thereof in a signal model with multiple resonance lines. Both empirical evidence (e.g. (6))

and formal results on the decrease of the Cramér-Rao lower bound (CRLB) for box constraints show

the benefit of imposing such prior knowledge in the fitting of the spectral model (7). More recent

fitting algorithms also impose prior knowledge on the estimate of the spectral signal composition by

the use of experimentally measured or simulated metabolite templates – as implemented, for example,

in FITT (8), LCModel (9), QUEST (10), AQSES (11, 12) or ProFit (13).

Although current approaches in MR spectroscopy aim at recording high resolution1 spectroscopic

images rather than acquiring single voxel spectra, most quantification routines largely ignore the spatial

context of the individual spectra in the MRSI and do little more than a sequential fitting of individual

spectra. With reasonable spatial smoothness assumptions for certain parameters of the signal model

at hand, however, one may want to introduce novel constraints in the spectral model fitting to further

improve quality and reliability of the fitting procedure.

A number of methods use spatial information for an optimal reconstruction of the signal from

k-space. The “spectral localization by imaging” (SLIM, GSLIM) by Hu et al . (14) and Liang et

al . (15), for example, assumes homogeneous metabolite concentrations in anatomical regions identified

in MRI, in order to reconstruct MR spectra from each region. Plevritis et al . (16) use the anatomical

1Note that by “high resolution” MRSI we refer to data with high spatial resolution as opposed to spectral resolution.
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information to adapt the k-space sampling and to enhance resolution in spectroscopic images. Bao

and Maudsley (17) propose an approach that estimates signal intensities for partial volume over MRI-

defined anatomic regions as an extension to the SLIM approach. Haldard et al . (18) introduce a

Bayesian prior in the reconstruction of MR signals to enable extended k-space sampling, also pointing

out the applicability of this concept for MRSI model fitting. In Kornak et al . (19), an expectation

maximization algorithm is proposed for the spatially regularized reconstruction of MRSI data using a

segmented map of tissue regions.

Bayesian approaches are often used for integrating anatomical or spatial information in the anal-

ysis of functional data as well, for example, for positron emission tomography (PET), single pho-

ton emission computed tomography (SPECT) (20), or magneto-/electroencephalographic imaging

(MEG/EEG) (21). In contrast to interpolation methods in k-space, these smoothing approaches work

in the spatial domain. Kelm et al . (22, 23) and Schmidt et al . (24) proposed the use of such Bayesian

spatial smoothness priors for the processing of dynamic contrast-enhanced MRI (DCE-MRI). Being a

general regularization method for spatial parameter maps in the processing of nonlinear signals, this

smoothness prior can be generalized to other types of vector-valued image data and also for a use with

MR spectroscopic images as first proposed by Kelm in 2007 (25).

One of the early approaches to exploiting spatial prior knowledge was introduced with FITT (8)

which proposes an iterative MRSI fitting methodology that includes a spatial smoothing step. After

voxel-wise baseline removal and parameter estimation, selected parameters (line width, frequency

shifts, and first and second order phase terms) are only accepted if consistent with a local neighborhood.

Also LCmodel (9) provides a spatial fitting mode for MRSI. If activated, LCmodel first analyzes a

central voxel and then proceeds outwards using the results from previously fitted voxels for initialization

and as a soft constraint (26) for new fits. This additional feature may speed up and improve the

analysis. An approach modeling the spatial variation of the phase parameter by a first order function,

i.e., a constraint which is linear in the three spatial directions, has been described by Bretthorst (27).

Only recently, Croiter Sava et al . (28) successfully incorporated a spatial prior in the AQSES algorithm,

following ideas from our initial study (25). A detailed comparison of spatial fitting approaches is

deferred to the discussion in section 5.3.

1.1 Objective of this study

In the present work, we propose and examine spatial smoothness assumptions as spatial constraints

on selected model parameters for improving the spectral fitting of MRSI data. We detail and extend

on earlier work presented in (25).

In a formulation based on a Gaussian Markov random field (GMRF) prior, the smoothness of
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selected parameter maps can be encouraged, and efficient methods for inference are presented. This

novel spatial constraint can be applied in addition to any other, commonly employed single voxel

prior knowledge. The spatial constraint can be highly selective: While encouraging a certain spatial

smoothness for specific parameters such as phase or line width over the whole image, it allows to esti-

mate parameters of diagnostic interest, such as the amplitude of the signal, in a totally unconstrained

fashion. In contrast to approaches in k-space (14–18) the proposed constraint allows to use spatial

neighborhood information in a very intuitive way; in contrast to (27) the proposed approach is not

constrained to certain parametric spatial functions of the spectral model parameters.

In the following we will first detail on the signal model, the proposed spatial constraint, and on

the inference algorithm used in the spatio-spectral parameter estimation (section 2). In section 3,

the experimental data, parameters and methods for the evaluation of the proposed approach are

presented. Results on resonance line fitting with and without spatial prior knowledge on real data,

and in simulation experiments are presented in section 4. An interpretation and discussion of the

results is provided in section 5 before the paper is concluded in section 6.

2 Theory

In the following, the signal model is described, a model for introducing spatial prior knowledge in the

estimation of the parameters maps is presented and some details on the inference algorithm used for

this task are provided.

2.1 The spectral signal model

Most quantification algorithms fit a nonlinear signal model Sθ(n) to the observed spectral data yn,

either in time-domain (5, 10, 11) or in frequency-domain (8, 9, 13), by minimizing the sum of squared

residuals

l(θ) =
N∑

n=1

(Sθ(n) − yn)2 (1)

which is the maximum likelihood solution under the assumption of additive white Gaussian noise.

Fitting in the frequency-domain allows to exclude frequency ranges which are spoiled by unmodeled

signals such as residual water or lipids. The corresponding residuals are then simply omitted from the

sum in Eq. (1).

In QUEST (10) and AQSES (11), the free induction decay (FID) signal is modeled as a linear

combination of M possibly damped, phase- and frequency-shifted metabolite templates Tm(tn). Here,

7
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the same model in the frequency domain is used:

Sθ(n) = FFT
{

ejφ0

M∑
m=1

Tm(tn) ame(j2πΔfm−Δdm)tn

}
with tn = nΔt, n = 1 . . .N (2)

with the imaginary unit j =
√
−1. The parameter vector θ contains a common zero-order phase

correction φ0 and for each of the M metabolites an amplitude am, frequency shift Δfm and exponential

damping Δdm. All Δfm and Δdm are initialized to zero whereas initial guesses for am and φ0 are

obtained by linear least squares. Note that it is sufficient to define the model Sθ(n) at the N discrete

time points tn sampled at the same interval Δt as the recorded FID signal. Also the metabolite

templates Tm(tn) only need to be known at these discrete time points. They may be defined by

experimental measuring (e.g. in vitro), physically motivated modeling (e.g. Lorentzian, Voigt line

shape for each resonance) or simulation using, for example, the GAMMA software (29).

2.2 The spatially constrained signal model

Spatial prior knowledge is incorporated using the Bayesian approach of specifying a prior distribution

over the sought parameter maps. The maximum likelihood point estimate is then replaced by the mode

of the posterior distribution, i.e. by the maximum a posteriori estimate (MAP). Here, a Gaussian

Markov random field (GMRF) is used to model a prior distribution that favors smooth maps (23)

for some model parameters φ0, am, Δfm and Δdm (cf. Eq. (2)). In the following, these parameters

are summarized in the vector θs with s indexing the voxel position. The optimization objective thus

becomes

l(Θ) =
∑

s

N∑
n=1

(Sθs(n) − ys
n)2 + σ2

∑
s∼t

||θs − θt||2W (3)

where Θ now contains the nonlinear parameters θs from all MRSI voxels, σ is the standard deviation

of the signal noise, ||θ||2W = θT Wθ is a 2-norm weighted with the diagonal matrix W and s ∼ t denotes

two voxels s and t that are neighbors according to some neighborhood system.

The first term in Eq. (3) just builds a sum over the squared residuals from all voxels s. Without

the second term in Eq. (3), the parameter vectors θs at individual voxels would be independent, the

optimization problem would decouple and would yield exactly the same solution as with the single

voxel approach in Eq. (1). Adding the second term which builds a sum over the squared distance ||·||W
between all neighboring voxel pairs s ∼ t encourages smooth solutions. Both σ and W determine the

trade-off between fitting the individual signals against smoothing the parameter maps. Furthermore,

W can be used to adjust the smoothness force of certain parameter maps individually, and even to

turn off smoothing for parameters such as the amplitude am by using a zero weight.

Note that other signal models like those employed with FITT (8), LCModel (9) or ProFit (13)

along with additional baseline models could be used together with the spatial regularization term in

8
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Eq. (3). Similar improvements as those demonstrated with our model (Eq. (2)) should be obtained for

these as well. Furthermore, spatial regularization terms other than the Gaussian could be used such

as generalized Gaussian (22) or total variation (TV) terms that generate less penalty at step edges

and might be considered more suitable spatial prior knowledge under some circumstances. While

our proposed approach can be applied in the same way, it turns out that the resulting objective

function cannot be optimized as efficiently as for a Gaussian prior. In our experience, the additional

computational needs do not justify the hardly observable improvements of the fit results.

2.3 Inference

An exact joint optimization of the objective in Eq. (3) over all parameters Θ would be computationally

intractable. Already an MRSI with, for example, 32 × 32 voxels and a signal model with just three

metabolites (each of which has three parameters plus a common phase parameter, Equation (2)) would

yield a parameter vector θs with 32*32*10 ≈ 10,000 entries, leading to an optimization problem in a

10,000-dimensional space.

Using a neighborhood system of 4 or 8 nearest neighbors as in our 2D implementation, however,

yields a sparse optimization problem in the sense that most of the entries in Θ are not directly

coupled. This sparseness can be exploited by special algorithms. One such algorithm is the iterated

conditional modes (ICM) algorithm (30), exploiting the Markov properties of the spatial constraint.

This algorithm optimizes single sites (here: spectra) in the image grid individually, conditioned on

observations and fitted parameters θs in its neighborhood, and iterates over the whole grid (31, 32).

For the optimization of Eq. (3), a generalized version of the ICM algorithm has been used which is

considering collections of sites instead of single sites at each step of the iteration. Although, this Block-

ICM algorithm has already been proposed by Besag (30), it has rarely been applied in the literature.

In (33), Block-ICM has been applied for subvoxel tissue classification in NMR microscopic images,

i.e. a discrete optimization problem. Spatially constrained fitting of dynamic contrast-enhanced MRI

using Block-ICM, i.e. nonlinear least squares fitting, has been proposed in (23) and was shown to

converge faster than the standard ICM approach in (22). The Block-ICM approach is closely related

to domain decomposition methods (34) which are frequently used in spatial optimization problems.

They are often used in combination with multigrid approaches (35) which may also provide directions

for improving the efficiency of the parameter estimation, and to easily tackle inference in 3D settings

with 6 or 26 neighborhood systems.

9
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3 Methods

For a first qualitative comparison of standard single-voxel and spatially constrained GMRF approach,

both methods were applied to exemplary clinical patient and experimental high resolution data (Sec. 3.1).

For a more detailed understanding of the smoothing behavior and potential biases (cf. (22)) of the

latter synthetic spectral data sets were designed (Sec. 3.2). Finally, the performance of both fitting

approaches were evaluated using experimental MRSI series with increasing spatial resolution in a visual

inspection of the fitting results (Sec. 3.3).

3.1 Fitting the models to real data

In a first test both fitting approaches were applied to two real 1H-MRSI recordings of the brain, both

with long and short echo time data. The first recording had been obtained from a clinical study

with brain tumor patients (36). The clinical study was conducted after institutional review board

agreement had been obtained. Patient enrollment was performed after informed consent had been

obtained. Long echo time 1H-MRSI data were acquired on a 1.5T clinical MR scanner (Siemens

Magnetom Avanto) using a standard PRESS sequence (data points: 512, echo time: 135 ms, repetition

time: 1000 ms, slice thickness: 15 mm, matrix size: 16×16, FOV: 160 mm×160 mm yielding a voxel size

of 10 mm × 10 mm × 15 mm). The short echo time brain data were acquired from a healthy volunteer

on a 3T clinical MR scanner (Phillips Achieva) at ultra-high spatial resolution (data points: 1024,

echo time: 34 ms, repetition time: 1300 ms, averages: 1, slice thickness: 10 mm, matrix size: 32 × 32,

FOV: 100 mm × 100 mm yielding a voxel size of 3.125 mm × 3.125 mm × 10 mm). The field-of-view

reduction was achieved by inner-volume saturated PRESS based on a highly spatially selective T1-

and B1- insensitive outer volume suppression (37).

All spectra were subject to a water peak removal using the hankel singular value decomposition

(HSVD) algorithm as implemented in the CSI tools software2 (38). Resonance lines of choline (Cho),

creatine (Cr) and N-acteylaspartate (NAA) singlets were fit using Lorentzian line models (cf. Tab. 1).

The single-voxel fits were performed using the AMARES algorithm from jMRUI (39) as well as an

analogous implementation from CSI tools. As both yielded the same results, only results obtained

with one of them are provided in the following. The GMRF for the spatially constrained fitting was

implemented as an extension to the CSI tools version; for details of the implementation of the inference

algorithm via Block-ICM see (22).

An estimate of the noise variance, which is needed for the GMRF (cf. Eq. (3)) approach, was

obtained from the residuals of manually verified single voxel fits. The task dependent regularization

parameter in Eq. (3) is the diagonal weighting matrix W . It has been determined once from the single

2Matlab based toolbox; freely available from http://hci.iwr.uni-heidelberg.de/download3/
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voxel fits of the simulated MRS images based on a robust variogram estimate at pixel distance (22) and

then used throughout all experiments. Hence, the smoothing parameters for the dampings W
(m)
d = .2,

the frequencies W
(m)
f = 2 and the phase map Wφ0 = 20/π were fixed. The amplitude smoothing

parameters W
(m)
a were set to zero which means that no smoothing constraint was imposed on the

amplitude maps. For the experiments in section 3.3, GMRFs with rescaled W ′ = λ × W (λ = 1, 2, 4)

were also tested.

3.2 Simulation study

As the introduction of constraints may bias the solutions significantly, the bias-variance behavior of

a single-voxel nonlinear least-squares fit and the GMRF approach was compared. Since this requires

knowledge of ground truth, synthetic test data had to be generated. To this end long echo brain MRSI

with 32 × 32 voxels at 1.5T was simulated using three singlets representing choline (Cho), creatine

(Cr) and N-acetylaspartate (NAA) with the parameters provided in Tab. 1. Based on three frequency,

damping, and amplitude maps and a phase shift map noiseless MRSI data were generated according

to the signal model in Eq. (2) (dwell time Δt = 1 ms, imaging frequency 64 MHz). For a Monte Carlo

study R = 100 versions of the generated MRSI data were simulated by adding isotropic white Gaussian

noise (σn).

- - - - - - - - - - Tab. 1 about here - - - - - - - - - -

When introducing spatial constraints into the analysis of an image, over-smoothing may easily

occur, obscuring or even removing relevant spatial features. Introducing spatial constraints to the

processing of a spectral image, however, may also affect the spectral dimension of the data. To

study both aspects, two data sets with different parameter maps were generated for the purpose of

emphasizing these different effects of a spatial prior:

• Sharp edges. First, spatially correlated random maps for all parameters have been generated by

smoothing maps of independent Gaussian random values. Sharp edges have been introduced by

subtracting the original amplitude in regions of the generated maps from a constant, sufficiently

large to ensure non-negative amplitudes (cf. Fig. 3). This data set has been simulated with

N = 256 data points and noise standard deviation of σn = .232.

• Overlapping peaks. Two ramp-shaped amplitude maps running vertically from zero to one for

Cho and horizontally for Cr were created in order to provide multiple combinations of Cho and

Cr amplitudes (cf. Fig. 6). NAA was simulated with a spatially correlated random amplitude

map and a mean amplitude of 1.5. All frequency and phase shifts were set to zero, whereas all
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dampings were increased by 10 Hz above the models in Tab. 1 as to cause overlapping spectral

peaks. This data set was simulated with N = 512 data points and noise standard deviation of

σn = .155.

Both synthetic data sets were fit using the known noise variance σ2 = σ2
n and W as detailed above

(Sec. 3.1). From the ground truth parameter θ and the R fit results θ̂i (i = 1 . . . R) for the repeatedly

simulated MRSI data the root-mean-squared error (RMSE) can be calculated for each voxel as

rmse =

(
1
R

R∑
i=1

(θ̂i − θ)2
)1/2

. (4)

Note that this is an estimate for the root of the expected squared error of the estimator θ̂ under the

data distribution,
√

E[(θ̂ − θ)2]. More information can be gained from the decomposition of the RMSE

into a bias and a standard deviation term which is provided by a bias-variance decomposition (40):

rmse2 = bias2 + stdev2 (5)

where

bias = θ̄ − θ (6)

stdev =

(
1
R

N∑
i=1

(θ̄ − θ̂i)2
)1/2

(7)

with θ̄ = 1
R

∑R
i=1 θ̂i. Root-mean-squared-error, bias and standard deviation were calculated for both

synthetic MRSI data sets.

3.3 Expert rating of fit quality

To compare the performance of the standard single voxel and the spatially constrained fitting four

series of MRSI image data were acquired with increasing spatial resolution, and decreasing signal-

to-noise ratio. Spectral images of the brain were acquired from healthy volunteers on a 3T Siemens

Trio Scanner (data points: 512, echo time: 135 ms, repetition time: 1000 ms). The four series varied

in slice thickness and number of repeats. For each of these series three MRSI images were acquired

with increasing spatial resolution overall within the range from 2 to 0.2 cm3 nominal volume. This

resulted in a total of 1433 spectra. Table 2 provides experimental details for the different data sets.

The mean signal-to-noise ratios (SNRs) have been computed in frequency domain as SNR = I/σ where

I denotes the height of the NAA peak in the phase-corrected real spectrum (the peak intensity) and

σ the standard deviation of the noise (2). All spectra were fit by both approaches as described above

(section 3.1).

12
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- - - - - - - - - - Tab. 2 about here - - - - - - - - - -

Fitting results were presented to two physicists with 2 years (FOK) and 7 years (BHM) of experience

in MRS data analysis in a randomized and blinded fashion. In a first round spectra were inspected for

their quality, i.e. the presence of artifacts or additional resonances, for example from lipids. Spectra

which were deemed non-evaluable by one of the raters were assigned to an ’artifact’ class and discarded

for the evaluation. Then, in a second round, spectra and fits were inspected for quality. Criteria for

a good fit were a match between spectrum and model fit in linewidth, position of the maximum, and

amplitude.

In a first test the unconstrained single-voxel fitting results (i.e., λ = 0) were compared with the

spatially constrained fitting results (λ = 1). After the inspection of the spectra the fraction of good

(i.e. successful) fits for every MRSI data set (Tab. 2) was calculated, individually for each rater. The

values for the single voxel fitting and the constrained fitting were then compared in a paired Wilcoxon

test at 5% significance level. Also the relative decrease in poor fits resulting from employing the spatial

constraint was calculated.

In a second test data from spatially constrained fits with λ = 2 and λ = 4 (section 3.1) were

presented to the second rater twice, also in a randomized and blinded fashion. Again, spectra were

evaluated for the goodness of fit. The analysis for λ = 0 (unconstrained, single voxel) and λ = 1

(the standard value for the GMRF fit) was also repeated another time. As a result every spectrum

was labeled twice from the same rater for λ = 0, 1, 2, 4. (We decided to use the same rater twice,

as the inter-operator variation showed to be significantly larger than variation from different signal

processing). This second test aimed at evaluating the sensitivity of the fitting result with respect to

the choice of the regularization parameter λ.

4 Results

Large differences were observed between the sequential single voxel fitting and the coupled GMRF

approach on the real data sets (Sec. 4.1). To understand these differences the smoothing behavior

(Sec. 4.2) and peak resolution (Sec. 4.3) on the synthetic data was studied, and the fit quality as a

function of the employed GMRF model was evaluated on real data in section 4.4.

4.1 Real data

Figure 1 shows nine adjacent voxels from a clinical 1.5T long echo time brain data set (36) with clear

Cho, Cr and NAA peaks. A tumor is present in the upper part of the array as visible from the T1-
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weighted MRI and the drastically elevated Cho levels, and low values for NAA in the MRSI. In four

of the nine voxels the single voxel fit (left) explains Cho and Cr with only one resonance component.

Here, the GMRF prior can resolve the two peaks in all voxels (right), and irrespectively of the changes

of the spectral pattern at the interface (”edge”) of normal and tumorous tissue, by enforcing that the

damping (line width) of the resonance lines should not change rapidly in neighboring voxels.

- - - - - - - - - - Fig. 1 about here - - - - - - - - - -

Figure 2 provides another comparison between sequential single voxel and spatial MRSI fitting using

a larger, high-resolution brain MRSI data set acquired with short echo time at 3T. While the phase,

damping and frequency maps are significantly smoothed from the GMRF prior on these quantities,

the amplitude map, indicating the metabolite concentrations, maintains sharp spatial features. Most

speckles in the amplitude map of the single voxel approach (top) are removed in the spatial fitting.

Overall, much clearer metabolite maps are obtained for the GMRF approach, with clear-cut edges and

in good agreement with the physiological structures visible from MRI.

- - - - - - - - - - Fig. 2 about here - - - - - - - - - -

4.2 Simulation – Sharp Edges

The simulation study provides further quantitative insights in the smoothing behavior and the reso-

lution of single peaks. Figure 3 presents results on the first simulated data set (“sharp edges”). The

first row shows the employed ground truth amplitude maps, i.e. the amplitude parameters am for Cho,

Cr and NAA, and the following rows show difference images to the solutions obtained for the same

simulated data with different fitting approaches. The second row shows results when using the spatial

prior (GMRF) whereas the third row shows results when using a single voxel method (AMARES). The

results in the last row have been obtained by smoothing the amplitude maps from AMARES with a

Gaussian filter where the kernel width has been chosen for each metabolite as to minimize the squared

error to the ground truth image. Note that such an optimization is certainly not possible given real

data and the obtained results are overoptimistic in favor of the smoothed single voxel approach.

- - - - - - - - - - Fig. 3 about here - - - - - - - - - -

Compared with the single voxel, the spatial approach visibly improves the estimate of Cho and Cr

in many voxels. The smoothed single voxel solution seems to be considerably better but also exhibits
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spatially correlated errors predominantly at the image border and at the edges. For NAA hardly any

difference can be seen between the three amplitude maps in Figure 3.

The Monte Carlo study using all R = 100 repetitions of the “sharp edges” data reveals that the

root-mean-squared error of the NAA amplitude estimate actually improves when using the spatial prior

(Fig. 4a). Even more improvement is obtained for the remaining parameters. As apparent from the

presented bias-variance decomposition of the RMSE in Figure 4 the gain is mainly due to a reduction

in standard deviation. Furthermore, the GMRF prior does not seem to introduce significantly more

bias than AMARES for most voxels in the “sharp edges” data.

- - - - - - - - - - Fig. 4 about here - - - - - - - - - -

A comparison of the standard deviations of the parameter estimates with the corresponding Cramér-

Rao lower bound (CRLB) for all metabolites in the “sharp edges” data is presented in Figure 5. As

expected from theory, the unbiased single voxel estimates do not beat the CRLB since (nearly) all points

fall above the diagonal in the scatter plots of Figure 5a. Occasional points below the diagonal are due to

the fact that the standard deviations obtained from the Monte Carlo study are only estimates based on

R = 100 repetitions and therefore exhibit some randomness themselves. Systematic improvements are

obtained with the spatial prior as apparent from Figure 5b. In line with the observed clear improvement

of the Cho and Cr difference images in Figure 3, most gain in terms of standard deviation is obtained

for these two metabolites (red and blue dots).

- - - - - - - - - - Fig. 5 about here - - - - - - - - - -

4.3 Simulation – Overlapping Peaks

Concentrating on the overlapping peaks of Cho and Cr, the bias-variance analysis on the second

simulated data set (“overlapping peaks”) confirms that the spatial prior heavily affects the standard

deviation of the amplitude estimates which make the main contribution to the RMSE (cf. Fig. 6).

Surprisingly, however, the single voxel approach also shows more bias than the GMRF approach for

small amplitudes at the left and upper border of the images. This effect is even more pronounced

when, at the same time, one metabolite has a high amplitude and the other a low amplitude. Then

also the standard deviation raises significantly. The GMRF approach does not exhibit such behavior.

- - - - - - - - - - Fig. 6 about here - - - - - - - - - -
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An analysis of these border voxels reveals that the observed effect is due to the fact that the

single voxel approach sometimes explains both the Cho and Cr resonances with only one component

and sets the amplitude estimate for the smaller metabolite peak to zero as for the example shown in

Figure 7. In contrast, the GMRF approach uses information from neighboring voxels to infer that

an additional small peak is more likely which is in accordance with the known ground truth of this

simulated example.

- - - - - - - - - - Fig. 7 about here - - - - - - - - - -

4.4 Differences in the experts’ rating

In Figure 8 three example spectra of adjacent voxels from the long echo time brain MRSI data set

(Tab. 2, series 4.3) are shown together with the single-voxel and GMRF fits. In the middle voxel both

the Cho and the Cr peaks are fit with a shifted frequency using the single-voxel approach while the

GMRF prior prevents the sudden frequency jump by comparison with the neighboring voxels. Also,

the phase estimates are much more consistent with the GMRF prior.

- - - - - - - - - - Fig. 8 about here - - - - - - - - - -

Having observed a large benefit from the GMRF prior in individual cases as well as in the simulation

study, it is interesting to evaluate its effect for different data sets and different experimental conditions.

Instead of looking at fit results for individual voxels, the effect of the GMRF prior is evaluated on

different MRSI data sets (cf. Tab. 2) in the following.

The fraction of successful fits correlates well with the SNR and the volume of the voxels for all

series (Fig. 9, left and middle). Differences can also be seen between series 3 and 4 which differ by

the number of scan averages and, hence, with respect to their SNR (cf. Tab. 2). Large differences

are observed in particular for the four images with the highest spatial resolution – all of which with

similar nominal voxel volume (Fig. 9). This may be attributed to the different partial volume effects.

One might notice that rater 1 discarded approx. 20% more spectra than rater 2, implicitly using much

stricter criteria to assign a spectrum to the “evaluable” class. Despite this difference the decisions

made by both raters follow the same general trends.

- - - - - - - - - - Fig. 9 about here - - - - - - - - - -

The spatially constrained fit performs significantly better than the unconstrained (p-value on the

“evaluable” data: rater 1 ≤.005, rater 2 ≤.05; on the complete data set: rater 1 ≤.01, rater 2 ≤.05).
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The spatial constraint improves the quality of the fits in ten out of the twelve MRSI images (Fig. 9,

right). In the worst case the constrained fit results in a 3% increase of low quality fits when compared

to the single voxel approach; in the best case poor fits are removed completely when using the spatial

prior (-100%). On average, the percentage of poor fits is reduced by approx. 10% when using a spatial

constraint as indicated by the horizontal lines in Figure 9, right (9.5% rater 1, 13.7% rater 2). This

value is relatively constant over all image series, and both raters.

- - - - - - - - - - Fig. 10 about here - - - - - - - - - -

A high spatial regularization (Fig. 10) leads to fitting results which, for large values of λ, are worse

than unconstrained fits. Unconstrained fits, with λ = 0, are not optimal either; an intermediate value

of λ = 1 is found to be a good choice for improving fitting results on a wide range of experimental

settings, resolution, and rating criteria.

Finally, Tab. 2 also lists computation times for both approaches along with their ratios. For series

1 and 2 the computation times increase with falling SNR. In contrast, computation times for series 3

and 4 are decreased for the intermediate SNR level and increased for very high and very low SNRs.

Overall, the GMRF approach follows the same trends and takes between 3.5 and 6.9 times longer than

the SV approach. However, the ratio increases with SNR for series 1 and 2 while it decreases for series

3 and 4. This effect might be due to the fact that series 3 and 4 exhibit more point spread which

makes the smoothness assumption of the GMRF more valid.

5 Discussion

5.1 Benefit of a biased estimator

The simulation study shows that by using spatial prior knowledge the estimation variance can be

decreased significantly, even below the Cramér-Rao lower bound (CRLB) of the single voxel approach.

The CRLB, however, provides a lower bound for unbiased estimators only. It can be beaten when

using a biased estimate. This is also well known for an AMARES-type single voxel fitting and can

be observed with (slightly misspecified) parameter constraints. For example, if all frequency shifts

in the simulated “sharp edges” data set had been constrained to vary by only ±1 Hz, the standard

deviation of the frequency estimates could not have exceeded 2 Hz. This would be better than the

CRLB for some of the voxels (cf. Fig. 5a). However, if the true frequency lay outside the interval of the

constraints the estimate would be biased. In general, prior knowledge and specific constraints on the

fitting model may reduce estimation variance, but may also largely increase bias if not appropriate.
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This emphasizes that specifying a correct spectral model is as important for a spatially constrained

fitting, as in a single voxel approach. A learning-based approach for testing whether spectra of an MR

spectroscopic image are in accordance with the predefined spectral model, and potentially to be used

here, has been proposed by Menze et al . (3). It may be used to minimize bias arising from imperfect

spectral models. Still, the CRLB assumes statistical independence between the FID parameters and a

spatial model such as the proposed GMRF prior certainly violates this assumption.

So, the question arises, whether spatial prior knowledge in form of the proposed GMRF is appro-

priate or not, i.e. whether it evokes bias or not. This question cannot be answered satisfactorily by a

Monte Carlo study since it would require the full and correct specification of the data generating pro-

cess. However, a number of arguments can be put forward for justifying that parameter maps are truly

smooth and thus for justifying the use of a spatial prior: First, the employed MR sequences always

cause a certain point spread inevitably leading to FID signals that are spatially correlated. Second,

parameters such as frequency shift and damping very much depend on the homogeneity of the applied

B0-field which is optimized in preceding shimming procedures; ideally these parameters may therefore

be constant across the whole region of interest. Third, it has been observed that the zero-phase pa-

rameter only varies smoothly within homogeneous tissue regions (in accordance with (27)). Finally,

exemplary fits seem to be much more plausible when using the proposed spatial prior to encourage

similar resonance line shift or widths in neighboring spectra (Fig. 1c), than without it (Fig. 1b).

5.2 Optimally adjusting the spatial prior

In the presented experimental study no direct smoothness prior was imposed on the amplitude maps,

since this is the main parameter of interest in quantification. Variation is expected for the amplitude

parameter which should not be smoothed away. To this end, the “sharp edges” data set (cf. Fig. 3)

demonstrates that edges can be reconstructed in amplitude maps without blurring. By contrast the

simple alternative of a post-hoc smoothing of single voxel estimates leads to blurring at the edges.

If no sharp edges are expected one could decide to perform some spatial smoothing of the amplitude

maps as well, which might further improve results in homogeneous image regions. This is easily achieved

by choosing a small positive weight Wa. Further work is necessary to devise a procedure for fine-tuning

the weighting matrix W that is better than the proposed variogram-based approach.

Some MRS image data, for example, from the acquisition of short echo time 1H-MRSI of the

brain, require appropriate baseline handling for obtaining optimal results, and most single voxel fitting

algorithms allow to consider baselines stemming from macromolecules (11, 12). The proposed spatial-

fitting framework using GMRFs would also allow to consider similar nonparametric model extensions.

An interesting direction could be the spatial regularization of baseline parameters. This will be left to
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be a subject of future work as well.

5.3 Related approaches

Related approaches for the incorporation of spatial prior knowledge in the fitting of MRSI have been

proposed before. One such approach, which is followed in FITT (8), for example, adjusts the initializa-

tion of the nonlinear fitting problem based on estimates obtained in neighboring voxels from a previous

run or sweep. While this approach might reduce the risk of running into non-global optima it does

not spatially regularize the fit and thus does not help reduce the statistical variance of the parameter

estimates as the GMRF approach (cf. Fig. 4, Fig. 5b). The Block-ICM algorithm as described in (22)

avoids non-global optima by an iterative optimization scheme that prevents premature convergence in

early sweeps.

A second approach, followed in LCModel (9, 26), for example, performs single voxel fitting us-

ing box or soft constraints with parameters from previously fitted neighboring voxels according to

a certain visiting schedule (e.g. sequential, spiral or checkerboard). Compared to the spatial MRSI

mode of LCModel (26), our approach mainly differs in three ways. Firstly, the voxels are grouped

into blocks and the optimization problem is solved exactly for each block (given its surroundings).

Secondly, instead of processing the voxels in a radial order (from the interior to the outward voxels), a

checkerboard visiting schedule is used. Thirdly, multiple passes over the entire volume are performed:

hence every voxel is influenced by the fitting results of all others, predominantly its close neighbors. In

contrast to the GMRF approach, LCModel very much depends on the choice of order and the fitting

results may deteriorate if spectra with poor signal quality are processed first.

In contrast to the linear model proposed by Bretthorst (27) the GMRF approach allows to capture

higher order, nonlinear spatial variations in phase, damping or frequency and to impose intermediate

smoothness priors as illustrated in Figure 2.

Only recently, an interesting approach has been proposed in (28) which combines three of the

above methods. Using a sequential visiting schedule several sweeps are performed. In the first round

of sweeps, a parameter initialization approach similar to (8) is employed using median values from a

local neighborhood. In the second round of sweeps, spatially dependent box constraints are applied.

In the third and last round of sweeps spatial soft constraints are emplyoed, i.e. the GMRF objective is

solved using the (single-site) ICM algorithm. While the overall optimization scheme finally attempts

to solve the same GMRF objective that we propose it may end up in different optima and exhibit

different convergence behavior. As compared to our proposed Block-ICM algorithm, however, the

approach in (28) has many more hyper-parameters that may need careful tuning. Unlike our work,

(28) and (41) provide results on short echo time brain MRSI quantifying more than three, i.e. eleven,
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metabolites and show the beneficial effect of spatial prior knowledge in this setting.

5.4 Improvements and further directions

Our experiments were performed with a basic, AMARES-type fitting routine for the sole purpose of

proving the benefit of using spatial context in fitting the spectral model. One should note that the

spatial constraint proposed here is additive to any other spectral fitting constraint. It can straightfor-

wardly be used in conjunction with any other single voxel signal model including approaches based on

experimentally measured template spectra. As a consequence the benefits of spatial fitting can either

be traded with other constraints – relaxing, for example, an overly narrow range on expected phase,

damping, or frequencies – or can be used to improve the overall quality of a fit in a high resolution

MRSI with low SNR.

The use of spatial context from morphological MRI has proven to be beneficial in the evaluation of

the metabolic information from MRSI. In the grading of tumors, for example, this joint analysis proved

to be more reliable than the analysis of the individual modalities alone (42–44); it also allows the image-

guided estimation of pure tissue spectra (45). Here, a probabilistic spatial fitting approach as the one

proposed in this study opens new directions for considering spatial variation and, hence, considering

spatial context in MRSI signal processing: Multi-modal spatial information from morphologic MR

images may easily be used to adjust the coupling of neighboring voxels. In the present study W (and

λ) was set to one single, constant value. One could easily think of an image-guided local adjustment of

λ(x) by using a segmented tissue map obtained from MRI, for example. This is left to future extensions

of our proposed approach.

6 Conclusions

The use of spatial prior knowledge in addition to commonly employed parameter constraints has been

proposed for an improved spectral fitting of magnetic resonance spectroscopic images. Using a Gaussian

Markov random field that favors smooth maps for selected parameters such as phase, line width and

frequency shift, the standard deviation of parameter estimates can be reduced below the Cramér-Rao

lower bound that is obtained for the single voxel approach. An important advantage of using spatial

prior knowledge is that overlapping peaks can often be resolved reliably, also in cases where the single

voxel approach fails to do so (Fig. 1).

The proposed method is found particularly useful for high-resolution MRSI and it allows to derive

detailed metabolic images. A relatively constant improvement of 10% is found in the fit quality when

using a small spatial constraint, with considerable differences in particular for images with low signal-

to-noise ratio. One may recommend to use a spatial prior as default on such data.
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A multi-modal analysis of image content may provide further directions for an integrated use of

metabolic information from MRSI together with structural information from morphological MRI. A

principled probabilistic approach for the spatial fitting of MRSI – such as the one based on Gaussian

Markov random fields proposed here – provides the technical means for stepping further into this

direction.
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Tables

metabolite fm(Hz) dm(Hz) am(a.u.) φm( rad)

Choline (Cho) −94.2 (−188.4) 12 (8) 1 0

Creatine (Cr) −107.5 (−215.0) 12 (8) 1 0

N-Acetyl Aspartate (NAA) −171.2 (−342.4) 12 (8) 1 0

Table 1: Lorentzian metabolite models for long echo brain spectra at 1.5T and short echo brain spectra

at 3T in parentheses.
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Series �x �y �z volume voxels avg SNR SV time GMRF time ratio

[mm] [mm] [mm] [cm3] [ms/voxel] [ms/voxel]

1 10.00 10.00 20.00 2.00 102 3 17.62 15.06 52.37 3.5

7.00 7.00 20.00 0.98 132 3 9.80 15.44 70.99 4.6

3.44 3.44 20.00 0.24 132 3 4.31 20.75 143.15 6.9

2 10.00 10.00 10.00 1.00 82 3 11.72 11.07 60.70 5.5

6.88 6.88 10.00 0.47 112 3 6.23 17.39 88.10 5.1

5.00 5.00 10.00 0.25 122 3 4.46 24.37 158.44 6.5

3 10.00 10.00 10.00 1.00 82 6 35.69 9.68 57.87 6.0

8.00 8.00 8.00 0.51 102 6 21.03 8.75 50.83 5.8

6.00 6.00 6.00 0.22 132 6 9.75 11.52 55.91 4.9

4 10.00 10.00 10.00 1.00 82 3 28.33 9.45 64.52 6.8

8.00 8.00 8.00 0.51 102 3 16.72 8.80 54.85 6.2

6.00 6.00 6.00 0.22 132 3 7.75 13.59 60.67 4.5

Table 2: Resolution series used to compare the spatially constrained and the unconstrained fitting. Side

lengths, volume and number of MRSI voxels as well as number of averages and estimated mean SNR

are given. All spectra were acquired on a rectangular grid. The last three columns list computation

times with and without spatial prior and their ratio. Three example spectra from series 4.3 along with

their single-voxel and GMRF fits are shown in Fig. 8.
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Figure legends

Figure 1: Nine adjacent voxels from a patient with brain tumor and the corresponding AMARES and

GMRF fits. The overlapping Cho and Cr peaks lead to erroneous single voxel fits in four of the nine

voxels which are well captured when using spatial prior knowledge.

Figure 2: Metabolite maps from the brain of a healthy volunteer at 3T (32 × 32 voxels). The upper

row shows the parameter maps obtained with single voxel fitting and the bottom row shows the results

from the GMRF approach. While the phase, damping and frequency maps are significantly smoothed

from the spatial prior, the amplitude map that indicates the metabolite concentrations maintains sharp

spatial features.

Figure 3: Simulated MRSI data with sharp amplitude edges. From top to bottom: ground truth;

difference to GMRF estimate; difference to AMARES; difference to optimally smoothed AMARES.

Since the GMRF approach does not smooth amplitudes, sharp edges are not smeared. With post-hoc

smoothing (last row) the estimates of Cho and Cr can be improved, however, at the cost of border

effects and the oversmoothing of edges. As expected for high signal-to-noise-ratios, all methods yield

similar results for NAA.

Figure 4: Scatter plots of root-mean-squared error (RMSE), bias and standard deviation (stdev) of

NAA amplitudes as estimated from R = 100 repetitions of the simulated “sharp edges” MRSI data.

Each dot corresponds to one of the 32 × 32 voxels. The GMRF approach yields lower RMSE than

AMARES in all parameters. Since the bias is comparable, the gain must be entirely ascribed to a

reduction in standard deviation.

Figure 5: Scatter plots of Cramér-Rao lower bounds (CRLB) against standard deviations (stdev) of

the parameter estimates obtained with AMARES and the proposed GMRF approach. The results are

based on 100 repetitions of simulated MRSI images containing the three metabolites Cho (red), Cr

(blue) and NAA (green). Each dot corresponds to one of the 32 × 32 voxels. While the single voxel

approach does not beat the CRLB, using spatial prior knowledge can reduce the estimation variance

below the theoretical CRLB.
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Figure 6: Bias, standard deviation (stdev) and root-mean-squared error (rmse) for amplitude estimates

using the single voxel (sv, AMARES) and spatial (sp, GMRF) approaches when fitting two overlapping

peaks: Choline (Cho) and Creatine (Cr). Example spectra are shown in Figure 7.

Figure 7: Four example spectra from the simulated data analyzed in Fig. 6. The examples are taken

from the corners of the simulated spectral image and contrast the behavior of single voxel and spatially

regularized fit for overlapping peaks with varying amplitudes. The examples show that with sufficient

amplitude both, the Cho and the Cr-component can be fitted reliably. If one of the peaks gets small,

however, the single voxel approach runs into problems while the spatial prior produces stable fits using

information from a local neighborhood.

Figure 8: Spectra of three consecutive voxels from an MRSI brain scan at 3T with long echo time

(Series 4.3, Tab. 2) and spectral line fits for Cho (3.2 ppm), Cr (3.0 ppm) and NAA (2.0 ppm). The

top row shows results from single-voxel fitting whereas the bottom row shows the corresponding fits

obtained with using spatial prior knowledge. The single voxel approach fails to fit the Cho and Cr peaks

in the middle voxel whereas the GMRF uses information from the neighboring spectra to stabilize the

fit. Furthermore, the GMRF fit shows a much more stable phase estimate than the single-voxel fit.

Figure 9: Evaluation of the spatially constrained and the unconstrained fitting routines on real data.

The left and the central figure show the fraction of successful fits as a function of voxel volume for

both raters, and on all resolution series from Tab. 2. The GMRF fitting (with λ = 1) performs better

in nearly all tests. The right figure presents this benefit in values relative to the performance of the

unconstrained SV results. On average the GMRF constraint reduced the fraction of failed fits by

approx. 10%.

Figure 10: Effect of the regularization parameter λ on the fraction of successful fits. The six lines

show the results for all data of resolution series 1 and 2 (Tab. 2) after double evaluation by rater

2. The notches indicate the extrema (i.e. the two obtained percentages) while the lines follow the

average. A value of λ = 1 performs well for nearly all data sets, over all resolutions and corresponding

signal-to-noise ratios.
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Figures

(a) T1w MRI (b) Single voxel (AMARES) (c) Spatial prior (GMRF)

Figure 1: Nine adjacent voxels from a patient with brain tumor and the corresponding AMARES and

GMRF fits. The overlapping Cho and Cr peaks lead to erroneous single voxel fits in four of the nine

voxels which are well captured when using spatial prior knowledge.
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NAA (amplitudes) NAA (phases) NAA (dampings) NAA (frequencies)

Figure 2: Metabolite maps from the brain of a healthy volunteer at 3T (32 × 32 voxels). The upper

row shows the parameter maps obtained with single voxel fitting and the bottom row shows the results

from the GMRF approach. While the phase, damping and frequency maps are significantly smoothed

from the spatial prior, the amplitude map that indicates the metabolite concentrations maintains sharp

spatial features.
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Figure 3: Simulated MRSI data with sharp amplitude edges. From top to bottom: ground truth;

difference to GMRF estimate; difference to AMARES; difference to optimally smoothed AMARES.

Since the GMRF approach does not smooth amplitudes, sharp edges are not smeared. With post-hoc

smoothing (last row) the estimates of Cho and Cr can be improved, however, at the cost of border

effects and the oversmoothing of edges. As expected for high signal-to-noise-ratios, all methods yield

similar results for NAA.
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Figure 4: Scatter plots of root-mean-squared error (RMSE), bias and standard deviation (stdev) of

NAA amplitudes as estimated from R = 100 repetitions of the simulated “sharp edges” MRSI data.

Each dot corresponds to one of the 32 × 32 voxels. The GMRF approach yields lower RMSE than

AMARES in all parameters. Since the bias is comparable, the gain must be entirely ascribed to a

reduction in standard deviation.
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Figure 5: Scatter plots of Cramér-Rao lower bounds (CRLB) against standard deviations (stdev) of

the parameter estimates obtained with AMARES and the proposed GMRF approach. The results are

based on 100 repetitions of simulated MRSI images containing the three metabolites Cho (red), Cr

(blue) and NAA (green). Each dot corresponds to one of the 32 × 32 voxels. While the single voxel

approach does not beat the CRLB, using spatial prior knowledge can reduce the estimation variance

below the theoretical CRLB.
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Figure 6: Bias, standard deviation (stdev) and root-mean-squared error (rmse) for amplitude estimates

using the single voxel (sv, AMARES) and spatial (sp, GMRF) approaches when fitting two overlapping

peaks: Choline (Cho) and Creatine (Cr). Example spectra are shown in Figure 7.
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(a) Single voxel (AMARES) (b) Spatial prior (GMRF)

Figure 7: Four example spectra from the simulated data analyzed in Fig. 6. The examples are taken

from the corners of the simulated spectral image and contrast the behavior of single voxel and spatially

regularized fit for overlapping peaks with varying amplitudes. The examples show that with sufficient

amplitude both, the Cho and the Cr-component can be fitted reliably. If one of the peaks gets small,

however, the single voxel approach runs into problems while the spatial prior produces stable fits using

information from a local neighborhood.
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(a) Single voxel
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(b) Spatial prior

Figure 8: Spectra of three consecutive voxels from an MRSI brain scan at 3T with long echo time

(Series 4.3, Tab. 2) and spectral line fits for Cho (3.2 ppm), Cr (3.0 ppm) and NAA (2.0 ppm). The

top row shows results from single-voxel fitting whereas the bottom row shows the corresponding fits

obtained with using spatial prior knowledge. The single voxel approach fails to fit the Cho and Cr peaks

in the middle voxel whereas the GMRF uses information from the neighboring spectra to stabilize the

fit. Furthermore, the GMRF fit shows a much more stable phase estimate than the single-voxel fit.
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Figure 9: Evaluation of the spatially constrained and the unconstrained fitting routines on real data.

The left and the central figure show the fraction of successful fits as a function of voxel volume for

both raters, and on all resolution series from Tab. 2. The GMRF fitting (with λ = 1) performs better

in nearly all tests. The right figure presents this benefit in values relative to the performance of the

unconstrained SV results. On average the GMRF constraint reduced the fraction of failed fits by

approx. 10%.
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Figure 10: Effect of the regularization parameter λ on the fraction of successful fits. The six lines

show the results for all data of resolution series 1 and 2 (Tab. 2) after double evaluation by rater

2. The notches indicate the extrema (i.e. the two obtained percentages) while the lines follow the

average. A value of λ = 1 performs well for nearly all data sets, over all resolutions and corresponding

signal-to-noise ratios.
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