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A Computational Approach to Log-Concave
Density Estimation

Fabian Rathke, Christoph Schnörr

Abstract

Non-parametric density estimation with shape restrictions has wit-
nessed a great deal of attention recently. We consider the maximum-
likelihood problem of estimating a log-concave density from a given finite
set of empirical data and present a computational approach to the result-
ing optimization problem. Our approach targets the ability to trade-off
computational costs against estimation accuracy in order to alleviate
the curse of dimensionality of density estimation in higher dimensions.

1 Introduction

Density estimation constitutes a fundamental problem of statistics and ma-
chine learning with applications to clustering, classification and various further
tasks of data analysis. Given a set of independent and identical distributed
(i.i.d.) realizations

Xn = {x1, . . . , xn} ⊂ Rd, xi ∼ f0 (1)

generated from some unknown distribution with density f0, the task is to
obtain an estimate f̂ of f0 based on Xn. Classical parametric methods are
sensitive to model-misspecification. Non-parametric density estimation, on
the other hand, offers a flexible alternative to unbiased density estimation but
requires regularization when working with finite data sets Xn.

In this connection, the estimation of log-concave densities has recently
attracted interest [1, 2, 3, 4]. This class is fairly rich as it includes many
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well-known unimodal parametric densities: all proper normal distributions,
Wishart distributions, Gamma distributions with shape-parameter larger than
one, Beta(α, β) distributions with α, β ≥ 1, and many more. Thus, this class
of distributions constitutes an attractive class of non-parametric models whose
flexibility is bounded by constraining the shape of corresponding densities to
log-concave distributions, which is plausible for a broad range of applications.
For a survey of various statistical aspects, we refer to [5]. Convexity properties
related to log-concave distributions are worked out in [6] whereas the sampling
problem is addressed in [7]. A major extension of theoretical results to a larger
class of convexity-transformed densities has been established by [8].

In this paper, we focus on computational aspects of the estimation of log-
concave density estimates f̂ ≈ f0 of the form

f̂(x) = e−ĝ(x),

∫
Rd
f̂(x)dx = 1, ĝ is convex. (2)

The objective function is given by the maximum-likelihood problem in terms
of minimizing the negative log-likelihood

− 1

n
log

n∏
i=1

f(xi) =
1

n

n∑
i=1

g(xi), (3)

that is, f̂ will be given by ĝ solving

min
g

1

n

n∑
i=1

g(xi) subject to

∫
Rd
e−g(x)dx = 1, g is convex. (4)

The constraint can be taken into account [9, Thm. 3.1] by considering instead
the optimization problem

min
g

1

n

n∑
i=1

g(xi) +

∫
Rd
e−g(x)dx subject to g is convex. (5)

In order to solve this problem computationally, a finite representation of g
and the constraints has to be adopted. Our approach is based on the Legendre-
Fenchel transform [10, p. 473] that enables to represent any proper, convex
and lower-semicontinuous function as supremum of affine functions

g(x) = sup
y∈dom g∗

{
〈x, y〉 − g∗(y)

}
, (6)

where the function g∗ denotes the convex conjugate of g. A natural finite
representation then is obtained by restriction to a finite set of affine functions

g(x) ≈ gn(x) := max
i=1,...,K

{
〈x, yi〉 − g∗(yi)

}
. (7)
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Clearly, because g is unknown g∗ is unknown as well. Hence we consider the
parametrization

gn(x;β) := max
i=1,...,K

{
〈x, ai〉 − αi

}
, β := {(a1, α1), . . . , (aK , αK)}. (8)

In view of (5), we thus arrive at the optimization problem

β̂ = arg min
β
J(β), (9a)

J(β) =
1

n

n∑
i=1

gn(xi;β) +

∫
Rd
e−gn(x;β)dx. (9b)

The log-concave density estimate is then given by

f̂n(x) = exp(−gn(x; β̂)). (10)

Our main motivation is the well-known curse of dimensionality in con-
nection with density estimation. Ansatz (8) enables to control the number
of variables, to exploit sparsity and to trade-off estimation accuracy against
computational costs. The latter becomes a serious issues as the dimension d
increases. The price to pay is the non-convexity of the optimization prob-
lem (9). Our preliminary experimental results demonstrate, however, that
a suitable smoothing strategy alleviates this issue and leads to an efficient
estimation algorithm that outperforms a recently established state-of-the-art
method without significantly compromising estimation accuracy.

Our paper is organised as follows. We summarise relevant results from
the literature concerning log-concave density estimation in Section 2. Our
computational approach is presented and worked out in Section 3. Preliminary
numerical results are discussed in Section 4. We conclude in Section 5.

2 Log-Concave Density Estimation: Related Work

We briefly report available results concerning the maximum-likelihood estima-
tion problem and related work.

Koenker and Mizera [4] adopt the representation

gn(x) := inf

{ n∑
i=1

λiyi : x =

n∑
i=1

λix
i,

n∑
i=1

λi = 1, λi ≥ 0

}
(11)

of the convex function g, based on the given observations Xn and the corre-
sponding function values yi = gn(xi), i = 1, . . . , n. This choice is motivated
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by the convexification of an arbitrary function g : Rd → [−∞,+∞] given by

(conv g)(x) = inf

{ d∑
i=0

λig(xi) : x =

d∑
i=0

λix
i,

d∑
i=0

λi = 1, λi ≥ 0

}
, (12)

which is the greatest convex function majorized by g (cf. [10, Prop. 2.31]).
While in (12) (d + 1) points have to be chosen, dependent on x, according
to Carathéodory’s theorem, n fixed observed points Xn are used in (11) and
thus lead to a finite-dimensional representation. Authors show, in fact, that
solutions to the maximum-likelihood problem based on a finite data set Xn
take the form (11).

Insertion into (5) results in a convex optimization problem with respect
to the function values gn(xi), xi ∈ Xn. In order to approximate the second
nonlinear term of (9b) sufficiently accurate by numerical integration, authors
work with a regular grid of appropriate cell-size and interpolated functions
values at grid vertices. Moreover, the convexity of gn has to be enforced by
local convex constraints in terms of these function values, which amounts to an
inequality system if the dimension d = 1, to second-order cone constraints if
d = 2, and to semidefinite constraints if d > 2. As a consequence, the problem
size quickly becomes computationally intractable in the latter cases.

Cule et al. [2] further exploit the fact that epigraphs

epi gn =
{

(x, α) ∈ Rd ×R : α ≥ gn(x)
}

(13)

of functions gn of the form (11) are polyhedral, which due to [10, Prop. 2.31]
means that gn is a convex piecewise affine function: The support of the cor-
responding density fn = e−gn

supp fn = Cn := convXn =

K⋃
i=1

Ci, (14)

which equals the convex hull of the given data Xn, can be represented as union
of finitely many polyhedral sets Ci, relative to each of which gn is affine,

gn(x)
∣∣
Ci

= 〈ai, x〉+ αi, i = 1, . . . ,K. (15)

Accordingly, authors of [2] suggest to triangulate Cn in the case d = 2 and the
simplicial decomposition in the case d > 2, respectively, such that each Ci is
given as convex hull of d+ 1 points of Xn.

While this suggests the expedient application of highly accurate methods of
numerical integration for computing the second term of (5), a major drawback
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is the non-smoothness of the resulting convex objective function. Accordingly,
a numerical optimization strategy based on subgradients is employed in [2]
which are known to converge slowly. Our experimental results reported below
confirm this fact. Furthermore, the curse of dimensionality obstacle persists:
For large n which is desirable for density estimation, and particularly so in
higher dimensions d > 2, the approach becomes computationally expensive.

Motivation and goal behind our approach to be presented in the subsequent
section is

(i) to achieve a problem representation that can be controlled independently
of the size n of the data set Xn and the dimension d, and

(ii) to approximate the objective function for computing an estimate f̂n, so
that efficient numerical methods can be applied that scale up to large
problem sizes n and to higher dimensions d.

We refer to Figure 1 for a first illustration of our approach in comparison to
the state-of-the-art approach of Cule et al. [2].

Clearly, objective (i) is questionable from the viewpoint of consistency, that

is convergence of the density estimate f̂n to the true unknown underlying log-
concave density f0 as n → ∞. Yet, we consider this aspect as less important
in view of practical scenarios where n will be finite and often relatively small
due to application-specific restrictions.

3 Approximate Density Estimation

3.1 Objective Function

The objective function (9b) explicitly reads with (8)

J(β) =
1

n

n∑
i=1

max
1≤k≤K

{
〈ak, xi〉 − αk

}
+

∫
Rd
e
− max

1≤k≤K
{〈ak,xi〉−αk}

dx. (16)

While the first term is convex, the latter is not. Moreover, the functional is
non-smooth. We remove the latter property and alleviate the former one by
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Figure 1: The solution ĝn returned by the R package of Cule et al. [11] for n =
250 samples drawn from a standard normal distribution. Crosses mark those
samples xi ∈ Xn that span the resulting 35 sets Ci of (14), and dashed lines
indicate the corresponding affine functions (15). A small subset only is relevant
for representing ĝn sufficiently accurate, however. Fig. 4 (a) accordingly shows
the density estimate in terms of a sparse approximation of ĝn obtained by our
approach, only using 5 automatically determined affine functions.

defining the one-parameter family of objective functions

Jγ(β) :=
1

n

n∑
i=1

gγ,n(x;β) +

∫
Rd
e−gγ,n(x;β)dx, γ > 0 (17a)

gγ,n(x;β) :=
1

γ
logexp

(
γhn(x;β)

)
, (17b)

hn(x;β) :=
(
〈a1, x〉+ α1, . . . , 〈aK , x〉+ αK

)>
, (17c)

logexp(y) := log
( K∑
k=1

exp(yk)
)
, y ∈ RK . (17d)

The rational behind this is the following uniform approximation property.

Lemma 3.1 ([10, Example 1.30]). For any y ∈ RK and γ > 0, we have

1

γ

(
logexp(γ y)− logK

)
≤ max

1≤k≤K
yk ≤

1

γ
logexp(γ y). (18)

As a consequence,

gγ,n(x;β) → max
1≤k≤K

hn(x;β) as γ → +∞ (19)

and Jγ(β)→ J(β) given by (16). Figures 2 and 3 provide illustrations.
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Figure 2: (a) Approximation of max1≤k≤K hn(x, β) by gγ;n(x;β) due to (19)
for K = 4, using the same β. The affine functions comprising hn(x;β) are
shown as dashed lines. (b) Approximation by gγ;n(x; β̃) with β̃ obtained as
least-squares estimate. This demonstrates that even smooth approximations,
corresponding e.g. to γ = 1, yield accurate approximations in the L2-sense.
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(a) J(β) for γ = 1
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(b) J(β) for γ = 50

Figure 3: Objective function Jγ(β) given by (17a) and β = (ak, αk)> ∈ R2

randomly drawn from a uniform distribution with support (−1,+1)×(−1,+1).
Both plots display Jγ(β) as a function of two slopes ai and aj . Increasing γ
decreases smoothness and convexity of Jγ , and increases the number of local
minima.
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3.2 Optimization

We numerically minimize the following approximation of the objective function
(17a)

Jγ,δ(β) :=
1

n

n∑
i=1

gγ,n(x;β) + δL

L∑
l=1

e−gγ,n(z
l;β), (20)

where the second term simply approximates the integral of (17a) by a step
function on a sufficiently fine grid covering the support convXn of the density
to estimated, with vertices zl, l = 1, . . . , L, and volume δL of the corresponding
cells centered at the points zl.

Algorithm. We apply a modified iterative Newton scheme [12, Sec. 9.5]
in order to minimize (20):

βk+1 = βk + tk∆βk, (21a)

∆βk = −
(
∇2Jγ,δ(β

k) + ηkI
)−1∇Jγ,δ(βk), k = 0, 1, . . . (21b)

where ηk ≥ 0 is chosen so that the matrix ∇2Jγ,δ(β
k)+ηkI is positive definite,

and the step-size tk is determined by backtracking line-search [12, p. 464].
We set ηk = −λmin + 10−3, with λmin < 0 being the smallest eigenvalue of
∇2Jγ,δ(β

k). We calculate λmin explicitly, which is inexpensive compared to
the evaluations of various terms of (21) at all grid points zl.

We terminate the iteration at step k if the following two conditions are
satisfied.

(a)
∣∣1− δL∑L

l=1 e
−gγ,n(zl;βk)

∣∣ ≤ 10−4 and

(b) 1
2

〈
∆βk,∇J(βk)

〉
=: 1

2λ(βk)2 ≤ 10−5.

Condition (a) ensures that the estimated density almost integrates to 1. The

quantity 1
2λ(βk)2 of condition (b) upper bounds the gap Jγ,δ(β

k) − Jγ,δ(β̂),

where β̂ is a local minimum of Jγ,δ(β) [12, p. 487].

Initialization. We adopt the following strategy for determining an ini-
tialisation β0 of the iteration (21). Choosing γ = 1 which yields a smooth
objective function Jγ,δ, we fit 10 ·d affine functions with parameters randomly
initialized by sampling the uniform distribution supported on (−1,+1). Then
β0 is found by fitting K affine functions to g1,n(x;β) at points that are deter-
mined by k-means clustering of Xn.

We demonstrate in Section 4 that this strategy effectively removes the
sensitivity of density estimates with respect to the initialization β0.

Speed-Up Heuristic. In order to accelerate the computations we keep
track of which affine functions forming the components of hn in (17) do not
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contribute to the second sum of (20). The corresponding “inactive” parame-
ters are successively removed and ignored during the remaining iterative steps.
Our experiments demonstrate that this yields a compact parametrisation with-
out compromising estimation accuracy.

4 Experimental Results

4.1 Set-Up and Evaluation Measures

This section provides an assessment of our approach by numerical experiments.
Specifically, we examine

• the influence of the smoothing parameter γ,

• the size K of active affine functions, both when the iteration started and
after convergence to a local optimum,

• the effectiveness of the initialization procedure,

• runtime depending on the size n of the given dataset Xn.

We compare our results with the approach of Cule et al. [2] sketched in Sec-
tion 2, based on the independent implementation provided by a corresponding
R package LogConcDead [11].

Our own implementation was done using MATLAB (non-tuned research
code). All datasets are points samples from the standard normal distribution
N(0, Id) for d = 1 (next section) and d = 2 (all remaining sections).

4.2 1-D Toy Example

Revisiting the example from Fig. 1, Fig. 4 demonstrates that our approach
returns a density estimate that is very close to the estimate returned by the
approach of Cule et al, but with a sparse representation. Specifically, in this
example, using γ = 20 and K = 20 initial affine functions, the final represen-
tation comprises 5 affine functions whereas the estimate of Cule et al. needs
about 7 times more variables. In general, our experiments show that our ap-
proach reliably returns a sparse representation whenever a density estimate
admits one.

4.3 Influence of γ, K and the Initialization

We generated 20 different 2-D data sets {Xin}20i=1 with n = 250 samples
each. We estimated the corresponding densities for each combination of K =
{10, 20, 50, 100, 200} affine functions and values of the smoothing parameter
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(a) Our estimate, γ = 20,K =
20 (5 after termination).
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(b) Cule et al., K = 35.

Figure 4: (a) The estimate of our approach for the introductory example of
Fig. 1. The resulting density is very close to the optimal estimate of Cule et
al. (b) but only comprises five affine functions. In general, if a density estimate
admits a sparse polyhedral representation, then our approach determines a
representation that is sparse.

γ = {1, 5, 10, 20, 50}. Furthermore, we compared the results obtained with the
initialization procedure described in Section 3.2 with the results based on an
entirely random initialization.

Let f̂ iγ,n denote the density estimate returned by our approach for each

sample set Xin, and let f̂ iC,n denote the corresponding estimate obtained using
the approach of Cule et al. Figure 5 reports for each pair of values K, γ the
empirical mean along with the standard error (standard deviation divided by√

20) as error bar of the sequence

1

n

∑
xj∈Xin

∣∣ log f̂ iγ,n(xj)− log f̂ iC,n(xj)
∣∣, i = 1, . . . , 20. (22)

Generally it holds that increasing values of γ and K improves the qual-
ity of the approximation, as to be expected. Convergence of the green curve
(γ = 50) towards 0.008 ≈ 0 in the right panel, in particular, shows that both
approaches return virtually the same estimate in the sense that the empirical
average (f̂γ,n/f̂C,n)(x) → 1. Comparing both types of initialization, espe-
cially estimates with large values of γ benefit from our two-stage initialization
procedure, as discussed in the previous section (cf. also Fig. 3).

Additional experiments with bigger data sets of up to 104 samples showed
that increasing the initial number of affine functions beyond 200 does not
improve results any more. Therefore, K = 200 seems to be a reasonable
default setting if d ∈ {1, 2}. We further observed that a maximal value γ = 20
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(b) Non-random initialization

Figure 5: The influence of parameters γ and K on the quality of the estimated
density, measured as difference to the result of [2] by averaging the sequence
(22). Error bars indicate the corresponding standard error. Randomly initial-
izing β leads to suboptimal results for large γ, in comparison to our two-stage
initialisation strategy. Convergence of the green curve (γ = 50) in the right
panel towards 0 shows that our approach essentially returns the same density
estimates as the approach of Cule et al., in the sense that the empirical average
(f̂γ,n/f̂C,n)(x)→ 1.

suffices for highly accurate approximation, since larger values of γ do not
yield different estimates but may cause numerical problems (floating point
arithmetic).

Fig. 6 shows two densities estimated by our approach for K = 200 and
γ = 5 (a) and γ = 20 (b) with the estimate from Cule et al. (c).

We also measured the absolute estimation accuracy in terms of the Hellinger
distance to ground truth. These quantitative results, summarized and dis-
cussed in the caption of Figure 7, illustrate the following findings: The esti-
mates of our approach are as accurate as those returned by the approach of
Cule et al. The dependency on the smoothing parameter γ is insignificant. We
also observed superior estimation accuracy when using a strongly smooth ob-
jective function Jγ,n with γ = 1, which is plausible in view of the smoothness
of the ground truth density f0 (standard Normal distribution). The approach
of Cule et al. cannot exploit this prior knowledge if it were available.

4.4 Sample Size vs. Runtime

As discussed in Section 2, the approach of Cule et al. [2] essentially depends
on the size n. The simplicial decomposition defining the partition (14) and the
representation (15) has to be performed at each iteration [2, Appx. B] because
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(c) Cule et al., K = 383

Figure 6: Density estimates f̂γ,n = fγ,n(x; β̂) in (a) and (b) and the estimate
of Cule et al. in (c). The final number of affine functions for our approach is
given in parentheses. While the estimate for γ = 20 only comprises 26 affine
functions, the result of Cule et al. requires 383 affine functions. The estimates
(b) and (c) are very similar, however.
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(a) Hellinger distance H(f̂γ,n, f0) of
our density estimate to ground truth.
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(b) Difference of Hellinger distances
H(f̂γ,n, f0)−H(f̂C,n, f0) of estimates (our
approach, Cule et al.) to ground truth.

Figure 7: Distance of density estimates, for various values of the smoothing
parameter γ, to the underlying log-concave density f0 = N(0, Id). Panel (a)
shows that our approach consistently approaches ground truth with increasing
sample size n. Because the approach determines the required number K of
affine functions, estimation accuracy does virtually not depend on the smooth-
ing parameter γ – cf. Fig. 2, right panel, for an “empirical explanation” of this
fact. The negative values in the right panel (b) for the case γ = 1 (strong
smoothing) signal that in this case our density estimate is even more accurate
than the estimate returned by the approach of Cule et al. Otherwise, the
curves approach 0, which demonstrates that our efficient approach (runtime,
parametrization) does not compromise estimation accuracy.
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Table 1: The runtime (in seconds) (R), number of iterations (I) and num-
ber of affine functions (K) used to model gn, depending on n. Our approach
efficiently determines a sparse representation of the density estimate with-
out essentially compromising estimation accuracy. This significantly contrasts
with the approach of Cule et al. that has quadratic runtime complexity and
a less compact representation, which becomes computationally infeasible for
large data sets in higher dimensions d.

n 100 250 500 1000 2500 5000 10000

Cule et al. [2, 11]
R 0.6 3.2 13.1 59.5 610.6 3073.2 16653.7
I 255 643 1266 2602 7211 10766 14973
K 172 366 674 1054 2183 5445 9006

Our approach
R 3.0 9.6 8.9 9.4 8.3 9.6 13.7
I 26 45 34 53 34 44 41
K 13 20 30 35 40 44 54

the values gn(xi) change during numerical optimization.

As a result, each iteration has a worst-case execution time of O(n log n +
nbd/2c), which for d = 2 becomes O(n log n). Furthermore, authors of [2]
report that the number of iterations grows linearly with n, a fact that our
experiments confirmed. Thus, the total dependency on n is O(n2 log n). In
contrast, regarding our approach, the number of terms of the first summand
of (16) only linearly grows with n. Furthermore, we observed that the number

of iterations of the minimization algorithm for determining β̂ is independent
of n, thus resulting in an overall linear complexity O(n).

To examine experimentally the impact of n on the running time and on
the number of iterations, we sampled five data sets of sizes
n = {100, 250, 500, 1000, 2500, 5000, 10000}. For our approach we used param-
eters K = min{n, 200} and γ = 20, that is a sufficiently rich (number K of
affine functions) and non-smooth accurate representation (large value of γ)
of gγ,n(x;β) (cf. Lemma 3.1 and (19)). The average results are collected as
Table 1: runtime in seconds (R), number of iterations (I) until convergence of
numerical optimisation and number variables in terms of affine functions (K).

The numbers of Table 1 reveal, for the approach of Cule et al. [2], the
expected quadratic runtime dependency on n as well as the linear increase in
the number of iterations. For our approach, on the other hand, the number of
iterations remained largely constant. Furthermore, the runtime is significantly
smaller and does not essentially differ for the smallest and largest data sets.
Overall, our approach is more efficient and more compactly parametrised than
the approach of Cule et al. without compromising estimation accuracy. The
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runtime of our approach for data sizes n > 100 is dominated by the numerical
integration, that is by the terms of (21) corresponding to the second term of
(20). Such evaluations on a regular lattice can be easily parallelized, however.

5 Conclusion

We presented a novel approach to the estimation of a log-concave density.
It features a sparse approximation of the max-affine function underlying the
optimal log-concave density estimate f̂n(x) (10). We presented an optimiza-
tion scheme based on the smooth approximation (17b), a numerical evaluation
of the integral term in (17a) and a Newton-based line search with modified
Hessian for the non-convex objective function (20). We demonstrated that
this approach yields densities with almost minimal log-likelihood, while sig-
nificantly reducing the runtime for medium-sized and large sample sets in
comparison to the current state-of-the-art approach by Cule at al. [2].

Future Work. For dimensions d ≥ 4, the evaluation of the second term
of (20) on a fine regular grid is too expensive. Adaptive multiscale grids are
a natural solution to this issue, using a coarser resolution in regions of low
density where a finely spaced grid does not reduce the approximation error.
The speed-up heuristic described in Section 3.2 indicates how grid adaption
(or local scale selection) may be incorporated into the optimization procedure.
Doing this rigorously along with a proof that the iteration terminates, requires
more work.

Another point concerns the transition from the estimate obtained with a
smooth objective function γ = 1 to the estimate computed with a larger value
of γ, that is a refinement of the two-stage initialization procedure described
in Section 3.2. Rather than directly “jumping” from γ = 1 to, say, γ = 20,
a numerical continuation method instead is conceivable, based on the smooth
dependency of our estimates f̂γ,n on γ. We also point out that choosing a
too large value of γ seems suboptimal if the underlying unknown density is
smooth, as our experiments summarized by Fig. 7 indicate. Relating optimal
values of γ to such smoothness assumptions (viz. prior knowledge) defines
another open point of research.

Finally, applications to real problems should be mentioned. An attrac-
tive example is provided by the probabilistic shape prior introduced in [13],
in terms of a density supported on a convex cone that models ordering con-
straints. Estimation of such densities from examples is naturally supported
by our approach presented here, due to the convexity property (14) of corre-
sponding supports. Yet, making the approach practical for higher dimensions
d = 3, 4, . . . , 9 defines an ambitious research task.
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