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1 Motivation

Today many different algorithms to estimate optical flow or stereo correspondences be-
tween images are published. This makes visualization of the results in a comparable
fashion an important issue. The first evaluation of an algorithm is always visually, to
ensure that the estimated correspondence field approximates the intuitively expected
pixel displacement. As a second step, usually some comparison to known ground-truth
correspondences is performed where also quantitative evaluation is possible, e.g. for the
data-sets published by Baker et al. [5]. However, the set of scenes with known ground-
truth correspondences is very restricted, either to very simple scenes or to contrived or
synthetic scenes with limited realism. In contrast, human observers have a good un-
derstanding of the displacement in arbitrary real world image pairs. If a standardized
visualization of correspondence fields is available, the intuitive motion estimation ability
of humans can be exploited.

Current visualization of correspondences often use amplitude-dependent scalings
which depend on the maximal flow or the maximal disparity that has been estimated
for one image pair [3]. So the visualization might show outliers very clearly, but single
outliers might render the remaining correspondences quite indistinguishable. Even more
importantly, the visual comparison of the output of different algorithms becomes highly
dependent on the presence and the value of outliers. We therefore implemented some dif-
ferent visualization schemes with common thresholds that allow for outlier-visualization
on the one hand and fine-scale correspondences visualization on the other hand. These
schemes can also be applied to real world correspondences and used for the visual com-
parison of different algorithms.

2 Desired Properties

To assess the quality of correspondences by their visualization, several properties are
desirable.

1. Visualization should be capable to show the results for every pixel.
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Figure 1: Visualization of the flow field Rubber Whale from the Middlebury bench-
mark [5] using (a) an arrow-plot or (b) a scaled color map [4].

2. Even single pixel outliers should be visible.

3. Small errors within regions of constant correspondences should be visible.

4. For presentation within limited space only a small number of images should be
required to fully assess the quality of a correspondence field.

5. The visualization should allow to judge how accurately discontinuities in the cor-
respondence estimation and object-boundaries coincide.

3 State-of-the-Art

In the literature, several methods for correspondence visualization are common.

Arrow Plots To each pixel an arrow is assigned that corresponds to the displacement
of this pixel, Fig. 1a. This renders the direction and extend of the correspondence
immediatly accessable. However, in large images or images with large displacements
(greater than one or two pixels) arrow-plots quickly grow confusing. A common remedy
is to subsample the arrows [6]. However, this rejects information for many pixels and
single-pixel outliers can be easily missed.

Gray-Value Coding A very common way to visualize stereo disparities is via gray-value
coding using light values for close objects and dark gray-levels for distant objects. In
this way, at most 255 different disparity levels can be displayed.

Gray value coding for flow fields is less common, as flow fields have a horizontal and
a vertical component to be displayed. Sometimes, only the magnitude of the optical flow
is encoded into the gray-value and the information on the flow direction is suppressed.
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Color-Coding Schemes In stereo correspondence analysis color coding schemes allow for
the dense visualization of more than 255 levels. The increase of levels is suited much
better for sub-pixel accurate algorithms than the gray-value coding.

In optical flow analysis color-coding schemes allow to visualize horizontal and vertical
component in one image. Colors can be assigned to each pixel without interference due to
large displacements. However, most color coding schemes use mapping from correspon-
dences to color that depend on the minimal and maximal value in the correspondence
field, [5] While this representation is highly suitable to exploit the full color-space for
visualization, it renders comparison of different flow algorithms extremely difficult. The
presence and amount of very few outliers is able to influence the visualization consider-
ably.

Color visualization has the drawback that it is expensive to reproduce in hard-copy
print. But as scientific results are more and more accessed via color monitors, color-
coding schemes seem a suitable way to visualize correspondences.

4 Visualization Concepts

In the implemented visualization, we use the basic ideas of color coding, as it allows
to represent sub-pixel correspondence in 1 or 2 dimensions concisely. To be robust
towards outliers, we propose to scale the color-code independently of the input. This
fixed mapping from correspondences to color allows to provide a legend that assigns a
fixed correspondence length and direction to a certain color, Fig. 2. For optical flow
estimation, the legend gives the human observer an idea of the direction as well as the
length of the estimated flow. However, this method has a drawback: Outliers may
extend beyond the color-range and become indistinguishable from correctly estimated
correspondences. In the other extreme, small variations, e.g., within an object, might
become indiscernible due to the fixed scale of the color-map.

To increase the range of visualized correspondences, we propose a second encoding.
This additional encoding iterates cyclically over all colors. Providing a sufficiently short
cycle-length also small variations of the correspondences can be visualized. Although
large scale outliers might have a cyclic representation that coincides with the surrounding
correspondences, the probability for this is rather small if the full color-spectrum is
exploited for the cyclic representation. To obtain a comparable visualization, the cycle-
length should be maintained over all visualizations.

The two above presentations are complementary in focusing on the general corre-
spondence impression with the color-coding and a fine-scale or outlier impression with
the cyclic-coding. We also offer a third visualization that is to supplement the fixed-
scale color-coding. In this visualization the correspondences are adjusted by given values
before the color-coding scheme from above is employed. The adjustment values might,
e.g. , be the component-wise mean of an optical flow field or the minimum and maximum
value of a disparity field. In the case of mean adjustment, optical flow fields are centered
around zero motion. In the case of given minimum and maximum disparity value, the
color map can be scaled to fit the disparity field. In both cases the color map can be
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Figure 2: Standardized visualization is equipped with a legend that assigns each color
to (a) a specific disparity or (b) a specific optical flow vector.

better exploited. While this is very helpful when large global offsets dominate the cor-
respondence field, this visualization is only comparable if all analyzed correspondence
fields are adjusted by the same values. Therefore the spreading-parameters should be
clearly indicated in connection to the visualization image.

All of the aforementioned visualizations are fine-grained visualizations that can cope
with the desired properties 1- 4. They can also indicate discontinuities in the correspon-
dence field by sharp color-discontinuities. However, separate visualization of correspon-
dence field and underlying image is not able to indicate the accuracy of the location
of discontinuities. Best assessment of this property can be achieved by superimposing
correspondence visualization and images. Note however that the superposition might
conceal information on the correspondence fields, Sect. 7.

5 Implementation Details for Stereo Visualization

For the visualization of stereo-image correspondences we assume the image pair to be
rectified, else the 2D representation of the optical flow field is used. In the rectified case,
the disparity can be given as one matrix on the image domain Ω ⊂ N × N. Although
stereo correspondences are often estimated at full-pixel accuracy, we assume the disparity
function d : Ω→ R to take arbitrary positive values. In all visualizations we additionally
allow for the label unknown and represent these pixels as black.
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5.1 Fixed Color-Coding

As a first step of the color-coding, we clip the disparity at the maximal value of 130
pixels. This threshold was chosen to be well adjusted to the range of a stereo setup
such as described by the HCI-benchmark on [1], however, different camera-setups and
different image sizes might require to reset the threshold. This resetting should be
indicated clearly, as it influences the entire mapping of disparity values to color as given
in Fig. 2.

We then compress the range of the disparity values: The estimation of small dispari-
ties needs to be more accurate than the estimation of large disparities to obtain constant
accuracy of the depth estimation, as depth is inverse-proportional to the disparity. For
ease of implementation we use the compression function

φγ : R→ R;x 7→ sign(x) |x|γ

with fixed γ = 0.95.
After compression, the disparity is mapped to the color-map. We reorder the hue

component of the HSV-color space [8] so that reddish colors indicate close-by objects
and dark blue indicates objects at infinity. If the disparity does not correspond exactly
to one color of the map, we use linear interpolation.

5.2 Cyclic Representation

For the cyclic representation we repeat the same color-map each 20 pixels of the uncom-
pressed disparity.

5.3 Full Color-Map Representation

For the third visualization, a minimal and maximal disparity is provided by the user.
We subtract the minimal disparity value from the estimated disparity and compress
the difference with γ = 0.95. Values are not clipped to a valid range and if estimated
disparity values extend over the maximal or minimal given disparity, the color-spectrum
is repeated cyclically.

6 Implementation Details for Optical Flow Visualization

Flow fields are usually provided as two matrices on the pixel grid Ω ⊂ N×N, one for each
component of the flow field. Flow components are generally assumed to be mappings
u : Ω → R and v : Ω → R which can take arbitrary real values. In all visualizations we
additionally allow for the label unknown and represent these pixels as black.

6.1 Fixed Color-Coding

As in the stereo coding, we first clip the range of the flow values. We set the clipping
threshold to 20 pixels motion magnitude, as in scenes such as provided by the HCI-
sequences [1] the magnitude of the flow is often below this value. Different image sizes
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Figure 3: Logarithmic scaling leaves values smaller than T = 2 untouched and ap-
proaches the full-saturation line (blue) less abruptly than linear encoding.

and frame-rates might require to reset the threshold. However, this should be indicated
clearly.

Usually, optical flow is estimated and evaluated at sub-pixel accuracy. Sub-pixel
values are often based on interpolation, and are insignificant for some applications. We
therefore use the function

ψ(x) =

{
x for |x| < T

sign(x)T (1 + log( |x|T )) else

with T = 2 as a compression function. In contrast to the compression function φγ
used for stereo, ψ leaves small values untouched and compresses large values smoothly,
Fig. 3a.

The color of the pixel is determined by the angle of its flow vector with the horizontal
image axis. We map angle equidistantly to a shifted HSV color-map. The color shift
is performed so that purely downward motion is encoded in yellow which yields a high
contrast to black asphalt in common images of driver assistant scenarios. If the angle
does not correspond exactly to one color of the map, we use linear interpolation.

The second dimension of the motion - its extent - is encoded by the saturation of
the color. Small magnitude motion is encoded in white and pastel colors and saturation
increases with the magnitude of the motion, until the full saturation is reached at the
threshold of 20 pixels.

6.2 Cyclic Representation

For the cyclic representation we only consider the magnitude of the motion. We repeat
the same color-map as above with a cycle length of 10 pixel of motion magnitude. This
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representation encodes only the magnitude and does not enable to show small variations
of the direction. However, the color-saturation plot visualizes directional deviation quite
clearly in color, while the variation in magnitude with its representation in saturation is
harder to assess. We therefore consider the cyclic representation a suitable complement
to the other visualization methods.

6.3 Full Color-Map Representation

To better exploit the color-map, we also provide a component-wise adjusted visualiza-
tion. As default, the component-wise means of the motion can be used for adjustment.
However, for better comparability between algorithms, the visualization also accepts
user-provided values. The adjusted flow fields are then processed as in Sect. 6.1.

7 Overlay of Visualizations and Images

The above visualization cannot suffice the desired property 5 to judge the alignment
of correspondence discontinuities with object boundaries in the image. We therefore
provide an overlay of correspondence visualization and the original image. While gray-
value images and stereo disparities can be easily combined, the combination of optical
flow visualization and the original images might obscure some information on the flow
field. In the flow visualization of Sects. 6.1 and 6.3, the magnitude of the flow is encoded
into the saturation of the color, so variation in the overlay image may either be due to
gray-value variation in the image or magnitude variation in the flow field.

We therefore recommend to use overlay images only with stereo correspondence vi-
sualization and the cyclic optical flow visualization, as here saturation is not relevant for
correspondence encoding.

8 Visualization Examples

As examples for our visualization tools, we visualize the correspondences estimated on
one of the less challenging image pairs from the set provided at [?], i.e. the first stereo
and the first optical flow pair of the Sunflare sequence, before the sun enters into the
camera. We use the stereo algorithm of Hirschmüller [7] and the optical flow algorithm
of Sun et al. [9] with default parameters to estimate correspondences for these images.
The stereo visualization and overlay images in Fig. 4 show the disparity equally well,
while the latter also admit for evaluation of the location of discontinuities. The depth
structure and the depth of distant objects is more clearly visible at the scaled images in
4c, however, this representation is less suitable for inter-algorithm comparison. Fig. 4
also shows that the cyclic representation is unsuitable to convey a good impression on
the global quality of the disparity but that small variations in disparity are emphasized.

The global flow representation in Fig. 5a gives a good overall impression of the global
sideway motion in the scene but fails to distinguish between objects that move with
only slightly different velocities. More details are revealed in the cyclic representation
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Figure 4: Stereo correspondence visualization (top row) and the same visualization as
overlay over the original reference image (bottom row). (a) The fixed scaling allows for
comparable visualization, but does not exploit the full color-space. (b) Cyclic encoding
highlights small variations of the correspondences while (c) stretching between the ex-
treme values 1 and 64 allows to exploit the color-space more thoroughly but looses easy
interpretation with the legend in Fig. 2.

which also highlights outliers in some of the image regions clearly. While motion is
best represented in the mean-adjusted variant 5b, this representation does not allow for
inter-algorithm comparison.

In Fig. 5 we also remark that overlay with the original images tend to be confusing for
the assessment of the two components of optical flow. While the overlay representation
is essential for the assessment of the discontinuities the visualizations in the top row give
a much better representation of the motion.

9 Conclusion

We here motivate the choices we considered in designing our tools for the visualization
of dense image correspondences. The visualizations have been realized in MATLAB and
C++ (thanks to Anita Sellent and Paul-Sebastian Lauer for the implementation) and
can be downloaded under a public license from [2].

Suggestions for improvements are welcome, especially if they concern complementary
ideas to highlight as yet unconsidered properties of correspondence fields.
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Figure 5: Optical flow visualization (top row) and the same visualization as overlay over
the original reference image (bottom row). (a) The fixed scaling allows for comparable
visualization, but does not exploit the full color-space. (b) Cyclic encoding highlights
small variations of the correspondences while (c) mean-adjusting the horizontal field by
−8.60 pixels and the vertical field by 2.96 pixels allows to exploit the color-space more
thoroughly but looses easy interpretation with the legend in Fig. 2.
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