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1 Brunt-Väisälä frequency (40 Pts)

Figure 1: Left: Internal waves in the Strait of Gibralta. Right: Wave clouds over Ireland and the
UK.

Internal waves appear frequently in statically stable fluids, e.g. under certain conditions in the
ocean and the atmosphere.
Consider wind coming from the sea and blowing towards a mountain range. Assume that the
surrounding air is stably stratified and in hydrostatic balance. Air parcels meeting the lee side of
the mountain are now vertically displaced by a distance h′. At the new location the density can
be described by ρ = ρ0 + ρ′ and the pressure by p = p0 + p′.

Due to the excess weight, the air parcel will tend to sink, due to inertia, to a location that is
deeper than its initial location, where the ambient density is larger than that of the fluid parcel.
Due to buoyancy, the particle will move upwards again, thus defining an oscillatory motion with
a characteristic frequency, denoted Brunt-Väisälä frequency or simply buoyancy frequency.

1.1 20 Pts

Derive the expression for the Brunt-Väisälä frequency. (Hint: Assume an incompressible fluid
with variable density for which the Boussinesq approximation applies. Start with the continuity
equation in the correct form and Euler’s equation. There are no density variations along the x-
and y- axis only along the z- axis.)
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Figure 2: Fluid with stable stratification.

1.2 10 Pts

You are an oceanographer and have just measured the following density profile along the water
coloum in the South Pacific (Antarctic Circumpolar Current):

Figure 3: Density variation along the water coloum (sigma-0 denotes σ0 = ρ− 1000 kg/m3 ).

Sketch the corresponding profile of the Brunt-Väisälä frequency that you would expect to find
here.

1.3 10 Pts

Estimate the density gradient from the profile above and calculate the maximum Brunt-Väisälä
frequency in the profile.

2 Dolphins (20 Pts)

Dolphins can travel at surprisingly high speeds of up to 15 m/s. According to the ’Gray’s Para-
doxon’ they would therefore need far higher muscle power than their muscles actually provide.

Calculate the highest possible swimming velocities in the cases of laminar and turbulent flow.
(Hint: You need the equation for drag resistance. Assume an ellipsoid with a length of l = 2m

and a width of d = l/4. Muscle power per kg can be assumed to be 0.5 W/kg. The drag coefficients
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are:
cf = 0.074/Re1/5 for turbulent flow, and
cf = 1.328/Re1/2 for laminar flow.

What does this mean for the dolphin?

3 Divergence and Vorticity (20 Pts)

The Stream function of a flow is defined by:

∂ψ

∂y
= −u;

∂ψ

∂x
= v (1)

The velocity potential is defined by:
∇φ = ~u (2)

3.1

Show that:
Every flow that is described by a stream function has zero divergence.
Every flow that is described by a potential has zero vorticity.

3.2

Express:
The vorticity in terms of the stream function.
The divergence in terms of the potential.

3.3

Draw the velocity vectors and streamlines and calculate vorticity and divergence of the following
velocity fields: (

u
v

)
=

(
−x
−y

)
;

(
u
v

)
=

(
cosy
sinx

)
(3)

3


