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Abstract

Despite its diagnostic value and technological availability, 1H NMR spectroscopic imag-

ing (MRSI) has not found its way into clinical routine yet. Prerequisite for the clinical

application is an automated and reliable method for the diagnostic evaluation of MRS im-

ages. In the present paper, different approaches to the estimation of tumor probability from

MRSI in the prostate are assessed. Two approaches to feature extraction are compared:

quantification (VARPRO, AMARES, QUEST) and subspace methods on spectral patterns

(principal components, independent components, nonnegative matrix factorization, partial

least squares). Linear as well as non-linear classifiers (support vector machines, Gaussian

processes, random forests) are applied and discussed. It is found that quantification-based

approaches are much more sensitive to the choice and parameterization of the quantifica-

tion algorithm than to the choice of the classifier. Furthermore, linear methods based on

magnitude spectra easily achieve equal performance and also allow for biochemical inter-

pretation in combination with subspace methods. Nonlinear methods operating directly on

magnitude spectra achieve the best results but are less transparent than the linear methods.

Keywords: magnetic resonance spectroscopic imaging; pattern recognition; classification;

quantification;

1 Introduction

Clinical studies have shown significant diagnostic value of 1H magnetic resonance spectroscopic

imaging (MRSI) for the detection of tumorous tissue in the prostate (3, 19, 24, 25, 28, 33).

Despite the promising results of these and other studies, the integration of MRSI in the clin-

ical routine remains difficult, mainly because of the complexity and effort associated with the

evaluation of the acquired data.

Two basic approaches to the evaluation of MRSI can be distinguished: the quantification-

based approach and the pattern recognition (PR) approach. Quantification aims at estimating

relative metabolite concentrations as accurately as possible. For that purpose, the most likely

parameter estimate for a given signal model is usually determined with a nonlinear least squares

(NLS) approach. However, quantification may fail for various reasons. In particular, in the

presence of artifacts and severe noise the NLS objective can have many local optima and the
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result becomes very sensitive to the choice of initial values. Prior knowledge about the expected

signal shape can help to alleviate these problems (30), but, it also leads to an estimation bias

and can be harmful in unanticipated cases where the employed prior knowledge is inadequate. A

subsequent statistical analysis which gains diagnostic information from the spectral data relies on

these parameter estimates and therefore inherits all problems associated with the quantification.

Pattern recognition approaches do not require an explicit quantification step. Although the

same methods and classifiers (e.g. logistic regression (9), artificial neural networks (9), support

vector machines (SVM) (26), etc.) can be used for both, quantified signals and spectral patterns,

only methods applied to the latter will be referred to as “pattern recognition” (PR) approaches in

accordance with, for example, (8). The PR approach is characterized by minimal preprocessing,

thus avoiding errors introduced by feature calculation steps. It is left to the classifier to construct

features and extract the relevant information to distinguish random effects from significant

changes in the spectral pattern. Since it is not exact quantification that is the main goal in

clinical applications but accurate diagnostic information, we suggest to address the diagnostic

problem directly without prior quantification.

In the following, we briefly review related work in order to emphasize common ideas and

highlight differences with our approach. Recently, encouraging results have been reported (5, 6,

13, 27, 29) from studies on the automated classification of brain tumor spectra in the context of

the INTERPRET project (1). Tate et al. (29) show that the influence of acquisition parameters

(manufacturer, sequence, TE, TR) on the spectral pattern is small enough to allow for stable

classification results across multiple centers. In (5) and (13), Devos and Lukas et al. examine

and compare different preprocessing strategies and classifiers for long and short echo time brain

spectra respectively. They show that the best results are obtained with L2-normalized magnitude

spectra, omitting for example baseline and phase corrections. Although a nonlinear classifier

has been employed, no improvement over linear classifiers could be observed in both studies,

which the authors attribute to the limited amount of available data.

Laudadio et al. (12) propose a PR approach using magnitude spectra that incorporates

spatial context. It is applied to simulated as well as in vivo prostate MRSI data and focuses on

evaluating the benefit of incorporating spatial information.

In (17), Menze et al. examine classifiers for the discrimination of recurrent tumor and brain
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lesions after radiotherapy based on single voxel MRS. An exhaustive combination of feature

extraction methods and classifiers is benchmarked according to several error measures. Regu-

larized linear classifiers with preceding dimensionality reduction (binning) are found to perform

best on the given data set.

To the best of our knowledge, a similar comparative study has not been performed on

prostate MRSI data yet. In the present work an extensive collection of linear subspace methods

and a representative set of state-of-the-art nonlinear classifiers are evaluated on prostate data.

For the first time also the influence of different quantification algorithms on the classification

results is examined. Furthermore, we conduct experiments comparing the use of magnitude and

real spectra. Since it is common practice in prostate MRSI to analyze the acquired data based R3.5

on quantification (3, 19, 24, 25, 28, 33), we emphasize the comparison of quantification-based

approaches with PR approaches.

2 Methods

Only approaches that can be used for a fully automated analysis of MRSI data are considered

in this study because extensive user interaction is not acceptable in clinical routine use. We also

concentrate on methods that can provide tumor probability estimates, a much richer description

of classification results than hard class labels. Finally, all selected methods have either been

proposed for NMR spectroscopic data before or are closely related to such methods.

The section starts with a short description of the employed data set. Subsequently, the used

feature extraction and classification methods are concisely summarized with ample references to

the literature. The last subsection is devoted to the error measure used to compare the different

approaches.

2.1 Data

1H-NMR spectroscopic image volumes from an ongoing prostate MRSI study have been col-

lected at the German Cancer Research Center (dkfz, Heidelberg). The data was acquired on a

clinical 1.5T scanner (Magnetom Symphony; Siemens Medical Solutions, Erlangen, Germany)

with a disposable endorectal coil (MRInnervu; Medrad Inc., Indianola, PA, USA) and the pro-
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tocol described in (23, 24). 512 datapoints with a bandwidth of 1000-1250 Hz were acquired

(TE/TR=120/650 ms). The field of view (FOV) and the volume of interest (VOI; selected

with PRESS pulses) were adapted to the size of the individual prostates. Typical FOVs were

around 60-66 × 78-84 × 66-78 mm. An elliptical k-space acquisition scheme and apodization

with a Hanning filter was employed (23). The total acquisition time was limited to 10 minutes

and the spectral data was interpolated to yield a volume of 163 voxels. Along with the MRSI

data, T2-weighted axial MR images (turbo-spin echo, TE=129, TR=4000-4800 ms, FOV= 140

× 140 mm, matrix size 512 × 512, 20-25 slices, slice thickness = 4 mm) were acquired. Two

exemplary spectra are shown in Fig. 1.

- - - - - - - - - - Fig. 1 about here - - - - - - - - - -

For 12 of the 36 recorded patients, poor shimming, ineffective fat suppression or problems

with the endorectal coil resulted in corrupted MRSI data. These patients have been excluded

from the data set. For several patients, results from a histologic step-section examination were

available. These could be used as “gold standard” for a qualitative evaluation. The training

set was created using a semimanual analysis of the spectra according to standard decision rules

based on the metabolite resonances of Cho, Cr and Ci (19, 28, 32) . Altogether, 76 slices

with 256 voxels each have been labeled with respect to their spectral pattern class (healthy,

undecided, tumor) and the signal quality (not evaluable, poor, good). In judging the signal

quality both, low signal-to-noise ratios and artifacts (nuisance resonances, heavy baselines) have

been considered. An overview of the collected data is given in Tab. 1. Only spectra that are

evaluable (signal quality “poor” and “good”) have been used in this study. The large number

of “not evaluable” voxels is due to outer volume suppression and the limiting coil sensitivity

profile in prostate MRSI. Only about one fourth of the voxels in the FOV actually lie within the

prostate.

- - - - - - - - - - Tab. 1 about here - - - - - - - - - -
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2.2 Preprocessing and Feature Extraction

Both quantification and PR profit from the prior removal of nuisance peaks and baselines in

the spectra. Therefore, prior to further processing, the residual water and lipid resonances were

removed by time-domain selective HSVD filtering (20), i.e. by removing all signal components

with poles outside the interesting frequency range of 2.4 to 3.6 ppm.

Quantification. Three different methods have been used for quantification: QUEST (21)

and AMARES (30) from the jMRUI tool (18) and a custom implementation of a constrained

VARPRO approach which used an interior trust region algorithm for optimization (4). Quan-

tification was performed with four Lorentzian components (cf. Tab. 2). Besides small frequency

shifts of ±.03 ppm for the individual components, a common shift of up to ±.625 ppm was

allowed for in the VARPRO approach. Furthermore, the zero-order phases of components have

been tied. Similar constraints have been used for AMARES. Since AMARES does not support

constraints on the overall frequency shift, the individual components have been constrained to

±.625 ppm. In addition, the amplitudes of the two citrate peaks have been tied. For QUEST,

three metabolite templates have been constructed by simulating noise-free Lorentzian lines ac-

cording to Tab. 2.

- - - - - - - - - - Tab. 2 about here - - - - - - - - - -

Spectral Patterns. For the PR approach, zerofilling yielded an interpolated spectrum at 1024

frequencies. Automatic zero-order phase correction was performed based on the first recorded

data point. From both magnitude and real spectra, 40 values at equidistant frequencies between R3.5
R1.3

3.34 ppm and 2.36 ppm have been calculated by linear interpolation to account for differences

in the imaging frequency and the bandwidth. Finally the spectral patterns have been L1-

normalized, i.e. each channel was divided by the sum of the absolute values over all channels.

Fig. 2 shows robust statistics of the extracted spectral magnitude patterns as obtained from the

evaluable spectra in the prostate data set. The general tumor pattern of elevated Cho+Cr peak

(channels 8/14) versus a reduced Ci peak (channel 31) is clearly recognizable.
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- - - - - - - - - - Fig. 2 about here - - - - - - - - - -

Different subspace methods have been used for dimensionality reduction of the spectral pat-

terns. They are particularly appropriate for prostate MRSI since, ideally, only three metabolites

contribute to the spectral shape. In particular, four subspace methods have been considered:

principal components analysis (PCA), partial least squares (PLS), independent component anal-

ysis (ICA) and nonnegative matrix factorization (NMF) which we briefly describe.

• PCA seeks K uncorrelated latent variables zk(x) = αT
k x (factors, score variables) that

capture all relevant information of the original predictors x. The loadings αk are obtained

as the directions of maximum variance. PCA is described, for example, in (9) and has

successfully been used in (5, 13, 17, 27).

• PLS also seeks uncorrelated factors but additionally considers the given classification task. R1.2

The loadings αk are determined by maximizing both the variance and the correlation with

the class label (9). The determined subspace can thus be expected to better capture the

information relevant for classification. PLS has originally been proposed in chemometrics

(31) and is therefore designed for spectral data. Its good performance in clinical MRSI

has been demonstrated in (17).

• ICA is a subspace method that has been used for MR spectra for example in (27). As

opposed to PLS and PCA, ICA not only requires uncorrelated but statistically independent

components. After centering, prewhitening and dimensionality reduction, ICA reduces to

a search over rotations that minimize the mutual information between the components or

equivalently maximize the negentropy (9, p.498). In this study, the FastICA algorithm (10)

has been used with the logcosh approximation to negentropy.

• NMF has also recently been proposed for the extraction of spectral components (22). It

enforces nonnegative loadings and scores which is a reasonable constraint for magnitude

spectra. Here we have used a robust version of the alternating nonnegative least squares

algorithm.
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An important advantage of linear subspace methods is their amenability to interpretation.

The weighting of the spectral channels expressed in the constructed components or loadings can

be visualized and helps to understand the decision process of the trained classifier.

2.3 Classification

Linear classifiers model the decision boundary as a hyperplane in the space of the explana-

tory variables. Several studies on MRS classification have applied linear discriminant analysis

(LDA) (5, 13, 29) which models the feature distributions as Gaussians with common covariance.

Instead, we opted for logistic regression (LR) which can be derived from the same probabilistic

model by using conditional likelihood (9, pp.103ff). LR is designed for discriminating classes

instead of modeling feature distributions which is appropriate for classification tasks (9, p.105).

Furthermore, two linear classifiers which have explicitly been designed for spectral data were

considered. Generalized PLS (GPLS) can be used to perform LR and PLS in one step (14).

P-spline signal regression (PSR) exploits the prior knowledge that neighboring spectral channels

are correlated by modeling the coefficient profile as a cubic spline function (15).

Nonlinear classifiers are more powerful than linear classifiers in that nonlinear decision

boundaries can be constructed. However, this also leads to “black-box” methods which, in

general, are hardly interpretable. Here we consider three nonlinear classifiers: random forests

(RF) (2), an ensemble method, and support vector machines (SVM) and Gaussian processes

(GP), two kernel methods (26).

In short, the RF classifier learns a collection of a few hundred slightly different decision

trees (2). The diversity of the trees is encouraged by using bootstraps of the given sample and

by randomly selecting a subset of feature variables considered in each node when growing the

decision trees. A new example is classified according to the majority vote of the trees in the

forest. Thus, the RF classifier employs ideas common with bagging and boosting (9).

Kernel methods perform an implicit mapping to a high-dimensional feature space. The

constructed linear decision boundary (a hyperplane) in this high-dimensional feature space cor-

responds to a nonlinear decision boundary in the original feature space. By using a positive

definite kernel instead of the usual dot-product, most linear classifiers can be “kernelized” to
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yield nonlinear classifiers. In this study two kernel methods have been used, support vector

machines (SVM) and Gaussian processes (GP) (26). The least-squares SVM used for MRS clas-

sification for example in (5, 13) can be viewed as a kernelized ridge regression and, except for

an additional bias term, is identical to the GP method used in this study (7).

2.4 Error Measure

The area under curve (AUC) of the receiver operator characteristic was used to measure classifi-

cation performance. It is determined as the area under the graph obtained by plotting sensitivity

against 1− specificity. Since it does not depend on the chosen threshold that determines the

tradeoff between the true positive and true negative rates, it is independent of class priors and

misclassification costs. It is therefore an appropriate performance measure for comparing binary

classifiers. The AUC attains its maximum value of 1 for perfect separation, whereas it is .5 for

random predictions.

Cross-validation (CV) has been used to obtain reliable estimates for the AUCs. In using CV,

it should be considered that spectra obtained from the same patient are certainly correlated,

violating the i.i.d. assumption in CV. We have therefore employed a “leave-one-patient-out”

scheme which determines the performance measure (AUC) for every patient with the classifier

trained on all other patients.

3 Results

All reasonable combinations of feature extraction methods and classifiers have been evaluated.

The tested combinations are listed in Fig. 3 where the methods have been abbreviated as de-

scribed in the previous section. The employed box-and-whiskers plots (16) are robust summaries

of the 24 AUC values obtained from leave-one-patient-out cross-validation. The thick line within

the box marks the median value and the box itself is bounded by the two hinges which are ver-

sions of the first and third quartiles. The whiskers extend to the most extreme data points which

are no more than 1.5 times the interquartile range from the box.
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Linear PR methods vs. quantification. Fig. 3a compares quantification approaches based

on VARPRO (v), AMARES (a), QUEST (q) and two PR approaches. In addition to various

classifiers, results from the conventional metabolite ratio rule (Cho+Cr)/Ci (and Ci/(Cho+Cr+

Ci) in the case of VARPRO) are provided. Since, given a particular quantification algorithm, all

classifiers performed similarly, not all results are depicted for AMARES and QUEST. It should

be noted that only spectra for which at least one of the peaks was found (ak > 0) have been used

in the evaluation of AMARES and QUEST. For AMARES this was about 74% and for QUEST

97% of the data set. The performance of the two PR approaches PCA/LR and PLS/LR (PLS

and PCA with logistic regression) based on magnitude (m) spectra is comparable with that of

QUEST-based quantification approaches.

Linear vs. nonlinear PR methods. Fig. 3b compares linear and nonlinear PR approaches

based on magnitude spectra. For comparison, the first compartment repeats the results for

QUEST. The second compartment summarizes linear and the third compartment nonlinear PR

approaches.

LR (m) shows results with (unregularized) logistic regression based on all 40 spectral chan-

nels. Then, results for the five subspace methods PCA, ICA, NMF, PLS and GPLS are given.

In our experiments we have used the four most important loadings which, in the case of PCA

and ICA, covered about 80% of the variance and seemed sufficient according to a scree plot (not

shown). For PSR, a generalized linear model (GLM) with logistic link function and binomial

posterior has been used, the same GLM which yields LR. The SVM with linear kernel (SVM-lin)

is listed as a linear method since the decision boundary remains a hyperplane in the original

feature space.

Finally, results for the nonlinear PR methods are provided. The random forest (RF) classifier

has been trained with 500 trees, nodesize 1 and a subset of 13 considered variables in each split.

For the SVM as well as for the GP method, the width of the employed radial basis function

(RBF) kernel has been estimated from a fraction of the respective training data set (procedure

sigest, cf. (11)).

- - - - - - - - - - Fig. 3 about here - - - - - - - - - -
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R3.5
Real vs. magnitude spectra. In Fig. 3c, PR methods using magnitude and real spectra are

compared. First, results for the subspace methods PCA, ICA and PLS are provided (NMF does

not make sense for real spectra), followed by PSR and the linear SVM. The results for RF (m)

The corresponding results for magnitude spectra are repeated for comparison.

The last two compartments show results obtained with nonlinear classifiers. Based on real

spectra, results for the SVM and GP classifiers with RBF kernel and the RF classifier are

provided. Representative for the nonlinear classifiers applied to magnitude spectra, RF (m) is

repeated.

Detailed comparison. Detailed cross-validation results for six of the tested methods are

provided in Tab. 3. For each of the 24 patients one minus the AUC of the respective classifier

is given when trained on all patients but this one. In the first four columns, results for three

nonlinear classifiers (SVM, GP and RF) and LR with PLS-subspace based on magnitude (m)

spectra are listed. Then, two quantification approaches based on QUEST (q) follow. Since no

training is required for the ratio rule, (Cho+Cr)/Ci (q) just reflects the AUC results when broken

down to individual patients. The last row provides mean values for the respective methods.

- - - - - - - - - - Tab. 3 about here - - - - - - - - - -

Although the performance differences between the classifiers in Tab. 3 seem to be small, R3.2

statistical significance of some differences can be established using a Wilcoxon signed rank test.

Concerning the question whether nonlinear classifiers can improve results over linear meth-

ods, it is observed that based on magnitude spectra, SVM-rbf (m), GP-rbf (m) and RF (m)

significantly outperform PLS/LR (m) (p = .0002/.0012/.0006). Also, based on QUEST the

SVM-rbf (q) performs significantly better than the ratio rule (Cho+Cr)/Ci (q) (p = .0034).

Comparing quantification-based (SVM-rbf (q)) and PR methods (SVM-rbf (m)/GP-rbf (m)),

the performance gain could still be considered significant (p = .0269/.0261). The performances

of the linear PR approach PLS/LR (m) compared with SVM-rbf (q) and (Cho+Cr)/Ci (q),

however, are statistically indistinguishable (p = .1531/.5966).
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Interpretation of PR approaches. PLS loadings obtained from the whole prostate dataset

are presented in Fig. 4. The first row shows the L2-normalized loadings along with a typical

spectrum (dashed line). The last two rows show statistics (median, hinges and extreme points)

of the upper/lower 5% of the training sample, sorted according to their PLS scores. This

reveals spectral patterns which score high/low for the respective PLS loading and facilitates

their interpretation.

- - - - - - - - - - Fig. 4 about here - - - - - - - - - -

Fig. 5 contrasts coefficient profiles obtained from three linear classifiers trained on the whole

data set. Fig. 5a shows the coefficients obtained with unregularized LR on all 40 channels,

Fig. 5b with LR on PLS scores and Fig. 5c shows the result for PSR.

- - - - - - - - - - Fig. 5 about here - - - - - - - - - -

Fig. 6 shows the color-coded probability map obtained from PLS/LR. Next to it, results

from a histologic step-section examination are shown. It should be noted that the slice planes

obtained from histologic examinations and MRSI are unlikely to coincide exactly. Also, since

the histologic samples easily deform after radical prostatectomy, only qualitative comparisons

are possible.

- - - - - - - - - - Fig. 6 about here - - - - - - - - - -

4 Discussion

4.1 Spectral Preprocessing

For PR, two spectral representations have been employed in this paper, namely real and magni- R3.5

tude spectra. As opposed to real spectra, magnitude spectra are invariant w.r.t. zero-order

phase shifts. The additional variation in the spectral pattern caused by phasing problems
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mainly degrades the performance of PCA/LR and ICA/LR (Fig. 3c). Although the differ-

ence to magnitude-based methods is smaller for other linear and nonlinear classifiers, magnitude

spectra consistently yield better results. Improvements with real spectra might be obtainable

when using more sophisticated automatic phasing algorithms, however, these might also be

prone to similar robustness problems as quantification algorithms. We conclude that the advan-

tage obtained from omitting phase correction in magnitude spectra outweighs the disadvantage

of increased line widths and peak overlap for prostate MRSI. Other studies present analogous

results for brain MRS (5, 13, 17, 29). R1.3

It has also previously been found that some kind of normalization (L1, L2, L∞) of the

spectral patterns is important (17). Experiments with L1- and L2-normalized prostate spectra

did not yield very different results (not shown here). In contrast to (5, 13, 29) we have used

L1-normalized spectra because of the notable relationship to metabolite ratios. The L1-norm can

be regarded as an approximation to the integrated spectrum and corresponds to Cho+Cr+Ci in

the prostate. Hence, linear combinations of the derived spectral features are similar to the ratio

r2 = Ci/(Cho+Cr+Ci) which is related to the usual ratio r1 = (Cho+Cr)/Ci by the monotonous

transformation r2 = (r1 + 1)−1. Therefore, r1 and r2 must have the same discriminating power

which is confirmed by the results in Fig. 3a. Hence, L1-normalization addresses the problem

that absolute line intensities in MR spectra are unreliable and information is only contained in

their ratio.

4.2 Quantification-based approaches

Despite only subtle mathematical differences in performing quantification with VARPRO, AMARES

or QUEST (with simulated metabolite templates), the classification results differ considerably

(Fig. 3a). All quantification methods have been employed with the same number of Lorentzian

shaped components but with slightly different constraints. Hence, the employed prior knowledge

has considerable influence on the obtainable classification performance.

Implementation details of the employed algorithm also seem to matter. The superior per-

formance of our VARPRO approach in comparison to AMARES might be surprising at first.

However, deviating from the original VARPRO approach, which uses a modified Levenberg-

Marquardt algorithm (30), we have used an interior trust region algorithm (4) that appears to
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cope better with the variable projection functional. The excellent performance of QUEST, on

the other hand, might be due to its implicit baseline correction (21).

Most of the differences between quantification-based approaches are due to choosing different

quantification methods and not due to using different classifiers (Fig. 3a). However, none of

the classifiers employed on quantified data could improve over the results obtained with the

conventional (Cho + Cr)/Ci ratio. This indicates that the ratio rule is indeed a good approach

for the discrimination of tissue classes in the prostate, provided that the quantification results

are reliable. However, the latter is difficult to judge in the absence of ground truth.

4.3 Subspace Methods

The results listed in the second compartment of Fig. 3b show no significant difference between

the tested subspace methods. In particular, identical performance is obtained with PCA and

ICA. Given that the scores obtained from FastICA are necessarily a linear combination (scaling

and rotation) of the PCA scores, this can be explained by noting that LR is invariant w.r.t. such

feature transformations. But also NMF cannot improve the AUC. And although PLS and GPLS

can increase the lower hinge in the discrimination of healthy and tumor tissue, these effects are

not observed in the discrimination against voxels of the “undecided” class.

One reason for the use of subspace methods is that the basis of the constructed subspace is

amenable to interpretation. Optimal subspaces along with the most important spectral patterns

are automatically determined based on in vivo data. Therefore, not only protocol and metabolite

dependent features of the signal but also the in vivo situation is considered. Furthermore, for

PLS also the classification task at hand has an influence on the choice of the subspace. This

distinguishes subspace from quantification approaches which either use theoretical models or

metabolite templates derived from in vitro measurements.

The PLS loadings derived for the prostate data allow for a consistent interpretation (cf. Fig. 4).

As published in various clinical studies on prostate spectroscopy (e.g. (19, 24, 25)), the ratio be-

tween Cho + Cr and Ci is the most important feature in discriminating cancerous from healthy

tissue. Together with the L1-normalization, the first loading clearly reflects this ratio. The

second loading rewards high Cho-to-Cr ratios in the presence of a clear Ci peak. Spectra with

small line widths and clear peaks for all metabolites get a high score on this component if Cho is
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elevated in comparison to Cr. This criterion is in accordance with medical studies, for example

(19), where the Cho/Cr ratio has also been considered. The third loading reflects frequency

shifts of the citrate peak and the fourth loading frequency shifts of the choline peak. Both these

and higher order loadings are not relevant for tumor classification.

4.4 Linear and Nonlinear Classifiers

Fig. 5 demonstrates that subspace methods act as a regularizer which helps to overcome the

problem of collinearities in spectral data. The unregularized model as applied to the highly

correlated spectral channels yields a very rough coefficient profile with high offset (Fig. 5a). As

opposed to that, the coefficient profile of the PLS model in Fig. 5b takes small values around

zero and shows a clear pattern resulting from a linear combination only of the first four loadings.

A similar profile is obtained for the logistic PSR model in Fig. 5c for which the coefficient profile

has explicitly been modeled as a smooth spline function. Anyhow, the regularizing influence is

not reflected in a clear performance gain (Fig. 3).

Increased performance is obtained when using nonlinear PR approaches. A SVM with linear

kernel is a linear classifier and performs no better than its cognates. As evidenced by Fig. 3b,

an improvement is obtained only when switching to the nonlinear RBF kernel. A significant

improvement from using nonlinear classifiers can also be observed in Tab. 3. The performance

of the RF and GP methods are very similar, indicating that some nonlinearity is indeed present

in the prostate tumor classification task. However, an interpretation of the decision rules of

a nonlinear classifier remains difficult. Significant differences between the nonlinear classifiers

could not be observed.

Nonlinear classifiers can manifest their superiority only when applied to spectral patterns.

In view of Tab. 3 and Fig. 3, if enough data is available and a nonlinear “black-box” method is

acceptable, there remains little reason to use quantification for feature extraction. R1.1
R3.4

Finally, diagnostic maps such as shown in Fig. 6 allow for a time-efficient evaluation of

NMR spectroscopic images. In this example, the spectral patterns obtained with MRSI and the

histopathological ground truth agree very well. Further clinical evaluation is certainly required

to confirm this correlation.
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5 Conclusions

In this study, we have compared different approaches to the automated estimation of tumor

probability in 1H NMR spectroscopic images of the prostate. The emphasis has been put on

developing a fully automatic and reliable approach with optimal diagnostic results.

In particular, we have found that quantification-based approaches heavily rely on an opti-

mal choice of prior knowledge and on the algorithm used for quantification. In contrast, PR

approaches do not require specific prior knowledge and can infer important spectral patterns

from the in vivo training data automatically. The PR approach attempts to address the diag-

nostic question – healthy vs. tumorous tissue – directly and can therefore use the full statistical

information contained in the raw spectral data.

Among the quantification-based approaches, best results have been obtained with classifiers

based on metabolite concentrations estimated with QUEST. However, the performance was not

superior to the conceptually simple linear PR approaches based on magnitude spectra.

Several subspace methods proposed for spectral MR data before have been compared. In

particular, we have used PCA, ICA, NMF and PLS. Hardly any difference in performance could

be observed between these. Still, methods especially designed for spectral data such as PLS and

GPSR seemed to have slight advantages.

If a “black-box” approach is acceptable, superior performance can be obtained by using a

suitable nonlinear classifier in conjunction with magnitude spectra.
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A, van der Graaf M, Arús C, Van Huffel S. Classification of brain tumours using short echo

time 1H MR spectra. J Magn Reson 2004;170(1):164–175.

[6] Devos A, Simonetti A, van der Graaf M, Lukas L, Suykens JAK, Vanhamme L, Buydens

LMC, Heerschap A, Van Huffel S. The use of multivariate MR imaging intensities versus

metabolic data from MR spectroscopic imaging for brain tumour classification. J Magn

Reson 2005;173(2):218–228.

[7] Gestel TV, Suykens JAK, Lanckriet G, Lambrechts A, Moor BD, Vandewalle J. Bayesian

framework for least-squares support vector machine classifiers, Gaussian processes, and

kernel Fisher discriminant analysis. Neural Comput 2002;14(5):1115–47.

[8] Hagberg G. From magnetic resonance spectroscopy to classification of tumors. A review of

pattern recognition methods. NMR Biomed 1998;11:148–156.

[9] Hastie T, Tibshirani R, Friedman JH. The Elements of Statistical Learning. Springer Series

in Statistics. Springer, New York, 2001.

[10] Hyvärinen A, Oja E. Independent component analysis: algorithms and applications. Neural

Netw 2000;13(4-5):411–30.

17



[11] Karatzoglou A, Smola A, Hornik K, Zeileis A. kernlab - An S4 package for kernel methods

in R. Technical Report 9, Dept. Stat. Math., Wien, 2004.

[12] Laudadio T, Pels P, Lathauwer LD, Hecke PV, Huffel SV. Tissue segmentation and clas-

sification of MRSI data using canonical correlation analysis. Magn Reson Med 2005;

54(6):1519–1529.

[13] Lukas L, Devos A, Suykens JAK, Vanhamme L, Howe F, Majós C, Moreno-Torres A, der
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Tables

Table 1: Distribution of labels in the prostate data set (76 slices from 24 patients).

quality \ class healthy undecided tumor all

not evaluable – – – 15268

poor 721 437 284 1442

good 1665 629 452 2746

all 2386 1066 736 19456
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Table 2: FID components used for quantifying prostate MRSI. The parameters have been ini-

tialized with the given value and constrained to the range given in brackets.

Metabolite Model Frequency [ppm] Line Width [Hz]

Choline Lorentzian 3.22 [±.03] 6.25 [0, 31.25]

Creatine Lorentzian 3.04 [±.03] 6.25 [0, 31.25]

Citrate-1 Lorentzian 2.65 [±.03] 6.25 [0, 31.25]

Citrate-2 Lorentzian 2.60 [±.03] 6.25 [0, 31.25]
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Table 3: Cross-validation results for a selection of the tested methods. The given test error

values are one minus the AUC of the receiver operator characteristic when training is performed

on all but the tested patient, i.e. better performance is indicated by smaller values.

Pattern Recognition Quantification

patient SVM-rbf (m) GP-rbf (m) RF (m) PLS/LR (m) SVM-rbf (q) (Cho+Cr)/Ci (q)

1 5.00e-04 2.00e-04 2.00e-04 6.00e-04 2.70e-03 9.60e-03

2 0 0 0 0 0 0

3 0 0 0 2.49e-02 0 0

4 0 0 0 0 0 1.50e-03

5 0 0 0 0 1.00e-04 1.30e-03

6 0 0 0 0 0 0

7 1.90e-03 1.00e-03 2.00e-03 1.00e-02 6.00e-03 4.90e-03

8 1.70e-03 1.70e-03 0 1.70e-03 7.10e-03 1.78e-02

9 0 0 0 0 0 0

10 0 0 0 2.00e-04 0 2.60e-03

11 0 0 8.00e-04 2.30e-03 3.00e-04 1.40e-03

12 0 0 0 0 0 0

13 0 0 0 0 0 0

14 0 0 0 3.20e-03 0 0

15 0 1.90e-03 5.00e-04 2.00e-04 3.31e-02 3.56e-02

16 0 0 1.44e-02 8.85e-02 2.87e-02 4.07e-02

17 3.46e-02 5.63e-02 6.49e-02 6.49e-02 0 0

18 0 0 0 0 0 0

19 0 0 0 3.90e-03 3.90e-03 6.00e-03

20 0 0 0 0 0 0

21 0 0 0 0 0 0

22 0 3.00e-04 4.30e-03 4.27e-02 0 2.00e-03

23 0 0 0 0 2.70e-03 0

24 0 0 0 0 0 8.30e-03

mean 1.60e-03 2.60e-03 3.60e-03 1.01e-02 3.50e-03 5.50e-03
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Figure Captions

11.522.533.54
−10

0

10

20

30

40

50

60

70

80

Frequency [ppm]

R
ea

l
 

 

11.522.533.54
−10

−5

0

5

10

15

20

25

30

35

40

Frequency [ppm]

R
ea

l

 

 

11.522.533.54
0

10

20

30

40

50

60

70

80

Frequency [ppm]

M
ag

ni
tu

de

 

 

−485

11.522.533.54
0

5

10

15

20

25

30

35

40

45

Frequency [ppm]

M
ag

ni
tu

de

 

 

−456

Figure 1: Two example spectra (left: healthy, right: tumor) after HSVD water/lipid removal

and zerofilling to 1024 datapoints. The top row shows manually phased real absorption spectra

whereas the bottom row shows the corresponding magnitude spectra. A slight increase in line

width can be observed when switching from real to magnitude spectra.

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

Healthy Spectra

channel

m
ag

ni
tu

de

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

Undecided Spectra

channel

m
ag

ni
tu

de

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

Tumor Spectra

channel

m
ag

ni
tu

de

Figure 2: Spectral patterns in the prostate data (3.34-2.36 ppm). From left to right typical

patterns of healthy, undecided and tumor tissue can be recognized with their characteristic

choline (channel 8), creatine (channel 14) and citrate (channel 31) ratios. In the spirit of a

box-and-whiskers plot (16), the median (red), the hinges (green) and extreme points (circles)

are shown for each channel.
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(c) Real versus magnitude spectra.

Figure 3: Comparison of various approaches: (v)-VARPRO, (a)-AMARES, (q)-QUEST

quantification-based approaches versus PR approaches based on (m)agnitude and (r)eal spectra.

The box-and-whiskers plots show the median, the hinges and the extreme points of the area under

curve (AUC) values of the receiver operator characteristic obtained from leave-one-patient-out

cross-validation. Linear PR approaches combining a subspace method X with logistic regression

(X/LR) easily achieve the same performance as the best quantification approaches (i.e. QUEST).

Even slightly better results are obtained with nonlinear PR approaches (RF, SVM, GP) applied

to raw magnitude spectra (m). Details of the different methods are described in the text. Note

that the individual plot scales differ.
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Figure 4: First row: first four PLS loadings (the dashed lines sketch a prototypical spectrum

with the three relevant peaks of Cho, Cr and Ci). Last two rows: median (red), hinges (green)

and extreme points (circles) of the 5% of the training sample which score highest/lowest for the

respective PLS loading.
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Figure 5: Comparison of coefficient profiles learned with logistic regression models. The unreg-

ularized model (a) does not show a pattern whereas the PSR model (c) seems to oversmooth

slightly. In contrast, the PLS model (b) shows a clear pattern and also preserves the details.
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Figure 6: Tumor probability map estimated with logistic regression based on partial least squares

scores (PLS/LR) and histologic step-section result for the same slice. Up to minor deformations,

the evaluated in vivo MRSI agrees very well with the histopathology.
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