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The more you look, the more you see!
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Figure 2. Human subjects reporting on what he/she saw in an image shown for different presentation
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Actually, we should want more...

Orig. Image Segmentation Orig. Image Segmentation

Complete Semantic Segmentation
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The central problemsof vision

Object and Scene
Recognition

Grouping / ' ' 3D structure/
Segmentation Figure-Ground
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Fifty years of computer vision 1963-2013

1960s. Beginningsin artificial intelligence, image processing
and pattern recognition

1970s: Foundational work on image formation: Horn,
Koenderink, Longuet-Higgins ...

1980s: Vision as applied mathematics: geometry, multi-scale
analysis, probabilistic modeling, control theory, optimization

1990s: Geometric analysis largely completed, vision meets
graphics, statistical learning approaches resurface

2000s: Significant advancesin visual recognition, range of
practical applications
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We need to identify

Objects
Agents

Relationships among objects with objects, objects
with agents, agents with agents ...

Events and Actions
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A brief history of computer vision ..

Those who cannot remember the past are condemned to repeat it
-George Santayana

Object recognition in computer vision

Recognition as Pose Estimation

R(_aco_g_nition as Description using Volumetric
primitives

Recognition as Pattern Classification
Recognition as Deformable Matching
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Recognition as Pose Estimation:
Object asa set of pointsin 3D

» Roberts (1963) , Faugeras & Hebert (1983),
Huttenlocher & Ullman (1987)

* Variants
— Geometric Hashing : Lamdan & Wolfson (1988)
— Pose Clustering : Stockman (1987), Olson (1994)
— Linear Combination of Views: Basri & Ullman (1991)

University of California

Berkeley Computer Vision Group

The Stick Figure Ideal
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Recognition as Statistical Pattern Classification:
Object asafeature vector

Optical Character Recognition studied as far back as the 1950s.
Recent years focus on handwritten digit classification and face
detection.

Some examples:

— Neural networks: Neocognitron (Fukushima, 1980, 1988) , Convolution
Neural Networks (LeCun et a), C2 Features (Serre, Wolf & Poggio
2005)

— Support Vector Machines (various)
— Decision Trees (Amit, Geman, & Wilder, 1997)
— Boosted Decision Trees (Viola & Jones, 2001)
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Recognition as Fitting Volumetric Primitives:
Object asa hierarchy of simple shapes

« Binford (1971) , Marr & Nishihara (1978),
Biederman(1987)

» Discredited as an approach for recognition in general,
it has retained appeal for analyzing images of people
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Recognition as Pictorial Structure Matching:
Object asa configuration of feature points
Transformations to model shape variation-D’ Arcy Wentworth Thompson

(1910)
Grenander (1970s and later)probabilistic models ontransformations

Fischler and Elschlager (1973) - deformable matching of landmarks ,“ point
masses’, in aconfiguration of “springs’ to model deformable templates.

graph matching for face recognition (1993, 1997)

Felzenszwalb and Huttenlocher (2000) - pictorial structures for aligning
human bodies to stick figures using dynamic programming

Belongie, Malik & Puzicha (2001) use" shape contexts” as point descriptors,
and thin plate splines to model deformation.
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Handwritten digit recognition
SPS)

* LeCun’sConvolutional Neural Networks variations (0.8%,
0.6% and 0.4% depending on different ways of virtually
augmenting dataset)

e SVMs (DeCoste & Scholkopf : 0.6%)

e K-NN based Shape context/TPS matching (Belongie, Malik &
Puzicha: 0.6%)

e On USPS comparison to humans: 2.5% (Bromley and
Sackinger, 1991), cf. Zhang et a based on Simard’s tangent
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EZ-Gimpy Results (Mori & Malik, 2003)

» 171 of 192 images correctly identified: 92 %

horse Spade.

spade

201in

join

canvas
UC Berkeley Computer Vision Group

sax

Face Detection

Carnegie Mellon University

Multiscale sliding window

Paradigm introduced by Rowley, Baluja & Kanade 96 for face detection
Viola & Jones 01, Dalal & Triggs 05, Felzenszwalb, McAllester, Ramanan 08

Problemswith the multi-scale scanning par adigm

*Computational complexity
* Not natural for irregularly shaped objects

e

» Context is delinked
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Caltech-101 [Fei-Fei et al. 04]

* 102 classes, 31-300 images/class
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Caltech 101 classification results Cur r ent Wor kS on Caltech'
low-level features
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SIFT
(Lazebnik&Schmid&Ponce, Grauman&Darrell,
Wang&Zhangé&Feifei)
“S1” features
Image (Serre&Wolf&Poggio, Mutch&Lowe)

Geometric Blur

(Berg&Berg&Malik,Zhang&Berg&Maire&Malik,Frome&
Singer&Malik)

Other histogram of local edges (Ommer&Buhmann)
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Dining Table

The PASCAL Visual Object Classes
Challenge 2010 (VOC2010)

Part 2 — Detection Task

Mark Everingham
Lue Van Gool
Chris Williams

John Winn

Andrew Zisserman
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Progress 2008-2010
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® Results on 2008 data improve for best 2009 and 2010 methods
for all categories, by over 100% for some categories
Caveat: Better methods or more training data?

A good building block is a linear SVM trained
on HOG features (Dalal&Triggs)
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Object Detection with Discriminatively Trained

Part Based Models

Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester and Deva Ramanan
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How do we train a poselet for a
given pose configuration?

Patches are often far visually, but they are close semantically
(Bourdev& Malik, 09; Bourdev et al, 10)

Finding Correspondences

Given part of a human  How do we find a similar

2085 pose configuration in the
training set?

4




F1nd1ng Correspondences Finding Correspondences

Residual Error

We use keypoints to annotate the joints, eyes, nose,
etc. of people

Training poselet classifiers Training poselet classifiers
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1. Given a seed patch . Given a seed patch

2. Find the closest patch for every other person . Find the closest patch for every other person
3. Sort them by residual error 3. Sort them by residual error

4. Threshold them . Threshold them

Use them as positive training examples for a
classifier (HOG features, linear SVM)

Segmenting people

?
How do we find poselets? (Brox et al, CVPR 2011)

m Choose thousands of random windows, generate
poselet candidates, train linear SVMs

] Select a small set of poselets that are:
= Individually effective
= Complementary




® have characteristic :

pose and appearance

interaction with objects and agents

Some discriminative poselets

walking

Datasets and computer vision
(slide credit: Fei
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MNIST digits (1998-10)
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CAVIAR Tracking (2005)
R. Fisher, J. Santos-Victor J. Crowley
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Segmentation (2001)
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Comparison among freedatasets
(slide credit: Fei-Fei Li)
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# of visual concept categories (log_10)

# of clean images per category (log_10)

1. Excluding the Caltech101 datasets from PASCAL
2. Noimage in this dataset is human annotated. The # of clean images per category is a rough estimation

SUN Database: Large-scale Scene Recognition from Abbey to Zoo

Jianxiong Xiao  James Hays!  Krista A. Ehinger  Aude Oliva  Antonio Torralba
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Key cues for action recognition
* “Morpho-kinetics’ of action (shape and

movement of the body)
* |dentity of the object/s

* Activity context

* ACTION = MOVEMENT + GOAL

10 May 2011

Examples of Actions
Movement and posture change

— run, walk, crawl, jump, hop, swim, skate, sit, stand, kneel, lie, dance
(various), ...

Object manipulation

— pick, carry, hold, lift, throw, catch, push, pull, write, type, touch, hit,
press, stroke, shake, stir, turn, eat, drink, cut, stab, kick, point, drive,
bike, insert, extract, juggle, play musical instrument (various)...

Conversational gesture

— point, ...

Sign Language
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Recognition

Far field Near field

¢ 300-pixel man
e Limb shape

* 3-pixel man
 Blobtracking

10 May 2011 54
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The 30-Pixel Man
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Attneave' s Cat (1954)
Line drawings convey most of the information
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So much remainsto bedone...

» Objects, Scenes, Events
» The semantic gap is to be confronted, not
avoided!

Computer Vision Group

UC Berkeley

Spatial
resolution

Taxonomy

100pix

10pix

s Time/semantic
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The more you look, the more you see!
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