
An Invitation to

Image Analysis
and

Pattern Recognition

Fred A. Hamprecht
University of Heidelberg
Version of September 26, 2010

Contents

1 Introduction 4
1.1 Overview . 4
1.2 Animate vision . 4
1.3 Why image processing is difficult 6
1.4 Tasks in computer vision . 8
1.5 Computer vision, not an axiomatic science 9
1.6 Summary . 10
1.7 Further reading . 10

I The Basics of Learning 11

2 Introduction to classification 12
2.1 Overview . 12
2.2 Digit recognition . 12
2.3 Nearest neighbor classification, and terminology 13

2.3.1 k-NN classifiers at wits’ end 17
2.3.2 Editing methods . 18
2.3.3 Computational issues 18

2.4 Re-enters image processing . 19
2.4.1 Tangent distance . 21

2.5 Summary . 23

3 Some theory behind classification 24
3.1 Overview . 24
3.2 Statistical Learning Theory 24
3.3 Discriminative vs. generative learning 27
3.4 Linear discriminant analysis (LDA) 28
3.5 Quadratic discriminant analysis (QDA) 30
3.6 Summary . 31

4 Introduction to unsupervised learning 33
4.1 Overview . 33
4.2 Density estimation . 33

4.2.1 Histograms and the Curse of Dimensionality 34
4.2.2 Kernel density estimation (kDE) 37

2

Contents

4.3 Cluster analysis . 42
4.3.1 Mean shift clustering 43
4.3.2 k-means clustering . 45
4.3.3 Vector quantization (VQ) 47

4.4 Principal components analysis (PCA) 50
4.4.1 Interlude: singular value decomposition (SVD) 52
4.4.2 Reprise: Principal component analysis 54

4.5 Summary . 59

So far, this manuscript comprises only the first of six scheduled parts.
There are hence many unresolved forward references “(??)” to yet unwritten
parts (there be dragons). I make part 1 available anyway in the hope that it
may be useful.

3

1 Introduction

1.1 Overview

This script will take you on a guided tour to the intriguing world of “pattern
recognition”: the art and science of analyzing data. Our focus will be the
automated analysis of objects or processes whose information content and
complexity at least partly reside in their spatial layout. But before delving
into technical details, this first chapter will take a step back, allowing to put
things into perspective: to remember what the value of vision is (section 1.2),
to argue why computer vision is an important and a difficult subject (sec-
tion 1.3), and to summarize the categories of tasks that will be treated in
this script (section 1.4).

1.2 Animate vision

We tend to not think about it, but: vision is almost too good to be true!
It is indeed a magnificent sense which transcends the narrow confines of our
own physical extent; which is, by all means and purposes, instantaneous; and
which allows us, “in the blink of an eye”, to make sense of complex scenes
and react adequately. The reason we tend not to think about it is that we
are endowed with vision almost from the moment we are born; and that it is
an unconscious activity: we cannot help but see.

Actually, we compose, rather than perceive, a visual picture of our world:
one token of evidence is given by geometrical optics which shows that the
world is projected on our retina upside down. This is where our light recep-
tors lie and yet we have the impression that the world is standing “on its
feet”. This seeming contradiction was cited to refute Johannes Kepler’s
proposal that the eye acts like a camera obscura. More evidence for the ac-
tive construction of our percepts is given by optical illusions: these provide
a vivid demonstration of the fact that our innate or acquired vision mech-
anisms help explain the world most of the time, but do sometimes lead us
astray, see Figs. 1.1, 1.3.

Hence vision is an “active”, if involuntary, achievement in the perceptual
sense, but “passive” in a physical sense: we simply capitalize on the copious
number of photons reflected or emitted by an object. The latter notion is
relatively recent: from the times of Greek physician Empedocles until the
17th century or so, the prevailing belief was that the eye is endowed with

4

1 Introduction

Figure 1.1: Sample of Renaissance metamorphic mannerism, by Wences-
laus Hollar (1607-1677). It shows that what we see is not what
we get: sometimes more, as in this case, and sometimes less, see
next figure.

Figure 1.2: Camouflage picture of at least eight commandos by contemporary
artist Derek Bacon.

5

1 Introduction

Figure 1.3: Example of false perspective masterpiece created by Francesco
Borromini (1599-1667). A rising floor and other cues insinuate
a life sized statue at the end of the gallery. In actual fact, the
statue rises to a mere 60cm.

an “internal fire” and also emits some kind of radiation, rather than merely
records incident light [11].

Human vision offers great spatial resolution; and while some species have
evolved alternate senses (think bats), vision is unparalleled in the velocity of
its stimuli – the speed of light – and in its range.

It is only too natural, then, that one would try and endow computers or
machines with at least a rudimentary form of vision. However, the true com-
plexity of this exercise that we perform continuously and ostensibly without
effort becomes apparent when trying to emulate some form of visual percep-
tion in computers: it turns out to be a formidable task, as anybody who has
ever tried will confirm.

1.3 Why image processing is difficult

To us, having a picture amounts to understanding it. Admittedly, inter-
pretations often differ between individuals, and surely you have experienced
examples where your own perception of an image has changed over time, as
a function of additional knowledge or experiences acquired. This perceived
immediacy of our own image understanding often leads us to underestimate

6

1 Introduction

Figure 1.4: This is how a computer “perceives” an image: as a bunch of
numbers.

the complexity of image analysis, let alone scene understanding.
In contrast to ourselves, the computer does not “understand” a digital

picture that it stores with so much more perfection than we ever can. To
the computer, any picture looks as shown in Fig. 1.4. As far as a computer
is concerned, some images may allow for a higher ratio of compression than
others, but other than that they are all equally meaningless.

Assume, for a moment, that our task is to write an algorithm that counts
the number of cells labeled with a fluorescent marker in a large number of
microscopic images. Assuming that each picture has the modest resolution
of 1000 × 1000 pixels, the task then is, formally, to learn the mapping f :
R1000×1000 → N which should yield the correct number of cells for each image,
zero if there are none. To learn a mapping f defined over a small space is
often feasible; but the space of all conceivable images is very large indeed, as
the following parable illustrates.

Borrowing from Jorge Luis Borges (18991986) fabulous short story
“The Library of Babel”, let us consider The Picture Album of Babel: the
album is total in the sense that it contains all conceivable images with a
resolution of, say, 1 million pixels and 2563 = 16777216 color or intensity
values per pixel. The album contains 167772161′000′000 which is more than
107′000′000 images. Needless to say, parts of the album are rather interesting:
a minuscule fraction of it is filled with images that show the evolution of
our universe, at each instance in time, from every conceivable perspective,
using every field of view from less than a nanometer to more than a mega-
parsec. Some of these images will show historic events, such as the moment
when your great-grandmother first beheld your great-grandfather; while oth-
ers will show timeless pieces of art, or detailed construction directions for
future computing machinery or locomotion engines that really work. Other
images yet will contain blueprints for time machines, or visual proofs attest-
ing to their impossibility, or will show your great-grandmother riding a magic

7

1 Introduction

(a) (b)

Figure 1.5: (a) An excerpt of a picture from The Album of Babel (b) An-
other picture from The Album, borrowed by contemporary artist
Gerhard Richter for his stained glass design for the Cologne
Cathedral.

carpet, etc.
However, to us the majority by far of these images will look like the excerpt

shown in Fig. 1.5, making it a little difficult to browse through it systemat-
ically in order to find the “interesting” images, such as the one showing the
blueprint of the next processor generation which could earn you a lot of
money. The album is so huge that, were you to order all offprints from the
album at the modest size of 9 × 13cm, you would need a shoe box about
101′999′913 times the size of the visible universe to file them.

The good news is that the images of interest to us only make up a tiny
part of this total album; but even so, building a general-purpose algorithm
that will do well in such a high-dimensional space is hard to build.

1.4 Tasks in computer vision

So far, we have shied from defining what “computer vision” actually is. One
possible taxonomy is in terms of

• image processing
• image analysis
• computer vision or image understanding / scene understanding.

All these operate on images or videos, which are usually represented in terms
of arrays: a monochrome still image is represented as a two-dimensional
matrix; a color or spectral image is represented as a three-dimensional array;

8

1 Introduction

and a color video has two spatial dimensions, one color dimension and one
temporal dimension and can hence be indexed as a four-dimensional array.

In image processing, input and output arrays have the same dimensions,
and often the same number of values. In image analysis, the input is an
image or video and the output is a typically much smaller set of features
(such as the number of cells in an image, the position of a pedestrian, or the
presence of a defect). In computer vision, the input is an image or video,
while the output is a high-level semantic description or annotation, perhaps
in terms of a complex ontology or even natural language. Even after five
decades of research, computer vision is still in its infancy. Image processing,
in contrast, is a mature subject which is treated in excellent textbooks such
as [15]. The present script is mainly concerned with image analysis.

Typical tasks in image processing and analysis include:

• image restoration, to make up for deteriorations caused by deficient
optics, motion blur, or suboptimal exposure, (??)
• object detection, localization and tracking (??)
• estimation of pose, shape, geometry with applications such as human-

machine interaction, robotics and metrology (??)
• estimation of motion or flow
• extraction of other features such as number of cells (??)
• scene understanding and image interpretation as components of

high-level vision, no doubt the most difficult in this list and the least
developed.

1.5 Computer vision, not an axiomatic science

Unlike, say, quantum mechanics, there is no single equation that governs
computer vision, from the solution of which all else could be derived. Instead,
we happen to live in a world that results from a few billion years of evolution
under a small set of natural forces, from poorly understood initial conditions.
In other words, our world could certainly look different from the way it does,
and there is no deeper reason behind why a pedestrian looks the way she does.
And yet, pedestrians need be detected, and the same goes for the other tasks
mentioned above. This large diversity of the capabilities that we wish to cast
into algorithms prevents image analysis from being an axiomatic science. This
is of course bad news for anyone wishing for a logical, deductive structuring
of this field; and it makes it difficult to bring the highly interrelated concepts
and techniques relevant to the field into a linear order, such as required by a
script; but even so, there is a set of deep realizations and aesthetical abstract
concepts that make the field attractive also for the mathematically inclined,
and it is simply great fun to play with abstract concepts and computers
and to collaborate with experts from Engineering, the Natural Sciences and

9

1 Introduction

Medicine on the analysis of the interesting data that they acquire. Not least,
the effect of many operations can be directly visualized and image analysis
is hence a kind of “visual mathematics”. It is an interesting and rewarding
field to work in, a field that we now finally take the first step towards.

1.6 Summary

• “Perception is not a clear window onto reality, but an actively con-
structed, meaningful model of the environment” [20].
• To the computer, all images are equally meaningless.
• The space of all images is so vast that näıve learning of a universal, say,

object detection function in it is hopeless.
• Machine vision comprises a multitude of tasks that can roughly be

grouped as image processing (low level), image analysis (intermediate
level) and computer vision (high level analysis).
• No closed mathematical formulation of the computer vision problem ex-

ists; instead, it builds on a wide range of mathematical and algorithmic
techniques.

1.7 Further reading

A readable introduction to animate vision including a good review of psy-
chophysical experiments is offered by [20]. A brilliant collection of optical
illusions can be found at [2]. “The Library of Babel” is a dazzling short story
first published in the 1941 collection “El Jard́ın de senderos que se bifurcan”
(The Garden of Forking Paths). English translations are available on the
Internet.

10

Part I

The Basics of Learning

11

2 Introduction to classification

2.1 Overview

This chapter introduces a simple though fundamental classifier, along with
some of the field’s jargon. We will also see one of the many ways in which
näıve machine vision lacks the robustness of its animate paragon, and what
can be done about it.

2.2 Digit recognition

Let us begin with a modest example, digit recognition, as used in the auto-
mated dispatch of postal mail. Let us also assume that somebody has done
all the hard work for us, viz. identified that part of an address field that
contains digits, and decomposed this area into unique patches containing one
digit each. Let us assume that each patch is of size 28× 28 pixels. Our task
is to automatically predict which of the digits 0, . . . , 9 a patch contains, or
to flag a patch with “doubt” if we cannot make an assignment.

Now, if you knew nothing about or wanted to forego statistical learning,
you could start and devise a set of rules expressing your prior knowledge. For
example, you could look at the spread of the dark pixels in the horizontal
direction: if it is small, chances are it could be a 1 (but perhaps also a 7).
If a digit has two “holes”, it could be an 8 (but perchance also a 0 with a
flourish). Things quickly become complicated: think about how one would
code criteria such as “a 3 has two arcs which are open to the left” in a real

Figure 2.1: Some examples of class 4 from the famous MNIST (Modified
National Institute of Standards [17]) database for isolated hand-
written digit recognition.

12

2 Introduction to classification

programming language... It may just be feasible, but certainly is a difficult
task.

As someone who is reading this script in the first place, you probably prefer
to first collect a training set of examples, each of which is characterized by
features and a label. In digit recognition, the features could simply be the
pixel intensity values in the patch, and the label would be the true digit.
Why not make a prediction regarding an unknown patch by finding the most
similar member of the training set, and using its label as a proxy? If this is
your suggestion, then you have just invented one of the most fundamental and
important algorithms in machine learning: the one-nearest neighbor classifier
(1-NN)!

2.3 Nearest neighbor classification, and
terminology

Classification, then, is the process of predicting the categorical label of an
object from its features. Categorical means “discrete, with no implied or-
dering”, and typical classification tasks are “intact vs. defect” in industrial
quality control, “mitosis vs. meiosis” in quantitative biology, “positive vs.
negative” in diagnostic settings, or “0 vs. 1 vs. ... vs. 9” in digit recognition.
Two-class problems are also denoted as dichotomous or binary classifica-
tion tasks.

In most cases, the features or input are assumed to be flat or unstruc-
tured, meaning they can be represented as a vector of numbers or categories.
In this setting, each pattern or observation or example corresponds to one
point in a feature space with as many dimensions as we have features.

In the digit recognition example introduced above, all the pixel values in
a patch can be mapped in a fixed but arbitrary (customarily: lexicographic
order) to the coefficients of a vector. As a consequence, each point in the
training set, i.e. each image patch, becomes one point in feature space. Note
that the choice of this particular feature space is arbitrary, because we might
also have preferred to use features other than the raw pixel values, e.g. the
spread of dark pixels in the horizontal direction, and many others. In more
complicated examples than the one studied here, a proper choice of features
becomes absolutely crucial, and without too much exaggeration one may say
that conventional texts on image processing exclusively deal with feature
extraction. We will return to this issue again and again, but shall postpone
it for now.

So, once we have settled on an unstructured set of features, each training
example becomes one point in feature space. We can now turn to the question
of what is a good similarity measure in this space. Again, we have to brace
ourselves for an unpleasant truth: there is no universally optimal similarity

13

2 Introduction to classification

Figure 2.2: 1-nearest neighbor (1-NN) classification example: feature space
is partitioned into Voronoi regions belonging to labeled training
examples; to make a prediction, simply check which Voronoi re-
gion the query point falls in, and output the corresponding label.

measure. However, this blemish is also a blessing, because it is here that we
can inject prior knowledge into the process, by formulating an appropriate
similarity measure.

If no such prior knowledge is available, the most frequent choice is to use
the L2 or Euclidean distance, which can be defined for two vectors xi, xj ∈ Rp

of arbitrary dimensionality p as

||xi − xj||2 =

(
p∑

k=1

(
[xi]k − [xj]k

)2)1/2

(2.1)

Given a similarity measure, the 1-nearest neighbor classifier (1-NN)
for an object of unknown class membership proceeds by comparing a query
point with all the labeled points in the training set and using for prediction
the label of that training point that is most similar. The 1-NN classifier
effectively induces a partitioning or tesselation of feature space into non-
overlapping regions each of which is associated with a single object from the
training set. If the Euclidean norm is used as a dissimilarity measure, the
resulting partitioning is a Voronoi tesselation1, see Fig. 2.3

The 1-NN classifier immediately begs some generalizations: for instance,
if there is some overlap of the different classes in feature space, the 1-NN
classifier will create small “islands” of the wrong class within a sea of objects
from the locally dominant class; these islands are an indication that indeed
there is class overlap, and that classification in this area of feature space

1Being a fundamental concept in computational geometry, the Voronoi tesselation has
been discovered multiple times in the context of different scientific fields, where a
Voronoi zone or region is also known as, e.g., Wigner-Seitz cell or Brillouin zone or
Dirichlet domain.

14

2 Introduction to classification

(a) (b)

(c) (d)

Figure 2.3: (a), (b) 1-NN classifiers inferred from two disjunct halves of a
single training set. Note the important and undesirable differ-
ences in regions where the two classes overlap. (c), (d) 41-NN
classifiers inferred from the same reduced training sets. These
classifiers are more similar, at least in those regions of feature
space where the density of observations is high.

will be error-prone; but the exact location of these islands will vary from one
training set to the next and is inconsequential, see Fig. 2.3. One way forward
is to search not for one, but for the k nearest neighbors – hence the name
k-nearest neighbor classifier, or k-NN for short – and make a prediction based
on which class is dominant among those k neighbors. Increasing k will lead
to a regularization of our classifier, i.e. a “stabilization” with respect to
random variability in the training data.

15

2 Introduction to classification

This sounds almost like a free lunch – why not increase k further and
further? Carrying it to the extreme, reconsider Fig. 2.3: there are only about
120 points of the “blue disk” class. If we set k to a value larger than twice
that number, we would always predict the “red cross” class, irrespective
of where the query point lies in feature space. This reduces the nearest
neighbor classifier to a mere majority vote over the entire training set, i.e.
the available features are ignored completely. So far, we have looked at two
extreme cases: choosing k = 1 or choosing k larger than twice the cardinality
of the minority class in the training set; but what happens in between? A
little more thought shows that choosing a large k will eliminate concave
protrusions of the hypothesized ideal decision boundary (see next chapter for
a derivation of this ideal boundary).

Summarizing our findings, choosing k too small will lead to a large random
variability of the classifiers that are trained on different sets of observations
from the same source – i.e., the classifiers will have a high variance. Choosing
k too large will yield classifiers that are overly simplistic and ignore the more
subtle features of the distribution of the classes in feature space – i.e., these
classifiers will have a large bias. This so-called bias-variance tradeoff is
paramount to data analysis, and we shall return to this point again and again
in the following chapters.

Coming back to the toy example from Fig. 2.3, surely there must be an
optimum choice of k? Yes there is, and in situations where there is an ample
amount of data, it can be determined as follows. Take the set of all obser-
vations, and split it into three parts: a training set, a validation set, and
a test set. The validation set can be used to see what parameter settings
give the best results; while the test set is used to estimate the classifier’s
performance objectively before deploying it. The reason for the (important!)
distinction between validation and test set is the following: especially in very
flexible classifiers with a large number of parameters to tweak, repeated use
of the validation set effectively means it is used for training. To make this
very obvious, consider the following setting: an opportunistic binary “classi-
fier” predicts a label for each observation in the validation set, and is told the
number of errors it committed. It now submits the same predictions, except
for a single observation where the prediction was changed; if the updated
number of errors has increased, it will know that the previous label was cor-
rect, if the number of errors has decreased by one it will know that the new
label is correct. Given enough training iterations, the classifier will perform
perfectly on the validation set, but will have learned nothing about the true
distribution of the classes in feature space.

Obvious as it may sound, this is a severe issue in real life: for many a
researcher or engineer the temptation is too great and they keep changing
their classifier until they obtain a fine performance on the test set; but in
doing so they have overtrained a system which will later disappoint the

16

2 Introduction to classification

te
st

tr
ai

n
tr

ai
n

tr
ai

n

tr
ai

n
te

st
tr

ai
n

tr
ai

n

tr
ai

n
tr

ai
n

te
st

tr
ai

n

tr
ai

n
tr

ai
n

tr
ai

n
te

st

Figure 2.4: Schematic example of a four-fold cross validation. The data
(features and labels) are split into four parts. All but one part
or “fold” are iteratively used for training, and one for testing. In
typical use, 10 or more “folds” are used.

collaborators or customers, or will frustrate the research community because
the overly optimistic published results cannot be reproduced.

Alas, the splitting of all observations into three parts, the training, vali-
dation and test set, requires a generous abundance of labeled observations
which in real life we are seldomly sufficiently fortunate to encounter. This
is especially true if the data is high-dimensional, as will be discussed in sec-
tion 4.2.1. In these settings, it becomes necessary to somehow “recycle” the
observations or to otherwise prevent overtraining (statistical learning theory,
see chapters ??, ??).

“Recycling” observations is at the core of cross-validation (CV), see
Fig. 2.4. The performance of a method can then be averaged over the testing
results obtained, with the added benefit that some kind of confidence interval
can be estimated [1].

2.3.1 k-NN classifiers at wits’ end

With reference to the beginning of this chapter, we see that we have not yet
delivered all the goods: we now are in a position to predict, e.g., the digit
that an image patch shows; but as of now we have no mechanism to flag a
patch with “doubt” if a new patch looks different from anything that was
seen in the training set.

One heuristic is to define a threshold and compare the distance to the kth
nearest neighbor to it: if that furthest of the neighbors that are used for
prediction is closer than the threshold, we conclude that all is well and make
a predicition based on a majority vote. If, on the other hand, that distance
is larger than the threshold, then we may conclude that the query point is
located in a region of feature space that is poorly covered with examples from
the training set – in other words, the training set no longer is representative
for the point in question, and a prediction would be pretty much random; in
these cases, it is wiser and more honest to announce “doubt”.

Another variant is the ε-nearest neighbor classifier: here, all training
set observations within a sphere of radius ε around the query point are iden-
tified, and a majority vote is based on them. As above, “doubt” can be

17

2 Introduction to classification

expressed if the total number of observations within the prescribed radius
is smaller than some user-defined threshold. Actually, more refined schemes
are possible (??), where both the absolute number of points as well as the
relative dominance of one class are taken into account.

Finally, one blemish of both the ε- and k-NN classifier is their hard cutoff:
the nearest neighbors have equal weight in the prediction, irrespective of
how close they are to the query point; whereas all remaining points have
exactly zero weight. It seems more plausible to have a weight that decays
with distance, and indeed such schemes have been developed, see chapters
??, ??.

2.3.2 Editing methods

In a sense, the k-NN classifier has zero training time (the training set only
needs to be stored) and all the computational effort falls due at prediction
or test time. This is in contrast to, say, neural networks whose training may
take several weeks of CPU time, but where prediction is almost instantaneous
(?? and [17]).

Careful scrutiny of Fig. 2.3 reveals that only a fraction of the observations
are actually involved in the definition of, or “support” the decision boundary:
only those points belonging to different classes whose Voronoi regions share
a face. How large this fraction is of course depends on the concrete training
set. In general, it will be close to 1 if the data is high-dimensional or the
classes have much overlap, but can also be very small if the data is not
too high-dimensional and the classes are well-separated. When using 1-NN,
these “insignificant” training points can be identified and simply be omitted
without affecting the predictions at all. A number of editing methods have
hence been devised [1] that seek to retain only the relevant points. While
some of these methods aim at a mere speed-up without modifying the decision
boundary [1], others seek to simultaneously introduce a regularization [1] by
eliminating those training points that are dominated by representatives of
another class. Note that this is very close in spirit to the “support vectors”
of support vector machines, see ??.

2.3.3 Computational issues

Since only the rank order of the distances matters, monotonic transforma-
tions of distances are without consequences. In particular, squared Euclidean
distances can be used instead, obviating the unnecessary computation of the
square root.

A Euclidean distance matrix is of course symmetric with 0s on the diagonal,
so only the upper triangle need be computed; however, in matrix-oriented
programming languages such as matlab it can be advantageous to ignore this

18

2 Introduction to classification

function d = squ_distance_matrix_of_point_sets(x1, x2)
% Computes squared distance matrix between two sets of points
% with p dimensions and n1 and n2 points, respectively.
%
% INPUT:
% x1 - required. (p by n1)-matrix of points
% x2 - required. (p by n2)-matrix of points
% OUTPUT:
% d - is a (n2 by n1) matrix of squared Euclidean distances

x1sq = sum(x1.^2, 1);
x2sq = sum(x2.^2, 1);

n1 = size(x1, 2);
n2 = size(x2, 2);

d = repmat(x1sq, n2, 1) + repmat(x2sq’, 1, n1) - 2*x2’*x1;

Figure 2.5: Fast matlab code for computing squared Euclidean distances
between two sets of points.

symmetry and compute the full distance matrix, avoiding loops. The code
snippet in Fig. 2.5 is based on the equality

||xi − xj||22 = (xi − xj)T (xi − xj) = xTi xi − 2xTi xj + xTj xj (2.2)

Finally, approximate nearest neighbor schemes can be used to alleviate the
effort of a naive implementation which, with its cost of O(n) for a single
prediction based on n points in the training set, can be excessive.

2.4 Re-enters image processing

The last few sections have completely ignored the digit recognition applica-
tion that got our discussion started: all of what has been said holds in general
and does not take the image character of the raw data into account. This
crude approach is justified in the sense that it reaches a respectable perfor-
mance: on the MNIST data, a 3-NN classifier reaches an error rate of about
5%, which is not bad for a 10-class problem. Not bad, but still 10 times worse
than state-of-the-art results on that same set. To narrow this gap, we can
make use of more powerful classifiers, as discussed in chapters ??, ??; and we
should remember that we deal with image patches, and must ready ourselves
to respect their peculiarities. It turns out that some of the idiosyncrasies of
this data are not specific to digits, but pertain to all kinds of imagery.

19

2 Introduction to classification

(a) (b) (c)

0 100 200 300 400 500 600 700 800
−400

−200

0

200

400

(d)

Figure 2.6: (a) A sample digit “4” from the MNIST training set, (b) a shifted
version thereof, (c) difference image, (d) coefficients of vectorized
difference image. To us, (a) and (b) are virtually the same, to
the computer they are very different (c),(d).

Consider the Fig. 2.6(b), in which the digit has been shifted by a few pixels
which to us is a trivial modification. To the computer, however, this shift
leads to a completely different pattern, as evidenced by the large distance
vector which is shown in patch format 2.6(c) and in terms of coefficients of
the high-dimensional feature vector 2.6(d). It is important to understand
that a linear translation in image space corresponds to a highly nonlinear
trajectory in feature space, except if the features are translation-invariant by
construction. When the pixel values themselves are used as features, such
invariance is not given.

To fully understand this important point, consider an even simpler exam-
ple: an “image” consisting of just three adjacent pixels. Let the first one
be white and the other ones be black, i.e. the image is represented by the
feature vector (1, 0, 0)T . Now start to translate this image: after some time,
the white pixel will have arrived in the middle and finally in the last pixel,
corresponding to points (0, 1, 0)T and (0, 0, 1)T in feature space. The de-
tailed trajectory in-between these three points will depend on the particular
interpolation function used, but still these points will never lie on a straight
line: in fact, the shifted image has “visited” all three coordinate axes of this
primitive image space.

We can now generalize this finding. Consider in-plane rotation as another
example of a simple rigid transform which is governed by just one parameter,
the rotation angle. If we take an arbitray image of, say, the Eiffel tower and

20

2 Introduction to classification

gradually rotate it through 360◦, in the feature space of all pixel values this
image will trace out a complicated, but locally one-dimensional, closed curve:
after one full rotation, we are back at the starting image / starting point.

In digit recognition, large rotations are not permissible (they would turn
a 6 into a 9), but small rotations certainly do occur2. If we had an infinite
training set, all these slightly rotated versions of sample digits would be rep-
resented and no further thought on our side would be required. As things
are, the training set is finite and many of these expected variations are miss-
ing. Looking at Fig. 2.1, we see that beyond translation and rotation, other
changes that should be taken into account are minor shearing and stretching,
as well as the thickness of the pen used.

One brute-force possibility would be to enrich the training set with arti-
ficial examples that have been generated by affine operations (composed of
some combination of translation, rotation, scaling and shearing) as well as
morphological operations (see chapter ??) to emulate different pen thickness
or pressure applied. Indeed, this works well, but incurs a high computational
cost [18]. A smart approximation is presented next.

2.4.1 Tangent distance

The set of all images that can be generated by modifying an original patch
forms a manifold in feature space. The nominal dimension of this man-
ifold is given by the dimensionality of the feature space itself; the intrinsic
dimension, though, is given by the number of variables that are required to
account for local displacements along the manifold. For a concrete example,
consider once more a patch showing a digit. As described above, rotation
alone will trace out a locally one-dimensional curve, or manifold, in feature
space that forms a loop if we rotate through 360◦. Magnification or shrinking
of the original picture will lead to another nonlinear curve which does not
intersect with or close on itself. If we now consider all possible rotations and,
say, all magnifications or shrinkages up to a factor of two (while keeping the
number of pixels constant), this corresponds to a twisted band in feature
space; topologically speaking, this band is equivalent to a frisbee, so only two
coordinates – rotation and scaling factor – are required to uniquely determine
the position in feature space: the intrinsic dimension is merely two, while the
nominal dimension for an MNIST digit with 28× 28 = 784 pixels is 784.

In the tangent distance algorithm [23], the exact nonlinear manifold in-
duced by a set of transformations is approximated by a linear manifold, or
hyperplane, around the original patch. These planes will, in general, never
intersect because they are of much lower dimensionality than the feature
space (for illustration, consider two randomly oriented straight lines in 3D

2Translation itself has been eliminated in the MNIST data set by subtracting the spatial
“center of mass” of the gray values.

21

2 Introduction to classification

Figure 2.7: Cartoon illustration of tangent distance. In feature space, the
original patterns (image patches) are marked by stars. Modifi-
cations of these patches such as translation, rotation, etc. lead
to complex nonlinear displacements along low-dimensional man-
ifolds in feature space (black curves). The manifolds are locally
approximated using tangents which generally will not intersect
(feature space is high-dimensional). The closest Euclidean dis-
tance between the two tangents (indicated by dashed line) is the
“tangent distance”.

and the vanishing probability that they intersect). Even so, two hyperplanes
will always have a point of closest approach, and it is this closest distance
that is defined as the tangent distance, see Fig. 2.7. The prime motivation
for this algorithm is computational efficiency: it is much cheaper to com-
pute the tangents and find the shortest distance between these (by solving
a linear least squares problem), than to trace out the complete nonlinear
manifolds and find their shortest distance. Simard et al. [23] discuss addi-
tional means of improving the approximation (by iterating tangent distance
computations) and, in particular, how to further speed up the calculation by
means of approximate early stopping criteria.

On the MNIST data, using tangent rather than Euclidean distance in con-
junction with k-NN reduces the error rate by about 50% – this great improve-
ment attests to the importance of including prior knowledge when available.
In the case discussed here, it is the desired invariance of the pattern recog-
nition with respect to minor translations, rotations, scaling, etc. that is built

22

2 Introduction to classification

into the system.
Note that we have elegantly glossed over the all-important “detail” how a

tangent is actually computed; or, in the exact (manifold rather than tangent
distance) algorithm, how a rotated or scaled version of an image can be
obtained. These questions boil down to the problem of how to properly
interpolate a discrete image. This issue is central to image processing and, as
in our example, pattern recognition. We will turn to this problem in chapter
??.

2.5 Summary

• k-nearest neighbors (k-NN) is a simple and well-understood classifier
with respectable performance.
• The number of k nearest neighbors that are considered for a prediction

trades off bias and variance of the prediction.
• Cross-validation (CV) can be used to find the optimal tradeoff.
• Unless a suitable (i.e.: invariant) representation is used, simple trans-

formations in image space may lead to complicated changes in feature
space.

23

3 Some theory behind
classification

3.1 Overview

The previous chapter has vaguely referred to an “ideal” classifier. In this
chapter, we will see the good news that such an ideal classifier indeed exists
and can be formalized – and the bad news that it is not attainable in prac-
tice. We then encounter linear and quadratic discriminant analysis, classifiers
which in many ways are complementary to k-NN, and study their merits and
limitations.

The price for the good news is that treatment will of necessity be more
formal in this chapter. However, this level of treatment is indispensable to
access recent literature, and to carry the arguments beyond cocktail party
standards. So do not be discouraged, and plow through...

3.2 Statistical Learning Theory

In section 2.3 we postulated, in passing, that there is such a thing as an ideal
decision boundary for a classification problem. To derive it, let us assume
that the examples (xi, yi) in our training set have been sampled randomly,
independently from each other from the same underlying distribution1 which
is assumed to be constant over time. The last assumption is generally ex-
tended to imply that future samples will come from the same distribution,
i.e. the classifier will only be confronted with samples from the same distri-
bution after deployment. This is a bad assumption in the real world where
processes can drift, sensors can age, etc. meaning that the distribution does
indeed change over time.

Assume, furthermore, that we have a classifier f(x) that can predict a class
or label ŷi, including the class “doubt”, for each position x in feature space.

The final ingredient we need is a loss function L(y, ŷ) that tells us what
loss we incur if the true label is y and our prediction is ŷ.

We can now compute the risk R(f), that is the expected loss that depends
on both the classifier f and the joint distribution of features and labels (x,y)

1Statisticians write iid for short, i.e. independently and identically distributed.

24

3 Some theory behind classification

in our data:

R(f) = ExEyL(y, f(x)) (3.1)

=

∫
X

EyL(y, f(x))p(x)dx (3.2)

Note that both features and labels are now treated as random variables, hence
the bold print (see page 61 for an overview of the notation used, and section
?? for an introduction to random variables). In the last equation, we have
assumed that feature space is continuous, X ⊂ Rp.

Our aim is to find the classifier that minimizes this risk. The first expec-
tation goes over all of feature space; to minimize the overall risk, we need
to minimize it, individually, at each position of feature space. Let us hence
concentrate on the second expectation,

EyL(y, f(x)) =
∑
y∈Y

∑
z∈Y

L(y, z)I(f(x) = z)P(y = y|x) (3.3)

In words, eq. 3.3 says the following: we need to sum over all the possible
discrete labels y ∈ Y that we could observe at location x in feature space
with probability P(y = y|x) (the latter is the conditional probability that
random variable y assumes the value y, given position x: see appendix ??).
The classifier f(x) itself is deterministic, it predicts label z, thus incurring a
loss of L(y, z). Since we do not know in advance which label z the classifier
will choose, we need to sum over all the possibilities z ∈ Y , but only pick
the one loss that corresponds to the classifier’s choice. This is achieved by
means of the indicator function I that is 1 when its argument is true, and
0 otherwise. Y is here assumed to contain the “doubt” class; if all training
observations are labeled, then their P(y = doubt|x) is zero, but the classifier
is still permitted to express doubt.

If we make the reasonable assumption that correct predictions incur no
penalty, L(y, y) = 0, eq. 3.3 can be rewritten as

EyL(y, f(x)) =
∑

y∈Y\f(x)

L(y, f(x))P(y = y|x) (3.4)

The contents of the loss matrix should reflect the severity of the different
possible errors. For instance, in a diagnostic setting, the costs of a false
negative (in the extreme case, the life of a patient that remained untreated)
are much higher than the costs of a false positive (in diagnostic settings,
typically the cost of a second, independent test to confirm or reject the first
finding).

As an important special case, let us consider the following loss matrix:

25

3 Some theory behind classification

L(y, f(x)) f(x) = 1 f(x) = 2 . . . f(x) = c f(x) = doubt
y = 1 0 Pm . . . Pm Pd
y = 2 Pm 0 . . . Pm Pd

...
...

. . .
...

y = c Pm Pm . . . 0 Pd
It suggests a constant penalty for misclassification Pm as well as a penalty Pd
when the classifier resorts to announcing “doubt” instead of making a predic-
tion. Using this symmetric loss function and remembering that conditional
probabilities must sum up to one,

∑
y∈Y P(y = y|x) = 1, eq. 3.4 reduces to

EyL(y, f(x)) = I(f(x) ∈ {1, . . . , c})(1− P(y = f(x)|x))× Pm
+I(f(x) = doubt)× Pd (3.5)

In words, if the classifier announces “doubt”, the cost incurred is always Pd;
if it does predict one of the c := |Y| classes 1, . . . , c, the cost is Pm times the
probability of observing a class other than the predicted one at position x in
feature space.

The optimal classification strategy is now clear: to minimize the risk, the
classifier should predict the most abundant among the classes 1, . . . , c to
minimize the probability of misclassification. But overall, the cost of a mis-
classification Pm times the probability of an error should be smaller than the
cost of announcing doubt Pd; if it is not, it becomes “cheaper” for the clas-
sifier to remain noncommittal and simply express “doubt”. In other words,
if the user-specified cost for doubt Pd is low, the classifier will only make
predictions in cases in which it is absolutely sure. If Pd � Pm, the classifier
will always make a prediction, even if no class clearly dominates the others
at that point in feature space.

The classifier we have just derived is the best classifier there can be; it is
called the Bayes classifier. Among all strategies, it is the one that achieves
the minimum possible risk, which for a given distribution of classes is called
the Bayes risk. The Bayes risk depends on how the different classes are
distributed in feature space: if they have a lot of overlap, the Bayes risk will
be large (meaning that even this very best classifier will necessarily have a
large error rate); whereas if the classes are well-separated, the expected loss
will be low. This again underscores the importance of finding good features
for a problem at hand. In the sense of classification, the hallmark of good
features is a clear separation of the classes in feature space, and consequently
a low Bayes risk.

Overall, we come to the reassuring realization that this optimum classifier
which we have obtained in a lengthy derivation actually has common sense:
at query point x in feature space, it simply predicts that class y which has
the highest posterior probability P(y|x) at this point in feature space. That
is, it chooses the locally dominant class, or announces doubt if there is no
clear domination of a single class.

26

3 Some theory behind classification

0.005

0.01

0.015

0.02

0.025

0.03

(a) p(x = x|1)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(b) p(x = x|2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) P(y = 2|x)

(d) (e)

Figure 3.1: (a) Density of class 1, (b) of class 2 and (c) posterior probability
of class 2. The Bayes classifier decision boundary (green line) for
a binary classification problem is given by the set of points at
which P(y = 2|x) = 1/2. (d), (e) Two training sets drawn from
the above true distribution, with the Bayes decision boundary
overlaid. These samples illustrate how difficult it is to precisely
estimate the Bayes classifier given a finite training set.

3.3 Discriminative vs. generative learning

So far so good, but why did we discuss k-nearest neighbors in the first place,
if the ideal classifier is known and that simple? The answer is, of course,
that the formulæ above are based on knowledge of the true P(y|x), which is
not available – all we have is a finite training set! By looking at Fig. 3.1 we
can see just how difficult it is to estimate the Bayes classifier given a finite
training set.

In retrospect, then, k-NN appears in a different light: it can be seen as an
empirical estimate of the true posterior probability in a local environment
around the query point.

27

3 Some theory behind classification

Given Bayes’ theorem (see appendix ??)

P(y|x) =
p(x|y)P(y)

p(x)
(3.6)

we see that there are two ways to approximate the Bayes classifier: by either
modeling the left-hand side, i.e. directly estimating the posterior proba-
bilities of the different classes; or by estimating the class densities p(x|y)
along with the prior class probability P(y). The former class of methods is
called discriminative (because they directly try to distinguish the classes)
whereas the latter are denoted generative. Generative models earn their
name because they estimate the class densities – given these, it would be pos-
sible to simulate, or generate, new observations that approximately follow the
same distribution as the ones in the training set.

In the light of the previous section, any method that can be used to esti-
mate the density of a class in feature space is a potential building block for a
generative classifier. A large number of density estimators exist, ranging from
so-called nonparametric that make few assumptions on the distribution of
the data (such as histograms, or kernel density estimates (section 4.2.1)) to
parametric techniques that make far-reaching, if sometimes ill-justified, as-
sumptions regarding the distribution from which the data have supposedly
been sampled. Examples for this class are weighted sums of Gaussian distri-
butions, so-called Gaussian mixture models (??).

The distinction between parametric and nonparametric is somewhat arbi-
trary, and the terms themselves are misleading: “parametric” models tend to
have less flexibility, fewer degrees of freedom and fewer parameters; while the
“nonparametric” methods are actually those with the largest, though some-
times implicit, number of parameters. Consider k-NN as an example: at
first sight, it might seem like the method has only one adjustable parameter,
namely k. However, this is a hyperparameter which adjusts the flexibility
of the method. If we set k to 1, the true, implicit, number of parameters is
upper bounded by the size of the training set! To see this, remember that the
training data partition feature space into Voronoi regions; now, for heavily
overlapping classes, each of these regions requires one (implicit) parameter:
its label.

3.4 Linear discriminant analysis (LDA)

1-NN is a very flexible method that makes few assumptions indeed regarding
the true distribution of the classes. As a “contrast program”, we now turn to a
method that is the direct opposite: linear discriminant analysis. It makes very
strong (which means, unless they are verified: poor!) assumptions regarding
the distribution of the classes in feature space: it assumes that each class has

28

3 Some theory behind classification

a multivariate Gaussian (see appendix ??) distribution

p(x|y = i) =
1

(2π)p/2|Σi|1/2
exp

(
−1

2
(x− µi)TΣ−1

i (x− µi)
)

(3.7)

with the same covariance function Σ1 = Σ2 = Σ, but different mean.
Given this crucial assumption, we can now set to work with the machinery

from section 3.2 to develop a binary classifier. First, let us find the decision
boundary between classes 1 and 2: it is given by that set of points at which
both classes have the same posterior density. Solving for x by canceling terms
and rearranging we find

P(y = 1|x) = P(y = 2|x)

p(x|y = 1)P(y = 1) = p(x|y = 2)P(y = 2)

2 log

(
P(y = 1) |Σ2|1/2

P(y = 2) |Σ1|1/2

)
= xT

(
Σ−1

1 − Σ−1
2

)
x

+xT
(
−Σ−1

1 µ1 + Σ−1
2 µ2

)
+µT1 Σ−1

1 µ1 − µT2 Σ−1
2 µ2 (3.8)

By the LDA assumption, Σ1 = Σ2 = Σ, so that

xTΣ−1 (µ2 − µ1) + µT1 Σ−1µ1 − µT2 Σ−1µ2 + 2 log

(
P(y = 2)

P(y = 1)

)
= 0 (3.9)

This equation is of the form xTw + b = 0, i.e. it defines a (hyper-) plane
with normal vector w = Σ−1(µ2 − µ1). It also explains the name of linear
discriminant analysis: whatever the covariance function Σ that the classes
have, the decision boundary is always a (hyper-) plane. If the classes are
assumed to have an isotropic covariance function Σ = σ2I, the normal of this
decision boundary is simply given by the difference vector of the two class
means. The log ratio of the prior class probabilities simply shifts this decision
boundary along the normal: if it is more probable to obtain a datum from
one class than from the other class, then this shifts the decision boundary
accordingly, to the profit of the more abundant class.

In practice, both the class means µi and the precision function Σ−1 have
to be estimated from the training set, and both will be subject to random
error. Fig. 3.2(c) illustrates that the classifier will be very confident in the
upper right and lower left corner of the input domain even though there are
no training samples in those regions. It is hence advisable to put a threshold
on the density of the locally most abundant class: if the density falls below
a user-selected value, it is a good idea to let the classifier express “doubt”.

LDA tends to work well if only few observations are available in a high-
dimensional feature space; but it clearly does not satisfy the requirements of
the data set shown in Fig. 3.2 which calls for a nonlinear decision boundary.
We can now relax one of the assumptions that LDA makes.

29

3 Some theory behind classification

(a) (b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

(d)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e)

Figure 3.2: Linear (top) vs. quadratic (bottom) discriminant analysis. (a)
The data set already familiar from Fig. 3.1. (b), (d) Gaussians
with identical and different covariance matrices fit to both classes
and weighted with the empirical prior. The decision boundary is
indicated in green. By definition, it passes where the first, second,
. . . contours from both classes intersect. (c), (e) The estimated
posterior probability of the “red” class.

3.5 Quadratic discriminant analysis (QDA)

We can again invoke eq. 3.8, but this time refrain from assuming that the
covariance matrices Σ1 and Σ2 are identical. Eq. 3.8 now defines a quadric,
i.e., depending on the parameters, a parabola or hyperbola or ellipsoid or
pair of lines. Using two Gaussians with distinct parameters does the toy
example in Fig. 3.2 more justice: the ellipsis is actually pretty close to the
Bayes classifier, especially in the high-density region.

If no restrictions are imposed, the number of parameters that need to be
estimated grows quickly with the nominal dimensionality p. At first glance,
it looks like even LDA requires p(p−1)/2 parameters for the precision matrix
Σ−1, plus 2p parameters for the means µ1, µ2. However, remembering that
eq. 3.9 is of the form xTw+ b = 0 shows that the effective number of parame-
ters that need to be estimated is only p + 1, for w and b. A similar argument
shows that the effective number of parameters for QDA is p(p− 1)/2 + p + 1.

30

3 Some theory behind classification

For a feature space with high dimensionality p, there are generally not
enough training samples available to estimate the parameters reliably. Jerome
Friedman has shown that the so-called plug-in estimates are biased in the
small sample case, and has proposed regularized discriminant analysis
[7, 14, chapter 4.3]. It introduces two parameters α, β that reduce the flexi-
bility of the resulting classifier. The first one “mixes” some of the estimated2

pooled covariance matrix Σ̂ =
∑c

i=1 Σ̂i/ni (where ni is the number of training

examples in class i) into the individual class covariance matrices Σ̂i:

Σ̂i(α) = αΣ̂i + (1− α)Σ̂ (3.10)

The rationale here is that the pooled covariance matrix can be estimated
more reliably, given that it is computed from all observations. The resulting
classification boundary is hence simplified by making it a “mixture” of the
full quadric and the linear classifier. The second parameter β biases the
covariance matrix of each class towards isotropy:

Σ̂i(α, β) = βΣ̂i(α) + (1− β)
tr
(

Σ̂i(α)
)

p
Ip (3.11)

When α, β are set to zero, the “nearest means” classifier results, which simply
assigns each observation to that class with closest center of mass.

The parameters α, β can be estimated by “cross-validation”, see 17. More
recent work focuses on directly making the coefficients of w smooth or sparse,
see ??.

3.6 Summary

This chapter has been a little more difficult than the previous ones; but it has
endowed us with some beautiful concepts. First of all, we now know what
the perfect classifier looks like, and now better understand the fundamental
limitations of all statistical classifiers: if the classes overlap in feature space,
we cannot reduce our error rate below a given level dictated by the Bayes
classifier. If this level is inadequate, we must necessarily add new, more
informative, features. These will typically come at a price, for instance they
may require the acquisition of new measurements with an extra sensor.

If all prediction errors are equally undesirable, the Bayes classifier reduces
to predicting that class which has the highest posterior probability at a given
point in feature space.

Linear and quadratic discriminant analysis are parametric classifiers that
are useful in a wide range of problems; regularization techniques are available
for both.

2Σ now carries a hat “̂ ” to stress that it has been estimated, and is not known exactly,
cf. appendix ??

31

3 Some theory behind classification

All of this chapter was based on the assumption that the distribution in
the training set is representative for samples that call for classification in
the future. This is often not fulfilled if there is process drift, making the
detection of outliers (??) and change points an important topic. Some theory
is available for this so-called covariate shift, e.g. [24].

32

4 Introduction to unsupervised
learning

4.1 Overview

In the previous chapters, we have cast image analysis as a pattern recognition
problem, with each patch, or even complete image, corresponding to one point
in feature space. We shall now look at ways of describing the distribution
of these points in space. One natural way to do so is in terms of their
density (section 4.2) which in turn allows us to group together similar points
in clusters (section 4.3). Such a grouping can be seen as a form of lossy
compression. A canonical way of finding the most relevant subspace, and
hence also of compressing, the data is described in section 4.4. All of these
methods assume there are no labels, or disregard them, hence the name of
this chapter.

4.2 Density estimation

Because estimating the density of points is an operation of such fundamen-
tal importance, we bestow upon it the privilege of opening this chapter. Its
applications are manifold: for instance, in a generative classifier, nonpara-
metric density estimation allows us to relax the harsh assumptions of LDA
and QDA (section 3.4, 3.5) which modeled the density of each class using a
single multivariate Gaussian only. Density estimation can also be used for
outlier detection in a classification problem: whenever a query point lies
in a part of feature space that is not adequately covered by the training set,
an alarm should be raised instead of making an uninformed prediction with
all its possible adverse consequences. Density estimates are also used in non-
parametric regression (??), for edge-preserving image smoothing (??) and for
image segmentation (??). Finally, points that contribute to the same local
maximum of the density may be considered to somehow belong together, a
notion discussed in more detail in section 4.3.

Density estimation can also be cast as a supervised learning problem, by
introducing an auxiliary class with known distribution (chapter ??). How-
ever, the most typical approaches are variants of either histograms or kernel
density estimation, which we turn to now.

33

4 Introduction to unsupervised learning

−4 −2 0 2 4

−
0

.1
0

.0
0

.1
0

.2
0

.3
0

.4

||| ||| | |||| |||| | || || || || ||| || || || | || || | || ||| |||| | ||

(a)

−2 0 2 4

0
1

2
3

4
5

6

x

fr
eq

u
en

cy

(b)

−4 −2 0 2 4

0
2

4
6

8
1

0
1

2
1

4

x

fr
eq

u
en

cy

(c)

−4 −2 0 2 4

0
5

1
0

1
5

x

fr
eq

u
en

cy

(d)

Figure 4.1: A set of one-dimensional observations and histograms thereof.
Note the differences in appearance resulting from different pa-
rameter choices; in particular, (c), (d) differ only in the offset of
their bins.

4.2.1 Histograms and the Curse of Dimensionality

The best known density estimate is the histogram, which simply counts the
number of occurrences in a set of prespecified bins. In most cases, the bins
are defined by the cells of a lattice [6], i.e. by a set of identical but shifted
volumes that tile space. One-dimensional regular histograms have just two
parameters, the offset of the first and the width of all bins. Choosing bins
that are too small will lead to histograms in which most bins are empty
and many hold only a single sample; choosing a bin width that is too large
may gloss over interesting structure in the data. As opposed to the supervised
learning techniques discussed before, there is no mechanism to find the “true”
bin width: what is an optimal choice will of course depend on the amount
of data (with more observations permitting use of smaller bin widths and
hence a finer rendering of details), but also on the structure of the data and,
finally, the intent of the data analyst. This state of matters is of course
unsatisfactory, but cannot be helped.

A generalization of the histogram to multiple dimensions is straightfor-

34

4 Introduction to unsupervised learning

Figure 4.2: Three-dimensional sketch of an eight-dimensional hypercube
which preserves the radial mass distribution and number of ver-
tices. Some of the 28 = 256 vertices have been broken away to
reveal that both the center and the periphery of this cube con-
tribute little to its overall mass [13].
(Courtesy of Erik Agrell.)

ward, but requires choice of a few more parameters: on the one hand, the
precise rotation and shift of the first bin; and the shape of the bins. The
consequences of parameter choices are aggravated when dealing with higher-
dimensional data. In particular, the (hyper-) rectangular bins that are mostly
used for reasons of convenience turn out to be a particularly poor choice in
higher dimensions [13, 16]! This finding is related to a host of evidence that
is commonly subsumed as curse of dimensionality. This name seeks to
convey that our spatial intuition, trained in three dimensions, is ill equipped
to understand the geometry of higher-dimensional spaces. As an illustration,
consider the sketch in Fig. 4.2.

One manifestation of this “curse” is that in high-dimensional spheres, it is
the “onion layer” just below the surface that contributes most to the over-
all mass. This is due to the volume element of integration in a spherical
coordinate system, which grows as a monomial of the radius.

In a high-dimensional Gaussian distribution, this dominance of the outer
layers is eventually offset by the probability density itself which decays ex-
ponentially with the square of the radius. The length r of a p-dimensional
standard normally distributed random vector has a chi distribution with
p degrees of freedom, the probability density function of which carries the
vestiges of these antagonistic effects: it is the normalized product of a radius
monomial and Gaussian-type decay, with the non-negative real numbers as

35

4 Introduction to unsupervised learning

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

r

p
χ
(r

)
Figure 4.3: Probability density of the chi distribution with 1, 2, . . . , 10 degrees

of freedom.

its domain:

pχ(r) =
21−p/2

Γ(p/2)
rp−1e−r

2/2, r ∈ R+
0 (4.1)

The mode, or maximum, of the distribution shifts with the dimensionality
p as
√

p− 1. Interestingly, the variance quickly converges to a constant value
with increasing dimensionality meaning that a normally distributed example
is most likely to be found at a distance

√
p− 1 from the origin, where the

relative precision of this estimate increases with growing dimensionality.
An intriguing corollary is that the distance between any two points that are

randomly sampled from a normal distribution also has a fairly narrow spread
in higher dimensions. To see this, remember that the difference between two
normally distributed random variables is also a Gaussian random variable,
with a variance that is the sum of the individual variances (appendix ??).
Applying this argument to each coefficient of the difference vector shows that
it, too, has a multivariate Gaussian distribution and that, consequently, the
length of this difference vector follows a (scaled) chi distribution.

This finding carries over to other distributions with high intrinsic (sec-
tion 2.4.1) dimensionality: empirically, the ratio of the greatest to the small-
est distance between any two points from a finite set converges to one, as
demonstrated also by simulation [3].

All of this implies that density estimation in high dimensions is an ill-posed
problem; the number of points required for a reliable estimate grows at least
exponentially with the dimensionality. For histograms, this means that if
the data has high intrinsic dimension, choosing an appropriate bin size is
difficult: as described above, most bins will have zero or one sample only if
the bins are too small, or few bins will hold most of the data if the bins are
too large. Things do not look as bad if the intrinsic dimensionality of the
data is low; however in those cases, a mechanism to project the data to the
relevant low-dimensional space is required. Such a mechanism is the subject

36

4 Introduction to unsupervised learning

of section 4.4.
Average shifted histograms (ASH) have been proposed [21] as a rem-

edy for the arbitrariness of the shift of the first bin. In ASH, one computes
multiple histograms for different offsets, and averages over these to obtain
a density estimate at a given location. From the perspective of the query
point, this amounts to computing a weighted sum over nearby points. A
moment’s thought shows that the weight function must be a triangle in the
one-dimensional case that has a weight of one at the query point and reaches
zero at a distance of plus or minus the bin width. More precisely, for an
infinite number of randomly shifted histograms, the ASH converges to

ASH(x) =

∫
k(x− h)

n∑
i=1

δ(h− xi) dh

that is, a convolution (??) of the kernel function k with a spike train, or set
of delta functions, that are located at the observations. The kernel is given
by the autocorrelation (??) of the bin with itself. This formula also holds for
multiple dimensions. (Average shifted) histograms are an important ingre-
dient of the pyramid match kernel ([10], ??), a popular method to compare
sets of features, e.g. for object recognition.

If one were to generalize ASH to also include an averaging over possible bin
widths, yet different and more complicated weighting functions would arise.
Instead, one can choose these directly, resulting in the method described next.

4.2.2 Kernel density estimation (kDE)

In kDE, the user can directly pick a kernel or weighting function k. This
requires specification of its shape (generally assumed to be isotropic, k(x) =
k(||x||2), which does not limit generality as long as the data is scaled) and
its scale or bandwidth. To obtain the kernel density estimate, one can
now smooth over (??) the set of delta functions that represent the observa-
tions or, equivalently, sum over normalized kernels that are centered at the
observations (Fig. 4.4):

p̂(x) =
1

n

∫
k(x− h;h)

n∑
i=1

δ(h− xi) dh

=
1

n

n∑
i=1

k(x− xi;h) with

∫
k(x;h) dx = 1

Note that, in contrast to eq. (4.2), we have now normalized by the number of
samples n: histograms usually give absolute counts, whereas density estimates
must integrate to one, according to the axioms of probability theory. We have
also made explicit the parameter h by writing k(·;h).

37

4 Introduction to unsupervised learning

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

x

p̂
(x

)

Figure 4.4: Kernel density estimation example: the location of the one-
dimensional samples are sketched by vertical bars. The kernel
density estimate (bold line) can either be seen as a smoothing of
the sum of these delta distributions, or as sum of kernels that are
centered at at these observations (shown at the bottom).

Being a simple linear superposition, the density estimate p̂ inherits all
properties from its summands: in particular, if the kernel is differentiable
everywhere, then so is the density estimate; if the kernel is nonnegative, then
so is the density estimate – meeting another requirement from said axioms.

Intuitively, we understand that proper choice of h is of crucial importance:
making it too small will result in a density estimate that looks like a “stack
of needles”, or isolated peaks; and density estimates obtained from different
samples from the same underlying distribution will look very different. On
the other hand, making h extremely large will ultimately result in a estimate
that reflects the shape of the employed kernel (typically, a single bump) more
than that of the underlying data. In terms of the bias-variance tradeoff (see
??), we can state that small h leads to large variance, whereas large h yields
bias.

Statistics of kernel density estimation∗

To make these considerations more quantitative, consider independent and
identically distributed random variables x1:n := {xi|i = 1, . . . , n} with true,
unknown probability density p(x) which we would like to estimate from a fi-
nite sample comprising n realizations x1:n := {xi|i = 1, . . . , n}. The expected
density estimate (as we repeatedly draw each of the n variables from many

38

4 Introduction to unsupervised learning

training sets) at position x becomes

Ex1:n p̂(x) = Ex1 . . .Exn p̂(x) = Ex1:n

(
1

n

n∑
i=1

k(x− xi;h)

)
(4.2)

=
1

n

n∑
i=1

Exi
k(x− xi;h) (4.3)

=
n

n
Ex1k(x− x1;h) (4.4)

The last equality stems from the fact that all random variables have the
same distribution; we can hence replace the sum of expectations over these
random variables with the n-fold multiple of a single one of these expectations,
e.g. the first one. Inserting the definition of an expectation (appendix ??),
we finally find

Ex1:n (p̂(x)) =

∫
k(x− x1;h)p(x1) dx1 (4.5)

This is interesting indeed! The expected density estimate is simply the con-
volution of the true (but unknown) density with the kernel function, and the
bias is hence the difference between the true and the smoothed probability
density. The promise of this equation is that if we were to choose a Dirac
function as a kernel, the expected density estimate would become identical to
the true density estimate, and the bias would become zero! Of course, there
would be a heavy toll to pay in terms of increased variance, as demonstrated
next:

Varx1:n(p̂(x)) :=
1

n
Ex1:n

(
p̂(x)2

)
− 1

n
(Ex1:n (p̂(x)))2 (4.6)

We already know the last factor which is the square of eq. (4.5). Regarding
the other term, we insert the definitions of expectation and kDE, reshuffle as
before and finally obtain

Varx1:n(p̂(x)) =
1

n

∫
k(x− x1;h)2p(x1) dx1

−1

n

(∫
k(x− x1;h)p(x1) dx1

)2

(4.7)

Unsurprisingly, the variance of the estimator shrinks as the number of avail-
able samples n grows. But how about the kernel width? A quantitative
argument can be made [22] by Taylor expanding the true density. Simplify-
ing this argument further to get an intuition, let us assume that we use the
uniform kernel (in one dimension also called the box kernel: constant within
a sphere, and zero outside) and that the true density is, to a good approxima-
tion, constant across the diameter of this primitive kernel. The integral can

39

4 Introduction to unsupervised learning

then be restricted to the support of the kernel, and both kernel and density,
assumed to be constant, can be pulled out of the integral. Remembering
that kernels are normalized, we find that the variance becomes very large if
k(x;h)� p(x), which certainly holds for all “normal” densities as h shrinks
and the kernel becomes ever more similar to a delta distribution.

Summing up, to minimize bias we should use a kernel that is as narrow as
possible; but this will inflate the variance; and vice versa. Once again, we
have encountered the bias-variance tradeoff that was already mentioned
in passing in section 2.3. In kDE, the squared bias and variance add up to
the mean squared error, defined as

MSE(p̂(x)) = E
(
(p̂(x)− p(x))2) (4.8)

= E
(
(p̂(x)− E (p̂(x)) + E (p̂(x))− p(x))2) (4.9)

= E
(
(p̂(x)− E (p̂(x)))2) variance (4.10)

+ (E (p̂(x))− p(x))2 squared bias (4.11)

Parameter choice

Understanding the limiting cases of extremely broad or narrow kernels is all
very well, but still leaves us with the eminently concrete problem of choosing
an appropriate width for a real data set. In summary, this is an unsolved
problem, characteristic of the obstacles that unsupervised learning encoun-
ters in general. There are cross-validation type procedures which choose
the bandwidth h such that the average likelihood of an observation, given
a kDE estimate constructed from all other observations, becomes maximal.
However, these procedures fail for heavy-tailed distributions. In such distri-
butions, single observations can lie very far from all others and require very
broad kernels to be “explained” by the others. Alternatively, one may use
an adaptive, or location-dependent, bandwidth. Here, the bandwidth may
e.g. be set to the distance of the k-nearest neighbor. A proper number k1 may
then be chosen so as to maximize cross-validated likelihood, as just described.

Besides the bandwidth, we need to choose a shape for the kernel. Theoret-
ical arguments show that the Epanechnikov kernel, an inverted truncated
parabola, has maximum efficiency. It is also cheap to compute and allows for
partitioning schemes such as kD-trees [1] thanks to its finite support. On the
downside, the cusp at the limit of its range means that the resulting density
estimate is not differentiable everywhere. Other kernels that are frequently
used in practice are b-splines, a truncated cosine or the Gaussian (which has
a somewhat inferior efficiency). The only popular kernel that has markedly
worse efficiency is the uniform kernel; also, due to the piecewise constant na-
ture of the resulting density estimate, it cannot be used in conjunction with

1To minimize confusion, we write k for the scalar number of nearest neighbors considered
and k(·) for the kernel, a function of space.

40

4 Introduction to unsupervised learning

−3 −2 −1 0 1 2 3

0
.0

0
.1

0
.2

0
.3

0
.4

gaussian
epanechnikov
rectangular
triangular
biweight
cosine
optcosine

x

k
(x

)

(a)

Gaussian 95.12
Epanechnikov 100.00

Rectangular 92.95
Triangular 98.59

Biweight 99.39
Cosine 98.97

Optcosine 99.95

(b)

−4 −2 0 2 4

−
0

.1
0
.0

0
.1

0
.2

0
.3

0
.4

gaussian
epanechnikov
rectangular
triangular
biweight
cosine
optcosine

x

p̂
(x

)

(c)

Figure 4.5: Different kernels (a) and their efficiencies (b). Density estimates
obtained from the samples in Fig. 4.4 using these kernels and an
appropriate, user-defined bandwidth (c).

gradient ascent schemes.
To guarantee that the resulting density estimate is always nonnegative, we

need k(x;h) ≥ 0. Kernels that violate this condition have been proposed to
reduce bias, but have not found widespread use.

Altogether, kernel density estimates are more elegant than histograms in
the sense that they eliminate the arbitrary dependence that histograms have
on the shift of the first bin. Even so, they do not alleviate the problems
associated with the curse of dimensionality: reliably estimating a density
with high intrinsic dimensionality requires huge amounts of data. This is
one of the motivations for feature selection or dimension reduction methods
that seek to somehow extract the most relevant subspace. The prototypical
method, principal components analysis, will be introduced soon, in chapter
4.4. Before, though, we will look at the relation of density estimation to
cluster analysis.

41

4 Introduction to unsupervised learning

4.3 Cluster analysis

To the human, Figs. 4.1, 4.4 suggest that there are perhaps two distinct mech-
anisms that have given rise to the observations. Such a search for patterns is
so central to human cognition that we have no means of stopping it (with the
possible exception of master meditators). The mechanism is so strong that
humans hallucinate patterns, groups, or clusters in a set of points even if they
are merely randomly distributed in space ??. This points to the importance
of cluster analysis for animate cognition. Cluster analysis seeks to find
groups of observations that seem to “somehow belong together”. Alas, the
vagueness of this statement reflects the ill-posedness of the problem: while
specific methods can be analyzed in detail, there are simply too many arbi-
trary decisions required to permit the development of a closed mathematical
theory of all of cluster analysis. In fact, cluster analysis is in a sorry state
compared to the supervised learning methods that we surveyed with justified
confidence in chapters 2, 3. This should not come as a surprise. Assume you
are given the task of “clustering the universe”, with no additional informa-
tion regarding what scale is of interest. Elementary particles, atoms, planets,
solar systems and galaxies are all good candidates that share the property
that they are relatively dense while being separated from each other by much
empty space. As a corollary, you should be weary of publications that pre-
tend to find a single “right” length scale, or number of clusters, by themselves
with no further information. In fact, all clustering methods implicitly or ex-
plicitly need just that, a specification of the length scale of interest or of the
desired number of clusters, even though some methods hide that need. It is
of course possible to obtain a “scale-free” method by reiterating the analysis
at all scales. This still leaves to the user the decision at which scale to make
the cut.

Clusterings can either be defined by a partitioning of all observations into
groups, the eponymous clusters, or by representative members, the cluster
centers that may or may not coincide with one of the original observations.
Some clustering techniques are crisp, i.e. each observation must belong to ex-
actly one cluster. Others are fuzzy, i.e. one observation may have fractional
memberships to several clusters.

One use of cluster analysis is in exploratory data analysis: given a big
bunch of data, we would like to know “what’s in it”. Besides visualization,
finding natural groups of observations the meaning or relevance of which
can be established using domain knowledge is one important step. Especially
when cluster centers are used to summarize an overwhelming amount of data,
cluster analysis can also be seen as a mode of informed subsampling, or
data compression: more on that in section 4.4. Again in an exploratory
spirit, hierarchical clustering methods can help organize a wealth of
information. Biological systematics are an important example, see Fig. 4.6
for an early example. Hierarchical methods are mostly crisp and always have

42

4 Introduction to unsupervised learning

Figure 4.6: Tree of life as proposed by 19th century egotistic but influential
German zoologist Ernst Haeckel [12]. Current research pre-
sumes a web, i.e. a graph with loops (see ??), rather than a tree,
of ancestry [1].

a scale parameter. Their defining characteristic is the guarantee that two
samples that belong to one cluster at a fine scale will always be in the same
cluster at coarser scales.

We will consider only two non-hierarchical crisp cluster analyses at this
point, one based on partitionings and one on cluster representatives. For an
important fuzzy technique, see ??.

4.3.1 Mean shift clustering

We start with a “partitioning” method that groups observations by member-
ship to the same local maximum of a kernel density estimate. To this end,
we could start an ascent along the gradient of a kernel density estimate:

∇xp̂(x) =
n∑
i=1

∇xk(x− xi) (4.12)

and then group, after convergence, all points that have reached the same
point in feature space, i.e. the same density maximum.

It turns out that the same result can be achieved by the mean shift
algorithm. Since the relation is interesting, we will discuss it in some detail.

43

4 Introduction to unsupervised learning

While mean shift was first proposed in 1975 [8], it took 20 years until Yizong
Cheng clarified the precise nature of the connection to density estimation
[5].

Given the observations x1:n, define the local mean lm
(
x(t)
)

around x(t) as

lm(x(t)) =

∑
imsk

(
x(t) − xi

)
xi∑

imsk (x(t) − xi)
(4.13)

wheremsk stands for “mean shift kernel”. A query point position x(t) can now
be updated iteratively according to x(t+1) = lm(x(t)). The difference vector
lm
(
x(t)
)
− x(t) is called the “mean shift”. In the original implementation,

all observations x1:n were updated after each iteration [8]. This is called a
“blurring process”. In the version discussed here, however, the x1:n remain
fixed.

If a total of n queries are initialized at the sample positions x1:n and shifted
iteratively according to (4.13) until convergence, then a clustering for all n

observations results.
If we want the stationary points of the mean shift iterations to coincide with the

local maxima of the kernel density estimate, we need the gradient of the latter and
the mean shift vectors to be parallel, and hence identical up to some multiplicative
constant c:

c∇xp̂(x) = lm(x)− x

c
∑
i

∇xk(x− xi) =
∑

imsk(x− xi)xi∑
imsk(x− xi)

− x

=
∑

imsk(x− xi) (xi − x)∑
imsk(x− xi)

(4.14)

We restrict ourselves to isotropic kernels so that k(x) = k(||x||) and furthermore
reparametrize the kernel k(x), in a way that will prove beneficial, in terms of the
“kernel profile” kp(u) := k(x) with u := x2. This allows ∇xk(x) to be rewritten
as ∇ukp(u)dudx = ∇ukp(u)2x so that

∇xp̂(x) =
∑
i

∇xk(x− xi) = −2
∑
i

∇uikp(ui)(xi − x) with ui = ||x− xi||2(4.15)

Inserting this into eq. (4.14) gives

− 2c
∑
i

∇uikp(ui)(xi − x) =
∑

imsk(x− xi) (xi − x)∑
imsk(x− xi)

(4.16)

c(x)
∑
i

∇uikp(ui)(xi − x) =
∑
i

msk(x− xi) (xi − x) (4.17)

where the denominator on the right hand side of the first line and the factor of
−2 have been absorbed into a multiplicative constant c(x) that now has become a
function of space.

44

4 Introduction to unsupervised learning

shadow kernel k(·) mean shift kernel msk(·)
Epanechnikov Box kernel

Biweight Epanechnikov
Cosine Sinc (central lobe of)

Gaussian Gaussian

Table 4.1: Performing iterated mean shifts with kernel msk(·) amounts to a
gradient ascent on a kernel density estimate with shadow kernel
k(·).

The last equation finally reveals our principal result:

∇ukp(u) ∝ msk(x) (4.18)

In words, the mean shift kernel msk(x) that should be constructed to obtain
the identical clustering as given by a gradient ascent on a density estimate
with the “shadow kernel” (Cheng’s terminology) k(·) is obtained by differen-
tiating the kernel profile. Some specific examples are given in Table 4.1. As
in other respects (??), the Gaussian kernel is unique in that it is the only
kernel who is its own “shadow” [5].

4.3.2 k-means clustering

Clusterings defined in terms of a partitioning are costly: most procedures
require a full n× n proximity or dissimilarity matrix. Clusterings defined in
terms of k representatives or cluster centers, on the other hand, require
only k× n proximity or membership matrices, with k � n. The prototypical
method is k-means clustering, which works as follows: the k cluster centers
(hence the name) are initialized randomly, e.g. at the location of k randomly
selected observations. Then, the following steps are iterated:

• Compute the binary indicator matrix M ∈ {0, 1}k×n,
∑

i[M]i,j = 1 that
states which cluster (center) each observation is assigned to, based on
smallest Euclidean distance. Possible ties can be broken randomly.
• Move each cluster representative to the center of mass of “its” obser-

vations.

It can be shown [4] that k-means converges almost surely to a local mini-
mum, and that it amounts to a Newton optimization of the squared error in
eq. (4.19). The improvement of the clustering over time can be tracked by
the evolution of that same squared error.

If all observations are stored in a matrix X ∈ Rp×n and the cluster cen-
ters are summarized in a matrix C ∈ Rp×k, then the average of all squared

45

4 Introduction to unsupervised learning

(a) (b)

(c) (d)

(e) (f)

Figure 4.7: (a) True density isocontours and (b) sample of 400 points drawn
from true density. (c) Kernel density estimate based on above
sample with Gaussian kernel and (d) corresponding mean shift
trajectories. (e)-(f)As above, with larger bandwidth. The mean
shift iterations result in six clusters and a single one, respectively.

46

4 Introduction to unsupervised learning

Euclidean distances from each observation to “its” cluster center is given by

E =
1

n
||CM −X||2F (4.19)

Actually, the minimization of this error has been a driving force in the de-
velopment of the k-means, or Linde-Buzo-Gray or Lloyd algorithm, as it is
better known in communications: in a lossy compression scheme, it is a nat-
ural measure for the loss of information – more on that in the next section.

This simple algorithms owes its popularity to its ease of implementation
and decent results; but there are pitfalls. Specifically, the algorithm typically
converges to a local minimum (especially in high dimensions) so that only the
best solution out of multiple restarts should be used. Due to the non-robust
error function (4.19), it is very sensitive to outliers that may recruit one
precious cluster center to represent a single observation. Finally, the cluster
centers typically do not coincide with one of the original observations. This
is an obstacle in some applications, but can sometimes be worked around by
replacing the cluster centers with their closest neighbors among the original
data. Note, however, that this solution is not optimal. Algorithms that seek
to minimize eq. (4.19) with respect to C in the reduced solution space that
is limited to the original observations are known as k-medoid clustering [].
Further variants such as the “Isodata algorithm” use heuristic splitting and
merging schemes to find better local minima than plain k-means.

An example application – clustering of the colors in an image – is shown in
Fig. 4.8. Incidentally, it also shows how remote näıve machine vision is from
human perception: to a human, tiger and bait clearly stand out as distinct
objects, in front of a background that is so bland it is not even worth men-
tioning. However, if we use four color clusters, then two are used to explain
the background (and part of the predator), with another two describing tex-
ture. It takes many more clusters to separate tiger and prey. Imagine how
much more difficult the situation is when the background is cluttered, or
when different objects do not have distinct colors... And yet there is hope,
which will be nourished in chapter ??.

4.3.3 Vector quantization (VQ)

Consider the example from Fig. 4.8, and assume that we want to somehow
coarsen the color representation to reduce storage requirements. The original
image uses a triple {0, . . . , 255}3 of red, green, blue values (i.e. 3 bytes, 24
bits) to characterize each pixel. A no-brainer would be to reduce the color
resolution, e.g. to {0, . . . , 15}3 (i.e. 12 bits). However, Fig. 4.8 (b) hints
to more alluring alternatives. Indeed, the image at hand (as, in fact, most
images) does not sample color space evenly; on the contrary, only a small
part of the space is occupied. With a regular grid of possible color values,
we would hence be “wasting” most of the grid points, and hence bits, while

47

4 Introduction to unsupervised learning

(a) (b)

(c) (d)

(e) (f)

Figure 4.8: (a) Original image by an unknown artist. Even though there are
perceptually few colors and these are poorly saturated, the image
comprises more than 53’000 distinct colors. (b) Representation
of image in RGB color space: each pixel is represented by a dot.
To avoid occlusion, the image has been subsampled. (c) Color-
compressed version of original image with k=2 colors. (d) Cluster
membership is indicated by the color of each dot. (e), (f) Color
quantized images with k=4, 20.

48

4 Introduction to unsupervised learning

crowding in on a few select others. Intuitively, it seems we are better advised
to spend our limited budget of grid points, or prototypes, where the action
is. How to best do this is precisely the subject of vector quantization.

In vector quantization (VQ), the task is to find a set of prototypes, or
code vectors, that approximate the underlying distribution well2. Specif-
ically, the goal is to minimize the average squared error or loss (eq. (4.19))
incurred when approximating each observation with its closest code vector.
This goal is typically approximated by using the k-means algorithm which
finds a local minimum of this compression error. When considering the sav-
ings from this lossy compression, we need to remember that there is an over-
head: the set of all code vectors – the code book (or, in the example of
Fig. 4.8: the color palette) – first needs to be determined for a given source,
and then stored or transmitted; but just once! Overall, this strategy usually
makes for huge savings and permeates all of today’s telecommunication.

From a different perspective, the code book found in vector quantization
is one way of summarizing a (potentially high-dimensional) distribution in a
succinct way, by storing only the code book C and the row sums of M (telling
us how many examples are represented by each code vector). The ability to
compactly summarize a high-dimensional distribution makes VQ a building
block of the utmost importance in many modern vision system. For example,
in object recognition systems, one may detect (??) and characterize (??) a set
of interest points. The resulting descriptors span a high-dimensional feature
space and in bag of words systems (??), discriminating objects amounts
to learning the difference between high-dimensional distributions. As stated
before, estimating a high-dimensional distribution precisely is a formidable
problem; and anyway given a limited training set of objects we cannot afford
to use very high-dimensional representations for objects, or we are likely to
overfit the data (??). It is here that vector quantization comes in handy.

As a second example, consider texture recognition (??). A typical approach
is to partition a given image into patches, and represent each patch by a set of
filter outputs [19] or simply in terms of its pixel intensities [26]. After vector
quantization, a complete image can be summarized in terms of a single vector
that states how many patches are represented by each code vector, see page
??. These relatively low-dimensional representations of fixed dimensionality
can then be fed into any of the classifiers that we have already see or will
discuss later on.

Finally, note the close relation to histograms: a vector as just described
is a histogram, the only difference being that now the bins are no longer
uniform but have been adapted to the data.

2The term “vector quantization” is derived from “quantization”, the one-dimensional
special case that has historical precedent.

49

4 Introduction to unsupervised learning

4.4 Principal components analysis (PCA)

In vector quantization, given a set of p-dimensional observations x1:n that are
summarized in X ∈ Rp×n, the problem is to

min
C,M
||CM −X||2F s.t. C ∈ Rp×k (4.20)

M ∈ {0, 1}k×n (4.21)

1TM = 1 (4.22)

a local minimum of which is found by k-means clustering. The restriction to
integer memberships is what makes the solution sparse – each observation is
approximated in terms of a single code vector – but also what makes finding
the global optimum hard. We could consider a relaxed problem formulation
in which each observation is explained as linear combination of k (or, as we
write in this section: r3) representatives, without the integrality constraint:

min
U,W
||UW T −X||2F s.t. U ∈ Rp×r (4.23)

W T ∈ Rr×n (4.24)

This is just what principal components analysis (PCA) does. The result is
a bilinear decomposition X ≈ UW T , so called because it decomposes X
into two factors. The columns of U now are the representative vectors, here
called principal components (PCs) or loadings, and the columns of W T

tell us how much of each representative vector we need to approximate a
given observation; these coefficients are called scores.

To gain more insight into the meaning of this optimization problem, let
us carry this approximation to the extreme and work with a single principal
component only. That is, we request that r = 1 and write

X ≈ u1w
T
1 (4.25)

where u1 := (U·,1) and w1 := W·,1. By construction, this approximation has
rank r = 1.

Expanding the Frobenius norm, we find

||X − u1w
T
1 ||2F = tr

((
X − u1w

T
1

)T (
X − u1w

T
1

))
= tr(XTX)− 2tr

(
w1u

T
1X
)

+ tr
(
w1u

T
1 u1w

T
1

)
(4.26)

The first term on the right hand side is independent of u1, w1, so we omit it
in the following. Exploiting the invariance of the trace operator under cyclic

3With respect to eq. (4.22), we replace the symbol k with r (for “rank”), and we also
replace C by U and M by WT to obtain a notation that is reminiscent of the SVD
convention introduced in section 4.4.1

50

4 Introduction to unsupervised learning

permutation (tr(CD) = tr(DC) if C,DT have the same dimensions), we can
write

− 2tr
(
uT1Xw1

)
+ tr

(
uT1 u1w

T
1 w1

)
(4.27)

The arguments of the trace operators have now become scalars, so this is
simply

− 2uT1Xw1 + uT1 u1w
T
1 w1 (4.28)

Since we want to minimize this expression with respect to u1, w1, its derivative
at the optimum should be zero:

d

du1

(
−2uT1Xw1 + uT1 u1w

T
1 w1

)
= −2Xw1 + 2u1w

T
1 w1

!
= 0 (4.29)

u1 =
Xw1

wT1 w1

(4.30)

d

dw1

(
−2uT1Xw1 + uT1 u1w

T
1 w1

)
= −2XTu1 + 2uT1 u1w1

!
= 0 (4.31)

w1 =
XTu1

uT1 u1

(4.32)

Inserting the latter into eq. (4.28) leaves only

− uT1XX
Tu1

uT1 u1

(4.33)

to be minimized. Flipping the sign turns this into a maximization problem,
so that our goal now is to maximize

λ1 :=
uT1XX

Tu1

uT1 u1

(4.34)

a form which is also known as Rayleigh quotient. But

XXTu1 = λ1u1 (4.35)

is the classical form of an eigenproblem, which admits only the eigenvectors
and eigenvalues as possible solutions for u1 and λ1, respectively. Among all
these admissible solutions, we are interested in the largest one, which is given
by the largest eigenvalue of XXT , and its corresponding eigenvector. This
result lies at the heart of principal components analysis. The finding that
the largest / smallest value that can be attained by a Rayleigh quotient is
given by the largest / smallest eigenvalue is the subject of the Rayleigh-Ritz
theorem [1].

Since we can always multiply an eigenvalue with some constant c 6= 0 and
at the same time divide the corresponding eigenvector by the same c without

51

4 Introduction to unsupervised learning

violating the eigen equation, we can without loss of generality normalize the
eigenvector such that uT1 u1 = 1 and absorb into λ1 the multiplicative constant
that guarantees satisfaction of eq. (4.35).

With this choice of normalization, we can summarize: the first principal
component, i.e. the best rank 1 approximation to X as measured by eq. (4.26)
is given by the eigenvector u1 pertaining to the largest eigenvalue of XXT .
In this reduced representation, the original observations are approximated by
the scores

w1 = XTu1, uT1 u1 = 1 (4.36)

that is, by an orthogonal projection onto the normalized first principal com-
ponent.

There are more ways of motivating this important result: the first princi-
pal component also specifies that one-dimensional subspace that leaves the
smallest squared residuals when projecting the original observations onto it.
This observation follows from the fact that we can rewrite the original error
function as

E2 = ||X − u1w
T
1 ||2F = ||X − u1u

T
1X||2F = ||

(
Ir − u1u

T
1

)
X||2F (4.37)

where u1u
T
1 is the projection operator that casts any datum onto u1 and

u1u
T
1X is the orthogonal projection of all observations X onto the subspace

u1. The argument of the norm hence holds all residual or difference vectors,
the difference between the original data and their projections; and the norm
itself gives the sum of the squared lengths of all these difference vectors.

Another interpretation of the result is that it gives that single direction
which has the maximal spread of the observations along it. Since the principal
component has been normalized, the score directly measures the distance
from the origin. The sum of the squared scores, which we need to maximize
if we want to obtain the largest possible spread, is

wT1 w1 = uT1XX
Tu1 (4.38)

which is just the expression we already maximized in eq. (4.34).
Now, if the best rank 1 approximation to X is given by the first eigenvector

of XXT , what is the best rank r approximation? You most probably have a
guess, and it most probably is correct. But to be on the safe side, and since
we will rely heavily on the soundness of the result: let us do the maths.

4.4.1 Interlude: singular value decomposition (SVD)

We will make use of the singular value decomposition (SVD), a matrix
decomposition

X = USV T (4.39)

52

4 Introduction to unsupervised learning

of great importance. It can be shown to be unique and always exist [9].
U ∈ Rp×r∗ and V ∈ Rn×r∗ with r∗ = rank(X) are orthogonal (i.e., UTU =
I, V TV = I) and their columns hold the left singular vectors and the right
singular vectors, respectively. The r∗ × r∗ matrix S is diagonal and holds
the singular values σ1:r∗ , sorted in decreasing order. The singular values are
given by the square roots of the eigenvalues of either4 XXT or XTX, while
the left and right singular vectors are given by the respective eigenvectors, as
seen by inserting the definition of the SVD:

XXT (4.39)
= USV TV SUT = US2UT (4.40)

XXTU = US2 (4.41)

XTX = V SUTUSV T = V S2V T (4.42)

XTXV = V S2 (4.43)

The fact that U, V hold the eigenvectors of symmetric matrices also vindicate
the above claim of their orthogonality.

The truncated SVD

USrV
T (4.44)

in which U, S, V are derived from X except that the last r∗−r singular values
in S have been set to zero, gives the best rank r approximation to X [9].

To verify, solve

min
Xr

||X −Xr||2F (4.45)

We decompose both the known X and unknown Xr in terms of an SVD: X =
USV T and Xr = ABCT . The Frobenius norm is invariant under multiplication
with an orthogonal matrix (because ||A||2F = tr(AAT) = tr(AUUTAT) = ||AU ||2F),
so that

E = ||X −Xr||2F = ||USV T −ABCT ||2F = ||S − UTABCTV ||2F (4.46)

B and S are, by the properties of the SVD, diagonal matrices. If we choose A = U
and C = V , the diagonal entries of B cannot “stain” the off-diagonals of the
product UTABCTV . Since such off-diagonal elements would necessarily increase
E without any positive side-effects, we may as well set A = U and C = V in the
following. This leaves, as only degree of freedom, the choice of the singular values
in B. Only r out of these may be non-zero if we wish to restrict the rank of Xr to
r. With our choice of left and right singular vectors, the approximation error E is
given by

∑r∗

i=1 ([S]i,i − [B]i,i)
2. The best choice is Sr = B with

[B]i,i =
{
σi 0 ≤ i ≤ r

0 r < i ≤ r∗
(4.47)

4Note that XXT and XTX have the same eigenvalues, as shown by the following equa-
tion.

53

4 Introduction to unsupervised learning

(a) (b)

(c) (d)

Figure 4.9: SVD approximations of rank (a) 1, (b) 2, (c) 10 to a matrix of
original observations (d). The columns of the latter are vectorized
patches of 100 exemplars each of the digits 0, . . . , 9.

Reiterating, the best rank r approximation to X is given by the SVD of
X, where only the r largest singular vectors are retained and all others set
to zero.

4.4.2 Reprise: Principal component analysis

The results just obtained tell us more about PCA. The first principal compo-
nent appears in a new light, as the best rank 1 approximation to the original
data. By the new results, the best rank r approximation to the data is given
by the scores

W T = SV T = UTX (4.48)

in a basis of the eigenvectors pertaining to the r largest eigenvalues of XXT .
It is truly justified to speak of a “basis” because said eigenvectors are orthog-
onal.

54

4 Introduction to unsupervised learning

The multiplication ofX with the orthonormal matrix UT can be interpreted
as a rotation (and perhaps reflection) into a new basis; and the elimination of
the smallest (r∗ − r) singular values can be seen as a projection to the first r

axes of this basis that span an optimal subspace: optimal in the sense of the
best rank r linear approximation to the original data. The basis is found in
a data-dependent fashion by finding the SVD or solving an eigen problem.
This is in contrast to data-independent basis functions as used in the cosine
transform which forms the basis of JPEG compression (see ??).

Several observations are in order: firstly, the sign of the eigenvectors is
arbitrary and (except by chance) not preserved if the data is perturbed in
any way, or if the PCA is performed with a different computing library or on
a different computer. This means that care is required when comparing the
scores of observations for which separate PCAs have been carried out. Sec-
ondly, the scores themselves can be positive or negative. This is in contrast
to a k-means approximation, and also in contrast to bilinear decompositions
with a positivity constraint (see ??). Negative scores are not meaningful in
some applications, and generally speaking the principal components, being
linear combinations of the original axes, are often hard to interpret.

In the formulation used so far, the approximation plane spanned by the
principal components (PCs) must necessarily go through the origin. This
unnecessary limitation can be lifted by first subtracting the mean vector

µ =
1

n

n∑
i=1

xi =
1

n
X1n×1 (4.49)

from all observations (in matrix notation: X − µ11×n) and then performing
PCA. To obtain the approximation of the original data, the mean vector of
course needs to be added back in, so that e.g. for the approximation of the
ith observation,

x̂i = µ+
[
U(SV)T

]
·,i (4.50)

For a concrete example, let us refer back to the digit recognition example
from section 2.2. There, we worked with the simplest feature space con-
ceivable: with image space, i.e. the grey value of each pixel was taken as a
separate feature. As discussed in section 2.4.1, this space is convenient to
define but has none of the desired invariances built-in. In addition, it is too
large for the relatively narrow class of images that are considered in a spe-
cific application. In image space, an image of a digit is as good as that of a
face or any other image. By admitting a feature space with an unnecessar-
ily high dimensionality, we needlessly increase the amount of storage and of
computations required; and we may even make learning more difficult.

To avoid these problems, it may help to cast the observations to a lower-
dimensional subspace. As discussed above, PCA finds the best such space

55

4 Introduction to unsupervised learning

according to a number of equivalent criteria. See Fig. 4.10 for a set of increas-
ingly faithful approximations to the original high-dimensional observations.
In this example, each sample is one gray value image, i.e. a 2D matrix; but
in PCA, each sample should be represented by a single column of X. A sim-
ple way out is to vectorize each image patch, i.e. to rearrange5 all the gray
values into a single column vector, and to apply the reverse operation when
showing the result.

A scree plot as in Fig. 4.10(b) is often used to decide on an appropri-
ate number of components; in particular, one is interested in shoulders, i.e.
sudden drops in the magnitudes of the eigenvalues that indicate that the fol-
lowing components may be of lesser importance. Regarding “importance”,
a word of warning is appropriate here: the new basis functions are ranked
merely according to the spread of the data along those axes; these are often,
but not necessarily, the most informative axes. For instance, Fig. 4.11 shows
two class densities. If the aim is discrimination, the first PC is not informa-
tive at all. Such configurations can arise in the real world, for instance if the
observations are subject to random multiplicative noise which “stretches” the
observations along the bisectant. This is typical for spectral data as encoun-
tered in chemometrics and explains the importance of proper normalization
of the observations. Unfortunately, what is “proper” depends on the specific
type of noise or random distortion encountered in a concrete application, and
domain expertise or experimentation may be required to correct for it.

Normalization also plays a crucial role if the individual features are of
a different nature: for instance, if one feature is frequency and another is
weight, it certainly matters if the former is measured in Hz or cm−1 and if the
latter is given in kg or mg: these correspond to a nonlinear transformation of
the frequency and rescaling of the weight axis, and do influence the direction
of the resulting principal components. This is perhaps most intuitive through
the mechanical analogy in which PCs correspond to the axes of the inertial
tensor, in this case of the “data cloud”. One way out is to normalize by
dividing each feature by its standard deviation; but this can also entail loss
of relevant information in some applications. In summary, adequate scaling
of the axis is required before applying PCA.

PCA is so important that it has been reinvented in different fields, where it
is known under names such as Hotelling transform, discrete Karhunen-
Loève transform, whitening (in signal processing), proper orthogonal de-
composition (fluid dynamics), latent semantic indexing (LSI) (document
retrieval), and others. “Whitening” refers to the fact that in the new basis,
the features are uncorrelated or “decorrelated” – this is sometimes used to
turn a signal with correlated or “colored” noise into one with uncorrelated
or “white” noise, e.g. in matched filtering []. “Sphering” means that the
coefficients in the new basis are divided by the respective singular values to

5In matlab, the appropriate command is reshape(patch, [], 1) or patch(:).

56

4 Introduction to unsupervised learning

(a)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5
x 10

8

(b)

100 200 300 400 500 600 700

0.5

1

1.5

2

2.5

3

x 10
9

(c)

Figure 4.10: Principal component analysis of a data set comprising 100
MNIST samples of each digit. (a) The first row shows the mean
image, followed by the 20 first principal components (note that
the sign of the principal components is arbitrary). The following
rows show an arbitrarily chosen training sample i as well as its
reconstruction U [W T]:,i using an increasing number of principal
components. The digits in the last row are described by using
the mean image plus 20 coefficients (as opposed to 28×28 = 784
gray values in the original patch). (b) The first 20 eigenvalues
and (c) cumulative sum of all 784 eigenvalues. Around 400
eigenvectors are enough to span the full space of the 1000 train-
ing observations without loss; and a much smaller number is
sufficient to obtain a good approximation.57

4 Introduction to unsupervised learning

Figure 4.11: (Note to self: Replace this with an example of samples, rather
than distributions). Toy example illustrating the first principal
component (black line) and the linear discriminant (green line)
for the two class densities in a binary classification problem. In
this contrived example, the first PC is not discriminative at all,
but all relevant information resides in the second PC.

1

1
1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

11

1

1

1

1
11

1

1

1

1 1

1

1

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1
11

1

1

1
1 1

1

11

1 11

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1
1

1

1
1 1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

22

2

22

2

2

22
2

2

2

2

2 2

2

2

2

2

2

2
2

2

22

2

2

2
2

2

2

2
2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2
2 2

2

22

2

2

2

2

2

2

22

2

2

2

2

2

22

2

2
2

2

2

2

2
3

3
3

3

33

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

33

3
3

3
3

3

3

3 3

3

3
3

3

3
3 33 3

3

3

3

3

33

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3
3

3

3

44 4
4

4

4

4

4

4

4

4

4

4

4
4

4

4
4

4

4

4

4
4

4 4

4

4
4

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4

44

4

4

4

4
4

4

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

44

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4
4

4

5

5
5 5

5

5

5

5

5

5 5
5

5

55 5

55

5

5

5
5

5 5

5
5

5

5

5
5 5

5

5

5

5
5 5

5

5

5

5

5

5
5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5 55 5

5

5

55

5

5

5

5

5

5

5

5

5
5 5

5

5

5

5

5

5

5

5

5

5
55

5

5

5

5

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6

6

6

6 6

6

66

6

6

6 6

6
6

6

6

6

6

6

6 6

6

6

6

6

6
6

6
6

6

6
66

6
6

6
6

6

6
6

6

6
6

6

6

6
6

6

6

6
6

6

6

6
6

6
6

6

6 6
6

6

6

6

6 6
6

6

6

6

6

7

7

7

7

7

7

7

7 7

7

7
7

7

7

7

7

7

7

7

7

7

7

7
7

7

7

7

7

7

7

77

7
7

7

7

7

7

77

7

7

7

7

7

7

7

7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7

7

7

7

7

7

7

7
7

7

7

7

7

7

77

7
7

777

7

7

7
7

7

7

8

8

8

8 8

8

8
8

8
8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8
8

8

8
88

8

8
8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8 8

8

8

8

8

8
88

8

8

8

8

8

8

8

8

8

8

888
8

8

8

8

8 8

8

8

8

8
8

8

8

8

8 8 8

9

9

9

9

9

9

9

9

9

9

9

9

9

9
9

99
99 9

9

9

9

9
99

9
9

9
9

99
9 9

9

99

9

9
9

9

9
9

9
9 9

9 9
9

9
9

9

9

9

9

9

9

9

9

9

9

9

9

9

9
9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9 9

9

9

9

9

9

9

0

0
0

0

0

0

0
0

0

0

0

0
00

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0 0

0

0
0

0

0

00

0

0

0
0

00

0

0

0
0

0 0

0

0

0

0

0

0

0

0
0

0

0

0 0

0
0

0

0

0

0

0

0

0

0
0 0

0

0

0
0

0

0

0

0

0

0
0

0

0
0

0

0

0

0

0 0 0

0

0

0

0

0

Figure 4.12: 2D scatter plot summarizing the original observations (image
patches from the MNIST database that each showed one hand-
drawn digit). Abscissa and ordinate are given by the two first
scores of a PCA analysis. Even though PCA knows no labels,
each point is marked by a symbol corresponding to its true class.

obtain, in the new basis, an uncorrelated data set with unit variance along
all axes.

The truncation of the basis realizes a compression. In the last column
of Fig. 4.10(a), a compression ratio of 1 − 20/784 ' 97.5% is realized (in
specifying this number, we have ignored the overhead for storing the mean
pattern µ and the basis functions U). A compressed version of the original
observations is shown as a scatter plot in Fig. 4.12. Each image patch has
now been reduced to a single point in a 2D space.

Projection to principal components has proven effective in improving classi-
fication accuracy in a wide array of simple appearance-based problems, e.g.in
face recognition under controlled pose and lighting. In the image processing

58

4 Introduction to unsupervised learning

function [Xmean, LSV, RSV, eigenvalues] = iiapr_pca(X, trank);
% input
% X -- pxn matrix holding n observations with p dimensions each
% trank -- target rank of approximation
%
% output
% Xmean -- column-wise mean of X
% LSV -- "trank" first left singular vectors
% RSV -- "trank" first right singular vectors, transposed
% eigenvalues -- *all* eigenalues

Xmean = mean(X, 2);

X = X - Xmean * ones(1, size(X, 2));
[LSV, eigenvalues, RSV] = svd(X, ’econ’);
% assuming that singular values are already sorted in decreasing order
eigenvalues = diag(eigenvalues).^2;
RSV = RSV(:, 1:rank);
LSV = LSV(:, 1:rank);

Figure 4.13: PCA algorithm. The columns of the matrix LSV are the new
basis vectors, or “loadings”, given by the left singular vectors of
an SVD decomposition. The columns of the matrix RSV are the
approximate coefficients of the observations in the new basis, the
“scores”.

community, PCA has thus been rebranded as “eigenfaces” [25]. Eigenfaces
are nothing but the loadings, corresponding to the first row of Fig. 4.10.

Overall, with PCA you have now met one of the most fundamental pattern
recognition techniques there is.

4.5 Summary

• “Unsupervised learning” summarizes data analysis strategies that dis-
regard labels, even if these are available. This does not rule out the
selection of a subset of points based on their labels in a previous, su-
pervised step.
• The density of points in feature space can be estimated using histograms

or a kernel density estimate. In either case, an extremely large number
of observations is required to obtain reliable estimates in high dimen-
sions.
• In kernel density estimation, the expected density is the true density

convolved with the kernel. Large kernels lead to bias, small kernels to

59

4 Introduction to unsupervised learning

high variance.
• Cluster analysis finds natural groupings in data. The number of clusters

or a scale of interest needs to be selected manually. Crisp schemes
assign each observation to a single cluster, whereas fuzzy methods allow
fractional cluster memberships.
• k-means is a crisp clustering that seeks to minimize the sum of squared

residuals when approximating each observation with its closest cluster
center. Only a local minimum of this target function is found.
• Principal components analysis (PCA) finds the best linear subspace

that approximates the observations well. It can be seen as a dimension
reduction or data-dependent lossy compression scheme.
• A truncated singular value decomposition (SVD) finds the best low-

rank approximation to any matrix. PCA can be expressed in terms of
the SVD.

60

Notation

Conventions:

• Small italic letters indicate either scalars or vectors. The ith element
of vector a is given by [a]i.
• Matrices are shown in capital letters, e.g. matrix A (with some excep-

tions, such as mean squared error MSE). The ith column of matrix A
is often abbreviated as ai := [A]·,i
• Random variables are shown with a boldface symbol, e.g. random vari-

able a may have a realization a.
• An estimated quantity carries a hat, e.g. an estimate for quantity a is

written â.

List of symbols:

I indicator function, one or zero depending on whether its
argument is true or false.

R risk
L loss function
P probability of an event
p probability density
p̂ estimate of probability density

cdf cumulative distribution function
E expectation value

Var variance
X input domain
Y output domain / set of all possible labels
n number of observations
p dimensionality of observations
c number of classes
r rank

1a×b an a× b matrix filled with 1s
Ip p× p identity matrix

N (µ,Σ) normal distribution with mean µ and covariance matrix Σ
k(·) kernel function
k a number, as in k-nearest neighbors or k-means clustering

x1:n set of samples {xi|i = 1, . . . , n}
MSE mean squared error (in kernel density estimation)

61

4 Introduction to unsupervised learning

E error, residual
Pm,Pd penalties for misclassification, doubt in a loss function

L2 l2-norm, Euclidean distance

62

Index

L2, 14
ε-nearest neighbor classifier, 17
k-means clustering, 45
k-medoid, 47

Average shifted histograms (ASH),
37

bag of words, 49
bandwidth, 37
Bayes classifier, 26
Bayes risk, 26
bias, 16
bias-variance tradeoff, 16, 40
bilinear decomposition, 50
blurring process, 44

chi distribution, 35
class density, 28
Classification, 13
Cluster analysis, 42
cluster centers, 42, 45
clusters, 42
code book, 49
code vectors, 49
color palette, 49
covariate shift, 32
crisp, 42
cross-validation (CV), 17
curse of dimensionality, 35

data-dependent, 55
dichotomous, 13
discrete Karhunen-Loève transform,

56
discriminative, 28

Eigenfaces, 59
Epanechnikov, 40
exploratory data analysis, 42

flat, 13
fuzzy, 42

Generative models, 28

hierarchical clustering methods, 42
histogram, 34
Hotelling transform, 56

iid, 24
indicator function, 25
intrinsic dimension, 21
invariance, 22
Isodata algorithm, 47

kernel, 37

latent semantic indexing (LSI), 56
left singular vectors, 53
Linde-Buzo-Gray algorithm, 47
Lloyd algorithm, 47
loadings, 50
loss function, 24

mean shift algorithm, 43
mean vector, 55
mode, 36

nominal dimension, 21
nonparametric, 28
normalization, 56

outlier detection, 33
overtrained, 16

63

Index

parametric, 28
posterior probability, 28
precision function, 29
principal components (PCs), 50
prior class probability, 28
pyramid match kernel, 37

quadric, 30

Rayleigh quotient, 51
Rayleigh-Ritz theorem, 51
regularization, 15
regularized discriminant analysis, 31
right singular vectors, 53
risk, 24

scale, 37
scores, 50
scree plot, 56
shoulders, 56
singular value decomposition (SVD),

52
singular values, 53
Sphering, 56
sphering, 56
spike train, 37

tangent distance, 21
test set, 16

unstructured, 13

validation set, 16
variance, 16
vector quantization (VQ), 49
vectorize, 56
Voronoi tesselation, 14

whitening, 56

64

Bibliography

[1] Reference to be completed.

[2] M. Bach. http://michaelbach.de/ot/index.html.

[3] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest
neighbor meaningful? pages 217–235. Springer, 1999.

[4] L. Bottou and Y. Bengio. Convergence properties of the K-means algo-
rithms. pages 585–592, 1995.

[5] Y. Cheng. Mean shift, mode seeking, and clustering. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 17(8):790–799, 1995.

[6] J.H. Conway, N. J. A. Sloane, and E. Bannai. Sphere packings, lattices,
and groups. Springer Verlag, 1999.

[7] J. H. Friedman. Regularized discriminant analysis. Journal of the Amer-
ican Statistical Association, 84(405):165–175, 1989.

[8] K. Fukunaga and L. D. Hostetler. The estimation of the gradient of a
density function, with applications in pattern recognition. IEEE Trans.
Information Theory, 21:32–40, 1975.

[9] G.H. Golub and C.F. Van Loan. Matrix computations. Johns Hopkins
University Press, 1996.

[10] K. Grauman and T. Darrell. The pyramid match kernel: Discriminative
classification with sets of image features. In ICCV, volume 2, pages
1458–1465, 2005.

[11] O.-J. Grüsser and M. Hagner. On the history of deformation phosphenes
and the idea of internal light generated in the eye for the purpose of
vision. Documenta Ophthalmologica, 74:57–85, 1990.

[12] E. H. P. A. Haeckel. Generelle Morphologie der Organismen: allgemeine
Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet
durch die von C. Darwin reformirte Decendenz-Theorie. Berlin, 1866.

65

Bibliography

[13] F. A. Hamprecht and E. Agrell. Exploring a space of materials: spatial
sampling design and subset selection. In J. N. Cawse, editor, Experi-
mental Design for Combinatorial and High Throughput Materials Devel-
opment, chapter 13. Wiley, New York, 2003.

[14] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer, New York, 2001.

[15] B. Jähne. Digital image processing. Springer, Heidelberg, 6th edition,
2007.

[16] H. R. Künsch, E. Agrell, and F. A. Hamprecht. Optimal lattices for
sampling. IEEE Transactions on Information Theory, 51:634–647, 2005.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86:2278–2324,
1998.

[18] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-time key-
point recognition. In ICCV, 2005.

[19] T. Leung and J. Malik. Representing and recognizing the visual appear-
ance of materials using three-dimensional textons. International Journal
of Computer Vision, 43(1):29–44, 2001.

[20] S.E. Palmer. Vision science: Photons to phenomenology. MIT press,
Cambridge, MA., 1999.

[21] D. W. Scott. Multivariate Density Estimation. Wiley, New York, 1992.

[22] B. W. Silverman. Density Estimation for Statistics and Data Analysis.
Monographs on Statistics and Applied Probability. Chapman & Hall,
1986.

[23] P. Simard, Y. LeCun, J. Denker, and B. Victorri. Transformation invari-
ance in pattern recognition – tangent distance and tangent propagation.
Neural networks: tricks of the trade, pages 549–550, 1998.

[24] M. Sugiyama, M. Krauledat, and K.R. Müller. Covariate shift adapta-
tion by importance weighted cross validation. The Journal of Machine
Learning Research, 8:985–1005, 2007.

[25] M. Turk and A. Pentland. Face recognition using eigenfaces. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, volume 591,
pages 586–591, 1991.

[26] M. Varma and A. Zisserman. A statistical approach to material clas-
sification using image patch exemplars. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 2032–2047, 2008.

66

	Introduction
	Overview
	Animate vision
	Why image processing is difficult
	Tasks in computer vision
	Computer vision, not an axiomatic science
	Summary
	Further reading

	The Basics of Learning
	Introduction to classification
	Overview
	Digit recognition
	Nearest neighbor classification, and terminology
	k-NN classifiers at wits' end
	Editing methods
	Computational issues

	Re-enters image processing
	Tangent distance

	Summary

	Some theory behind classification
	Overview
	Statistical Learning Theory
	Discriminative vs. generative learning
	Linear discriminant analysis (LDA)
	Quadratic discriminant analysis (QDA)
	Summary

	Introduction to unsupervised learning
	Overview
	Density estimation
	Histograms and the Curse of Dimensionality
	Kernel density estimation (kDE)

	Cluster analysis
	Mean shift clustering
	k-means clustering
	Vector quantization (VQ)

	Principal components analysis (PCA)
	Interlude: singular value decomposition (SVD)
	Reprise: Principal component analysis

	Summary

