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Abstract

With the introduction of spectral-domain optical coherence tomography
(OCT), resulting in a significant increase in acquisition speed, the fast and
accurate segmentation of 3-D OCT scans has become evermore important.
This paper presents a novel probabilistic approach, that models the appear-
ance of retinal layers as well as the global shape variations of layer bound-
aries. Given an OCT scan, the full posterior distribution over segmentations
is approximately inferred using a variational method enabling efficient prob-
abilistic inference in terms of computationally tractable model components:
Segmenting a full 3-D volume takes around a minute. Accurate segmen-
tations demonstrate the benefit of using global shape regularization: We
segmented 35 fovea-centered 3-D volumes with an average unsigned error of
2.46± 0.22µm as well as 80 normal and 66 glaucomatous 2-D circular scans
with errors of 2.92± 0.53µm and 4.09± 0.98µm respectively. Furthermore,
we utilized the inferred posterior distribution to rate the quality of the seg-
mentation, point out potentially erroneous regions and discriminate normal
from pathological scans. No pre- or postprocessing was required and we
used the same set of parameters for all data sets, underlining the robustness
and out-of-the-box nature of our approach.
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1. Introduction

Optical coherence tomography (OCT) is an in vivo imaging technique,
measuring the delay and magnitude of backscattered light. Providing mi-
crometer resolution and millimeter penetration depth into retinal tissue
(Drexler and Fujimoto, 2008), OCT is well suited for ophthalmic imag-
ing. Since no other method can perform noninvasive imaging with such
a resolution, OCT has become a standard in clinical ophthalmology (Schu-
man et al., 2004). Several studies showed the applicability for the diagnosis
of pathologies such as glaucoma or age-related macular degeneration (Bowd
et al., 2001; Zysk et al., 2007). The recent introduction (de Boer et al., 2003;
Wojtkowski et al., 2002) of spectral-domain OCT dramatically increased the
imaging speed and enabled the acquisition of 3-D volumes containing hun-
dreds of B-scans. Since manual segmentation of retinal layers is tedious
and time-consuming, automated segmentation becomes evermore important
given the growing amount of gathered data. Furthermore, a probabilistic
model that enables to infer uncertainties of estimates, provides essential
information for practitioners, in addition to the segmentation result.

Various approaches for the task of retina segmentation in OCT images
were published. All have in common that they generate appearance terms
based either on intensity or gradient information. On top of that regular-
ization is applied, which makes predictions more robust to speckle noise
or shadowing caused by blood vessels. In order to provide a systematic
overview over this vast field of approaches, we choose to distinguish them
by the method used for regularization.

One major class is composed of rule-based heuristic techniques (Ahlers
et al., 2008; Fernández et al., 2005; Ishikawa et al., 2005; Mayer et al., 2010),
which for example apply outlier detection along with linear interpolation to
account for erroneous segmentations. Other approaches (Baroni et al., 2007;
Yang et al., 2010) use dynamic programming for single Markov chains per
boundary and constrain the maximal vertical distance between neighboring
boundary positions. Vermeer et al. (2011) classify pixels using support vec-
tor machines and regularize the output using level-set techniques. None of
these approaches incorporates shape prior information.

Active contour approaches include gradient respectively intensity-based
methods (Mishra et al., 2009; Yazdanpanah et al., 2009, 2011). Yazdanpanah
et al. (2009, 2011) augment the classical active contour functional by a simple
circular shape prior. All three approaches were only tested on OCT-scans
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that exclude the foveal region, thus contain mainly flat boundaries with
rather simple shapes.

A series of more advanced approaches (Antony et al., 2010; Dufour et al.,
2013; Garvin et al., 2009; Song et al., 2013) construct a geometric graph to
simultaneously segment all boundaries in a 3-D OCT volume. Unlike previ-
ously presented approaches, they take into account the interaction of neigh-
boring boundaries to mutually restrict their relative positions. This shape
prior information is encoded into the graph as hard constraints (Antony
et al., 2010; Garvin et al., 2009) or, as recently introduced by Song et al.
(2013) and subsequently extended by Dufour et al. (2013), as probabilis-
tic soft constraints. However, due to computational limitations, only local
shape information is included and boundaries are segmented in stages.

Finally, Kajić et al. (2010) apply the popular active appearance models
that match statistical models for appearance and shape, to a given OCT
scan. Although non-local shape modeling is in the scope of their approach,
they only use landmarks, i.e. sparsely sampled boundary positions instead
of the full shape model. Furthermore, only a maximum likelihood point
estimate is inferred, instead of a distribution over shapes.

Contribution. We present a novel probabilistic approach for the OCT
retina segmentation problem. Our probabilistic graphical model combines
appearance models with a global shape prior, that comprises local as well
as long-range interactions between boundaries. The discrete part of the
model features a highly parallelizable column-wise discrete segmentation,
that nevertheless takes into account all other image columns. In order to
infer the posterior probability of this model, we utilize variational inference,
a deterministic approximation framework.

To our knowledge this is the only work, where a full global shape prior
is employed for the task of OCT retina segmentation. Moreover, we are
not aware of any other segmentation approach that infers a full probability
distribution. Our approach offers excellent segmentation performance, out-
performing approaches relying on local or no shape regularization, as well as
pathology detection and an assessment of segmentation quality. Fig. 1 illus-
trates the segmented boundaries, but additional boundaries like the external
limiting membrane (ELM) could easily be incorporated if ground truth is
available.

This work evolved out of preliminary ideas presented in a previous con-
ference paper (Rathke et al., 2011).

Organization. The next section will introduce our probabilistic graphical
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Fig. 1: Overview of retinal layers segmented by our approach and their corresponding
anatomical names. The used abbreviations correspond to nerve fibre layer (NFL), gan-
glion cell layer and inner plexiform layer (GCL + IPL), inner nuclear layer (INL), outer
plexiform layer (OPL), outer nuclear layer and inner segment (ONL + IS), connecting
cilia (CC), outer segment (OS), retinal pigment epithelium (RPE).

model. Section 3 evaluates the posterior distribution via variational infer-
ence, and we solve the corresponding optimization problem in Section 4 in
terms of efficiently solvable convex subproblems. Section 5 and 6 present the
data sets we used for evaluation and the corresponding results. We conclude
in Section 7 with a discussion and possible directions for future work.

2. Graphical Model

This section presents our probabilistic graphical model, statistically mod-
eling an OCT scan y and its segmentations b and c respectively. We intro-
duce c, the discretized version of the continuous boundary vector b, to make
mathematically explicit the connection between the discrete pixel domain
of y and the continuous boundary domain of b. Our ansatz is given by

p(y, c, b) = p(y|c)p(c|b)p(b), (1)

where the factors are
p(y|c) appearance, data likelihood term,
p(c|b) Markov Random Field regularizer, determined by the shape prior and
p(b) global shape prior.

In what follows we will detail each component, thereby completing the def-
inition of our graphical model. Fig. 2 illustrates our graphical model in
terms of the connectivity of the individual model layers.

Notation. The following notation is used throughout the paper:
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Fig. 2: Illustration of our graphical
model for M = 4, N = 7 and Nb = 2.
The connectivity from b to c is only dis-
played for node c2,3. Similarly, connec-
tivity for c to y via x is only displayed
for nodes in the third image column and
additionally illustrated by the bound-
ary colors of the y-nodes.

Fig. 3: Illustration of important variables
used throughout the paper. Note the difference
between real valued position bk,j of boundary k
in column j and its discretized equivalent ck,j .

N,M OCT scan dimensions (rows, columns);
Nb number of segmented boundaries; Nb = 9 in this paper;
i, j, k corresponding indices:

i = 1, . . . , N, j = 1, . . . ,M, k = 1, . . . , Nb;
bk,j ∈ R real-valued location of boundary k in column j;
ck,j ∈ {1, . . . , N} integer-valued boundary variables analogous to b,

but specifying row-positions on the pixel grid;
xi,j ∈ X class variables indicating membership to

layer or transition classes;
yi,j observed data; here patches around pixel (i, j)

projected onto a low-dimensional manifold
∆N standard (N -1)-simplex: ∀θ ∈ ∆N :

∑N
i=1 θi = 1

The symbol • denotes the set of all elements of the respective index, for
example bk,• ∈ RM is the location vector for boundary k. By b\j we denote
the set b \ b•,j , with similar notations used for µ and Σ. See Fig. 3 for an
illustration of most of the notation introduced here.

2.1. Appearance Models
We utilize Gaussian distributions to model the appearance of retinal

layers as well as boundaries. Given a segmentation hypothesis c, we can
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assign class labels xi,j ∈ X to each pixel, their range being given by

X = {Xl,Xt}, Xl = {l1, . . . , l10}, Xt = {t1, . . . , t9},

which represent classes of observations corresponding to tissue layers l1, . . . , l10
and transitions t1, . . . , t9 separating them. To obtain a valid mapping c 7→ x,
we require c to satisfy the ordering constraint ,

1 ≤ c1,j < c2,j < · · · < cNb,j ≤ N, ∀j = 1, . . . ,M, (2)

and point out that the real-valued counterpart b may violate this constraint.
Since OCT scans display a high variability in brightness and contrast

within and between scans, each patch is first normalized by subtracting its
mean. We then project each patch yi,j onto a low-dimensional manifold.
Applying the technique of Principle Component Analysis (PCA), we draw
patches randomly from the OCT scans in the training set, estimate their
empirical covariance matrix and calculate its eigenvalues and eigenvectors.
The projection can then be carried out using the first qpca eigenvectors sorted
by their eigenvalues.

We define the probability of the projected patch yi,j1 around pixel (i, j)
belonging to class xi,j as

p(yi,j |xi,j(c)) = N (yi,j ;µxi,j ,Σxi,j ) . (3)

The class-specific moments µx,Σx ∀x ∈ X are learned offline using patches
from the respective class. Regularized estimates for Σx are obtained by uti-
lizing the graphical lasso approach (Friedman et al., 2008), which augments
the classical maximum likelihood estimate for Σ with an `1-norm on the
precision matrix K = Σ−1. This leads to sparse estimates for K, where the
degree of sparsity is governed by a parameter αglasso, c.f. Section 5.3.

We define the appearance of a scan y to factorize over pixels (i, j). Fi-
nally, we introduce switches βt ∈ {0, 1} and βl ∈ {0, 1}, that turn on/off all
terms belonging to any transition class tk or layer class lk, which yields the
final appearance model

p(y|c) =
M∏
j=1

∏
i:xi,j∈Xl

p(yi,j |xi,j(c))β
l ∏
i:xi,j∈Xt

p(yi,j |xi,j(c))β
t
. (4)

1For ease of notation, we will make no difference between the patch yi,j and its low-
dimensional projection.
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As we point out in the section about inference, our model can handle dis-
criminative terms as well. We can convert generative terms (3) into discrim-
inative ones by renormalizing

p(xi,j(c)|yi,j) = p(yi,j |xi,j(c))p(xi,j(c))∑
xi,j∈X p(yi,j |xi,j(c))p(xi,j(c))

, (5)

where we use a uniform prior p(xi,j(c)). The factorization of p(c|y) is the
same as in (4).

2.2. Shape Prior
As a model of the typical shape variation of layers due to both bi-

ological variability as well as to the image formation process, we adopt
a joint Gaussian distribution2. We denote the continuous height values
of all boundaries k for image columns j by the NbM -dimensional vector
b = (bk,j)k=1,...,Nb; j=1,...,M . Hence,

p(b) = N (b;µ,Σ) (6)

where parameters µ and Σ are learned offline from labeled training data.
We regularize the estimation of Σ by Probabilistic Principal Component
Analysis (PPCA) (Tipping and Bishop, 1999). PPCA assumes that the
high-dimensional observation b was generated from a low-dimensional latent
source s ∈ Rq via

b = Ws+ µ+ ε ,

where s ∼ N (0, I) and ε ∼ N (0, σ2I) is isotropic Gaussian noise3.
The moments of p(b) are given by E[b] = µ and V[b] = WW T +σ2I = Σ.

Likewise, Σ−1 can be decomposed into W and σ2I too. Making use of these
decompositions, one can reduce complexity of most operations related to
Σ or Σ−1 as well as memory requirements, since only W and σ2 have to
be stored. The parameters for p(b) can be estimated via maximum log-
likelihood. W is composed of the (weighted) qppca eigenvectors with largest
eigenvalues, computed from the empirical covariance matrix. For more de-
tails, we refer to Tipping and Bishop (1999).

2For circular scans, a wave-like distortion pattern is observed due to the conic scanning
geometry and the spherical shape of the retina, which we capture statistically rather than
modeling it explicitly.

3PPCA can be considered as a generalisation of classical Principle Component Analysis
(PCA), which assumes the deterministic relation b = Ws+ µ.
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Fig. 4: Samples generated by the shape prior distribution p(b) trained on volumes (left)
and circular scans (right). Only one half of the volume is shown.

Fig. 4 shows samples drawn from p(b), modeling fovea-centered 3-D
volumes (left) and circular scans (right). Additionally, as supplementary
material we provide a video that visualizes the relevance of each component
of W exemplary for the 3-D setup, like translation, rotation, thickness of
layers or position and form of the fovea.

2.3. Shape-Induced Regularizers
The third component of our model consists of a prior for discrete bound-

ary assignments c, regularizing the data likelihood terms p(y|c). We de-
fine p(c|b) as column-wise acyclic graphs

p(c|b) =
M∏
j=1

p(c•,j |b), p(c•,j |b) = p(c1,j |b)
Nb∏
k=2

p(ck,j |ck−1,j , b), (7)

i.e. the communication of the model between image columns j is governed
by the shape prior p(b).

In order to define the conditional marginals in (7), we need a couple of
prerequisites. With b•,\j denoting the subset of variables b after removing
variables b•,j of column j, and with p(b•,j |b•,\j) denoting the corresponding
conditional Gaussian distribution computed from the shape prior p(b), then
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the marginal distributions are specified in terms of b by

p(c1,j =n|b) = Pr
(
n− 1

2≤ b1,j≤ n+ 1
2
)
,

p(ck,j =n|ck−1,j =m, b) =

Pr
(
n− 1

2≤ bk,j≤ n+ 1
2

∣∣∣m− 1
2 ≤ bk−1,j≤ m+ 1

2
)
,

(8)

where the probabilities on the right-hand side are computed using the
conditional marginal densities p(b1,j |b•,\j) and p(bk,j |b•,\j)p(bk,j |bk−1,j) re-
spectively, for all configurations of c conforming to (2)4. The marginal
p(bk,j |b•,\j) provides a way to introduce global shape knowledge into our
column-wise graphical models p(c|b).

2.4. 2-D vs. 3-D
Our description so far considered OCT scans y of dimensionality two.

Nevertheless, our approach is equally applicable to 3-D volumes. We use the
very same notation, since adding additional B-Scans will only increase the
number of image columns M . Similarly, the connectivity of the graphical
model p(y, c, b) can be transferred one-to-one.

The shape prior p(b) which is fully connected since Σ−1 is dense, can
be extended to an arbitrary dimension. We exploit the fact that both, Σ
and Σ−1, have an explicit low-rank decomposition (see section 2.2), such
that memory consumption is not an issue and complexity of operations is
reduced as well. For the shape regularization term p(c|b), each node ck,j is
connected to nodes b\j of all columns except the current one, which now ad-
ditionally includes columns of all other B-scans. Finally, the data likelihood
p(y|c) continues to fully factorize over pixels (i, j). Each pixel (i, j) remains
connected to at most two nodes ck,j from the same column j, determining
it’s label xi,j . Furthermore, we use separate sets of appearance models for
each B-scan in the volume to capture possible variations.

3. Variational Inference

Based on the model presented in the previous section and given observed
data y, we wish to infer the posterior

p(b, c|y) = p(y|c)p(c|b)p(b)
p(y) . (9)

4This computation is straightforward for Gaussian distributions (6), see Section 3.2.
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One major issue is that calculating the marginal likelihood p(y) would re-
quire integrating p(y, c, b) over b and c. This turns out to be intractable, since
we lack a closed form solution and the problem at hand is high-dimensional.
We cope with this problem by applying an established variational method:
approximating the posterior by a tractable distribution q(b, c) by minimiz-
ing the Kullback-Leibler (KL) distance KL(q‖p) with respect to q (cf., e.g.,
Attias (2000)). We point out that unlike in related work (e.g. McGrory
et al. (2009)) where the subproblem of inferring the discrete decision vari-
ables has to be approximated as well, our model has been designed such
that by choosing q properly all subproblems are tractable and can be solved
efficiently.

We choose a factorized approximating distribution

q(b, c) = qb(b)qc(c). (10)

This merely decouples the continuous shape prior and the discrete order-
preserving segmentation component of the overall model, but otherwise rep-
resents both components exactly. The Kullback-Leibler distance between q
and p is given by

KL
(
q(b, c)

∥∥p(b, c|y)
)

=
∫
b

∑
c

q(b, c) log q(b, c)
p(b, c|y)db

= −
∫
b

∑
c

q(b, c)
(

log
(
p(y|c)p(c|b)p(b)

)
− log p(y)− log q(b, c)

)
db .

(11)

Dropping the constant term log p(y), we may obtain our objective function.
Alternatively, we can use the marginal likelihood log p(y) to introduce

discriminative appearance terms into the model, using log p(y|c)
p(y) = log p(y|c)p(c)

p(y) −
log p(c) = log p(c|y) − log p(c). Since p(b) already contains prior knowledge
about the shape of boundary positions, we assume an uninformative prior
for c. Dropping thus p(c) and taking into account the factorization of q, we
obtain the objective function

J(qb, qc) = −
∫
b

∑
c

qb(b)qc(c) log
(
p(c|y)p(c|b)p(b)

)
db−Hqb

(b)−Hqc(c),

(12)
where Hp(x) denotes the entropy of the distribution p. It turned out that
discriminative appearance terms yielded the best performance. A discussion
of this issue will be given in Section 5.2.
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Definitions of qc and qb. For qc(c), we adopt the same factorization as for
p(c|b), that is

qc(c) =
M∏
j=1

qc;1,j(c1,j)
Nb∏
k=2

qc;k∧k−1,j(ck,j , ck−1,j)
qc;k−1,j(ck−1,j)

(13)

where qc;k,j ∈ ∆N are discrete probability distributions. Similarly, by
qc;k∧k−1,j ∈ ∆N2 we denote discrete probability distributions over pairs
of variables ck−1,j , ck,j

5. For qc(c) to be a valid distribution, additional
marginalization constraints have to be satisfied:∑

ck−1,j

qc(ck,j , ck−1,j) = qc(ck,j),
∑
ck,j

qc(ck,j , ck−1,j) = qc(ck−1,j) , (14)

for all k = 2, . . . , Nb and j = 1, . . . ,M . Note that we ignore the set of
valid configurations (2) here, because this has already been taken into ac-
count when defining p(c|b). As for qc and p(c|b), we let qb adopt the same
factorization as p(b), thus

qb(b) = N (b; µ̄, Σ̄) . (15)

In what follows, we make the expectations with respect to qc and qb
explicit. This will provide us below with a closed-form expression of the
objective function J(qb, qc).

3.1. First Summand log p(c|y) of J(qb, qc)
The term p(c|y) does not depend on b, so qb integrates out. Moreover,

both p(c|y) and qc factorize over columns. Hence we can rewrite the first
summand of (12) as

−
∫
b

∑
c

qb(b)qc(c) log p(c|y) = −
M∑
j=1

∑
c•,j

(
qc(c•,j)

N∑
i=1

log p(xi,j(c•,j)|yi,j)
)
,

where the second sum ranges over all combinations of boundary assignments
for c•,j . We can further simplify this equation by noting that each label xi,j
depends at most on two ck,j , as illustrated in Fig. 5. This allows us to split
the inner sum into k+ 1 sums, each summing over pixels with labels lk and
tk or lNb+1 respectively, and sum out all ck,j independent of these labels.

5To enhance readability, we will subsequently omit indices k, j of qc, if they are deter-
mined by the input variable(s) ck,j .
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Fig. 5: Distribution of labels of xi,j , determined by the position of boundaries ck,j , for
Nb = 3. Each label depends at most on two boundaries.

For each pair (lk, tk) of labels we define matrices Ψk,j , whose entries
equal the sum over pixel yi,j with xi,j ∈ {tk, lk}

(Ψk,j)m,n =
n−1∑

i=m+1
βl log p(xi,j = lk|yi,j) + βt log p(xn,j = tk|yn,j)

for k = 2, . . . , Nb, j = 1, . . . ,M and 1 ≤ m < n ≤ N . Entries for n ≤ m are
not defined and set to negative infinity. Accordingly, we introduce vectors
(ψ1,j)n and (ψNb,j)n, representing sums over pixels with labels l1, t1 and
lNb+1 depending on c1,j and cNb,j respectively. We now can write∑

ck−1,j

∑
ck,j

qc(ck,j , ck−1,j)(Ψk,j)ck−1,j ,ck,j
= 〈(qc;k∧k−1,j)T ,Ψk,j〉

where 〈A,B〉 denotes the trace of AB and determines the form of qc;k∧k−1,j .
Finally, we write the first summand of (12) in vector form:

−
M∑
j=1

(
(qc;1,j)Tψ1,j +

Nb∑
k=2
〈(qc;k∧k−1,j)T ,Ψk,j〉+ qTc;Nb,j

ψNb,j

)
. (16)

3.2. Second Summand log p(c|b) of J(qb, qc)
The second term p(c|b) depends on qc and qb, so we have to take care

of both expected distributions. We start out this section by making explicit
the expectation with respect to qb. As a prerequisite, we define the two
marginal distributions of p(b) introduced in (8). Using the simplifying nota-
tion p(bj |b\j) = p(b•,j |b•,\j), by the standard rule for conditional Gaussian
distributions (Rasmussen and Williams, 2006, p. 200) we obtain

p(bj |b\j) = N (bj ;µj|\j ,Σj|\j)
µj|\j = µj − Σj|\jKj,\j(b\j − µ\j), Σj|\j = (Kjj)−1 ,

(17)
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the marginal distribution of the Nb boundary positions in column j, con-
ditioned on the Nb(M − 1) remaining boundary positions b\j . The 1-
dimensional densities for bk,j |b\j are obtained by marginalizing over (17),
with mean (µj|\j)k and variance (Σj|\j)k,k.

Similarly, we define p(bk,j |bk−1,j) the density of boundary position bk,j
given the position of the neighboring boundary k− 1 in column j. Its mean
µk|k−1,j and variance σ2

k|k−1,j are calculated in the same fashion as in (17).
We now can express the probabilities p(c1,j |b) and p(ck,j |ck−1,j , b) introduced
in (8) in terms of integrals

p(ck,j = n|ck−1,j = m, b) =∫ n+ 1
2

n− 1
2

∫ m+ 1
2

m− 1
2

N (τ ; (µj|\j)k, (Σj|\j)k,k)N (τ ;µk|k−1,j , σ
2
k|k−1,j) dτdν.

and accordingly for p(c1,j = n|b)6. These terms depend on b\j through
(µj|\j)k, hence on qb too. It suffice to adopt the most crude numerical
integration formula (integrand = step function) in order to make this de-
pendency explicit:

∫ a+1/2
a−1/2 f(x)dx ≈ f(a).

Applying the logarithm to p(c|b), we obtain a representation that is
convenient for

∫
b · · · qbdb. We defined qb as a Gaussian distribution (15),

therefore the moments of b\j with respect to qb are given by

Eqb
[b\j ] = µ̄\j and Vqb

[b\j ] = Σ̄\j,\j + µ̄\jµ̄
T
\j . (18)

As a result, we established all necessary prerequisites to write the terms
Eqb

[log p(c1,j |b)] and Eqb
[log p(ck,j |ck−1,j , b)] in an explicit form, that is suit-

able for an optimization with respect to µ̄ and Σ̄. Details are provided in
Appendix A.

We now address the expectation with respect to qc. Similar arguments
as for p(c|b) hold for p(c|y) too: We can split the sum over c•,j into parts
depending (at most) on two neighboring boundaries ck−1,j and ck,j . We
define matrices Ωk,j as

(Ωk,j)m,n = Eqb
[log p(ck,j = n|ck−1,j = m, b)],

for k = 2, . . . , Nb, j = 1, . . . ,M and 1 ≤ m < n ≤ N , and vectors (ω1,j)n for
terms Eqb

[log p(c1,j = n|b)] accordingly. Finally, we can write the expecta-

6Note that the dependency on ν is contained in µk|k−1,j as bk−1,j .
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(a) (b) (c)

Fig. 6: Illustration of a transition matrix exp(Ωk,j) (c) and the local (a) and global (b)
shape information it is composed of. The plots show the exponential version that is used
during the optimization of qc (see Section 4.1), in order to illustrate the inherent sparsity
that we utilize to speed up the calculation of qc.

tion of the second term in vectorized form as

−
M∑
j=1

(
(qc;1,j)Tω1,j +

Nb∑
k=2
〈(qc;k∧k−1,j)T ,Ωk,j〉

)
. (19)

Fig. 6 shows a transition matrix Ωk,j (c) and it’s two components
Eqb

[log p(bk,j |bk−1,j)] (a) and Eqb

[
log p(bk,j |b\j)

]
(b) for m,n = 101, . . . , 200.

Since the sum-product algorithm used to find the optimal qc (see Section
4.1) requires exp(Ωk,j), our plots show the exponential version too, in order
to illustrate the inherent sparsity. We see how Ωk,j is build by combining
prior information about the relative distance between bk,j and bk−1,j (a) with
the distribution of bk,j conditioned on information from all other columns
via Eqb

[b\j ] = µ̄\j (b).

3.3. Third Summand log p(b) of J(qb, qc)
Concerning the third summand, qc sums out. Rewriting the Gaussian

using the trace and making the expectation explicit, we obtain

−
∫
b
qb(b) log p(b)db = C + 1

2〈K, Σ̄ + µ̄µ̄T − 2µ̄µT + µµT 〉 (20)

i.e. a function depending on the parameters µ̄ and Σ̄ of qb.
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3.4. Entropy Terms of J(qb, qc)
Finally, we make explicit the negative entropy of qb and qc.

−Hqb
(b) =

∫
b
qb(b) log qb(b)db = C − 1

2 log |Σ̄| . (21)

−Hqc(c) =
M∑
j=1

( Nb∑
k=1

∑
ck,j

qc(ck,j) log qc(ck,j) (22)

+
Nb∑
k=2

∑
ck−1,j ,ck,j

qc(ck,j , ck−1,j) log qc(ck,j , ck−1,j)
qc(ck−1,j)qc(ck,j)

)

The first summand of Hqc is comprises singleton entropies whereas the sec-
ond one comprises the mutual information (Cover and Thomas, 2006, p. 19)
between the random variables ck,j and ck−1,j .

3.5. Explicit Formulation of the Objective Function J(qb, qc)
Combining all terms, we can reformulate (12) into a functional that can

be optimized with respect to qc and the parameters µ̄ and Σ̄ of qb

min
qc,µ̄,Σ̄

−
( M∑
j=1

(qc;1,j)T θ1,j +
Nb∑
k=2
〈(qc;k∧k−1,j)TΘk,j〉+ (qc;Nb,j)

T θNb,j

)
+ 1

2〈K, Σ̄ + µ̄µ̄T − 2µ̄µT 〉 − 1
2 log |Σ̄| −Hqc(c) + C

s. t. qc;k,j ∈ ∆N k = 1, . . . , Nb, j = 1, . . . ,M and (14)

(23)

where we combined the terms of (16) and (19) into θk,j and Θk,j . Note
that the necessary constraint Σ̄ ∈ S++ is implicitly given by the logarithmic
barrier term log |Σ̄| =

∑
i log λ̄i, where λ̄i is the i-th eigenvalue of Σ̄, hence

it has not to be enforced explicitly.

4. Optimization

We alternatingly optimize the objective function (23) with respect to
qc and the parameters of qb. Optimization of qc corresponds to inference
of chain graphs and can be accomplished by the sum-product algorithm
(Bishop et al., 2006, p. 402), whereas the optimization of qb can be done in
closed form. Both subproblems are convex, thus by alternatingly optimizing
with respect to qb and qc, the functional J(qb, qc), being bounded from below
over the feasible set of variables, is guaranteed to converge to some minimum.
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4.1. Optimization of qc
Fixing all terms in (23) that depend on parameters of qb, we obtain an

optimization problem that can be split into column-wise convex subprob-
lems, since each is composed solely of linear terms and the negative entropy
of a chain graph, subject to simplex constraints. Making the constraints
explicit using Lagrange multipliers, and derivating with respect to all qc;k,j ,
we obtain a set of update equations which can be shown to correspond to
sum-product updates (Wainwright and Jordan, 2008, p. 83). Thus itera-
tively optimizing qc for each column j is guaranteed to converge to some fix
point qopt

c , which corresponds to the global optimum.

4.2. Optimization of qb
Considering in (23) only terms depending on Σ̄, we obtain the optimiza-

tion problem
min

Σ̄
−1

2 log |Σ̄|+ 1
2〈K + P̃ , Σ̄〉 (24)

which has the closed-form solution: Σ̄opt = (K + P̃ )−1. The newly intro-
duced matrix P̃ contains the dependencies on Σ̄ of terms ω1,j and Ωk,j .
Being independent of qc, we only have to calculate it once. Furthermore,
since it is composed out of linear combinations of submatrices of K, it can
be expressed implicitly in terms of W and σ2I. Details are provided in
Appendix B.

For µ̄, we obtain

min
µ̄

1
2〈K + P̃ , µ̄(µ̄− 2µ)T 〉+ p̃T µ̄ (25)

and µ̄opt = µ− p̃T Σ̄opt. Again details for p̃, concerning the dependencies of
ω1,j and Ωk,j , are given in Appendix B. To minimize (25), we use conjugate
gradient descent which enables us to calculate µ̄opt using (K + P̃ ) instead
of (K + P̃ )−1.

4.3. Initialization
We start the optimization of (23) by initializing the distribution qc. This

is done by setting distributions p(bk,j |b\j) to a uniform distribution, since
we yet lack the distribution qb. Afterwards, we can initialize qb via (24)
and (25). Subsequently, we iterate both optimizations alternatingly until
J(qb, qc) converges.
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5. Experiments

5.1. Data Acquisition
Circular B-scans measured around the optic nerve head were acquired

from 80 healthy as well as from 66 glaucomatous subjects using a Spectralis
HRA+OCT device (Heidelberg Engineering, Germany). Each scan had a
diameter of 12◦, corresponding to approximately 3.4mm, and consisted of
M = 768 A-scans of depth resolution 3.87µm/pixel (N = 496 pixels), see
Fig. 7 (a). Ground truth for the crucial boundary separating NFL and GCL
as well as a grading for the pathological scans was provided by a medical
expert: pre-perimetric glaucoma (PPG), meaning the eye is exhibiting struc-
tural symptoms of the disease but the visual field and sight are not impaired
yet, as well as early, moderate and advanced primary open-angle glaucoma
(PGE, PGM and PGA). Ground truth for the remaining eight boundaries
was produced by the first author. To measure interobserver variability, a
second set of labels for the healthy B-scans was obtained by the second
author.

The second data set consisted of fovea-centered 3-D volumes, acquired
from 35 healthy subjects using the same device as above. Each volume was
composed of 61 B-Scans of dimension 500×496, covering an area of approx-
imately 5.7× 7.3mm. Ground truth was obtained as follows: Each volume
was divided in 17 regions, and a B-scan randomly drawn from each region
was labeled with the previously introduced nine boundaries. Fig. 7 (b) de-
picts the location of all 61 B-Scans and their partition into regions indicated
by color.

5.2. Generative vs. Discriminative, Transition vs. Boundary Appearance
Terms

Following (11), we described the introduction of discriminative appear-
ance models as an alternative to generative ones. Furthermore, we intro-
duced switches βl and βt in (4) to enable or disable layer and boundary
appearance terms, respectively. This section explains why we settled for
discriminative boundary terms.

Using the set of healthy circular scans, we tested the model with gener-
ative layer as well as boundary terms, i.e. βt = βl = 1. This configuration
turned out to be sensitive to distortions of the texture caused for example by
blood vessels. The result were initializations above the actual retina, since
the model misinterpreted the shaded area as parts of the choroid, as shown
in Fig. 8 (a). We then disabled the layer appearance terms, i.e. set βl = 0.
This solved the previous issue, but spuriously led to some columns being
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(a) 2-D circular scan (b) 3-D volume

Fig. 7: SLO fundus images that exemplarily depict (a) the trajectory and radius of a
2-D circular scan centered around the optical nerve head and (b) the area covered by a
3-D volume consisting of 61 B-Scans centered at the fovea. Different colors illustrate the
partitioning into 17 different regions.

Table 1: Set of model parameter values used throughout all experiments.

Appearance Shape Inference
Parameters αglasso qpca Patch-Size qppca Variance of p(bk,j |b\j)

Value 0.01 20 15× 15 20 10

initialized below the retina, due to very high probabilities for some bound-
ary classes caused by relatively small class model variances, i.e. narrow and
steep normal distributions. For patches close to the mean, the probabili-
ties for those classes happened to be up to 100 times larger than for other
classes. This caused false positive class responses in the choroid to displace
the whole initialization for these columns, as displayed in Fig. 8 (b).

Switching to discriminative probabilities solved this issue as well, since
the local normalization limits all probabilities to 1 and gives each appear-
ance class the same influence. Thus false-positives did not possess the prob-
ability mass any more to displace the whole column segmentation, see Fig.
8 (c). Notice that the layer terms, although switched off by setting βl = 0,
are utilized indirectly, since they contribute to the normalization of terms
p(xi,j(c)|yi,j), see (5). Thus strong layer appearance terms can rule out
certain parts of the OCT scan for segmentation.

18



(a) βl, βt = 1, Gen. (b) βl = 0, Gen. (c) βl = 0, Disc.

Fig. 8: (a)-(c) Close-up view of initialization results for different configurations of ap-
pearance terms. Switches βl and βt include or exclude layer and transition appearance
terms.

5.3. Model Parameters
Table 1 summarizes the model parameters and how they were set. For the

appearance model we set αglasso to 0.01, which resulted in sparse covariance
matrices Σxi,j that speed up computations significantly. A patch-size of
15 × 15 and the projection onto the first qpca = 20 eigenvectors resulted in
smooth segmentation boundaries. Similar, we used qppca = 20 eigenvectors
to build the shape prior model, after examining the eigenvalue spectrum.

An important parameter during the inference is the variance of p(bk,j |b\j):
it balances the influence of appearance and shape. Artificially increasing this
parameter results in broader normal distributions (cf. Fig. 6 (b)), that al-
lows qc to take into account more observations around the mean of p(bk,j |b\j).
At the same time the influence of the appearance terms on qb is reduced,
which results in a smoother mean µ̄. Thus increasing the variance loosens
the coupling between qc and qb and vice versa. A ten-fold increased variance
turned out to provide a good balance between local appearance terms and
shape regularization as well as between run-time and prediction accuracy.

We used the very same set of parameter values for all our experiments
and performed no fine tuning separately for each data set. Hence it is
plausible to assume that these values perform well on a broad range of data
sets.
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5.4. Error Measures and Test Framework
For each boundary we computed the unsigned distance Ekunsgn in µm

between estimates ĉk,j = Eqc [ck,j ] and manual segmentations c̃k,j (ground
truth) as

Ekunsgn = M−1
M∑
j=1
|ĉk,j − c̃k,j |, Eunsgn = N−1

b

Nb∑
k=1

Ekunsgn .

For volumes we additionally have to average over regions. For each data set,
we provide the mean error Ēunsgn and it’s standard deviation (SD) σEunsgn .

Results were obtained via cross-validation: After splitting each data set
into a number of subsets, each subset in turn is used as a test set, while
the remaining subsets are used for training. This provides an estimate of
the ability to segment new (unseen) test scans. We used 10-fold cross-
validation for the set of non-pathological circular scans and leave-one-out
cross-validation for the volumes, to maximize the number of training exam-
ples in each split. For the set of glaucomatous scans, we used a single model
trained on all healthy scans.

5.5. Implementation and Running Time
We implemented our approach in MATLAB. The main bottle-neck,

the sum-product algorithm used to find an optimal solution for qc(c), was
implemented in C and incorporated into MATLAB via the Mex-interface.
To further decrease running time, we exploited the inherent sparsity of the
transition matrices Ωk,j , as illustrated in Fig. 7. Also, wherever possible
we transferred expensive matrix-vector multiplications to the GPU, using a
wrapper for MATLAB called GPUmat (Messmer et al., 2008). Segmenting
all 61 B-Scans of a 3-D volume took 60 s, with memory requirements of
about 2GB, measured on a Core i7-2600K 3.40GHz.

6. Results

6.1. Circular Scans
Average boundary-wise results are summarized in Table 2. In general,

boundaries 1 and 6 to 9 turned out to be easier to segment than bound-
aries 2 to 5. For boundary 1 this stems from easily detectable textures,
whereas boundaries 6-9 with their regular shape profit disproportionately
from regularization by the shape prior. Boundaries 2-5 on the other hand
pose a harder challenge with their high variability of texture and shape. The
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Table 2: Results in µm±SD (3.87µm =̂ 1px) for 2-D circular scans (separately for healthy
eyes as well as the different degrees of glaucoma, pre-perimetric, early, moderate and ad-
vanced) and 3-D scans of healthy subjects. Numbers within brackets denote the respective
data set size.

2-D Healthy 2-D Glaucoma 3-D Healthy
k All (80) PPG (22) PGE (22) PGM (13) PGA (9) All (35)

1 2.06±0.57 2.60±0.85 3.76±1.42 4.51±1.18 6.53±2.76 1.36±0.18
2 4.68±1.13 6.66±2.41 5.65±1.66 6.74±1.64 9.95±4.74 3.32±0.37
3 3.67±0.84 4.57±1.18 5.37±1.33 5.49±1.00 8.80±3.03 3.17±0.44
4 3.31±0.78 4.43±1.09 5.78±1.48 5.44±1.19 8.30±2.21 3.23±0.56
5 3.30±0.75 4.34±1.63 4.40±1.14 4.15±0.68 5.05±0.92 3.27±0.66
6 2.10±0.76 2.67±1.37 2.76±0.97 2.88±1.62 2.99±1.92 1.61±0.23
7 2.34±1.05 2.59±1.11 2.95±1.27 2.21±0.68 2.42±0.44 1.86±0.32
8 2.81±1.42 2.82±1.00 3.40±1.22 2.94±1.40 4.19±1.97 2.27±0.40
9 2.01±1.14 2.06±0.65 1.63±0.48 1.64±0.25 2.36±1.18 2.07±0.48

∅∅∅ 2.92±0.53 3.64±0.68 3.97±0.73 4.00±0.53 5.62±1.25 2.46±0.22

Fig. 9: Top: Segmentation (Eunsgn = 2.97µm) of a non-pathological circular scan. Bot-
tom: Segmentation (Eunsgn = 5.09µm) of an advanced glaucomatous scan.
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upper row in Fig. 9 shows an example close to the average segmentation per-
formance with Eunsgn = 2.97µm.

For the pathological scans segmentation performance was comparable to
the healthy scans, but decreased with the progression of the disease. This
happened for two reasons: Since glaucoma is known to cause a thinning of
the nerve fiber layer (NFL) (Schuman et al., 1995; Bowd et al., 2001), the
shape prior trained on healthy scans may encounter difficulties adapting to
very abnormal glaucomatous shapes. Furthermore, we observed a reduced
scan quality for glaucomatous scans, also reported by others (Ishikawa et al.,
2005; Stein et al., 2006; Mayer et al., 2010), which in turn reduced the
quality of the data terms. For advanced primary open-angle glaucoma, the
NFL can even vanish at some locations. The appearance model for this layer,
trained on healthy data, is not able to detect these extreme anomalies, which
resulted in a comparatively low performance for some scans. We discuss
possible modifications to overcome this problem in Section 7.

The bottom panels in Fig. 9 show an example of a PGA-type scan and
its segmentation. The scan exhibits the discussed reduced scan quality.
Furthermore, the segmentation proves that the shape model can generalize
well to pathological shapes as well as scan artifacts.

6.1.1. Interobserver Variability
A second set of labels was created for the healthy circular B-scan data set

by the second author. For training and testing we utilized the same set-up
as described earlier (10-fold cross-validation, parameters as in Table 1), but
used the average of both labelings for training. In Table 3 we compare the
predicted segmentations with the two labelings individually and with their
average. Furthermore, we report the average absolute distance between both
observers, the interobserver variability.

We see, that the resulting prediction errors are well within the range
of the interobserver variability. The performance using the averaged labels
improves compared to the case when using only one set of labels, c.f. first
column of Table 2. This suggests an increased robustness of the averaged
ground truth towards scan artifacts, ambiguous image regions and labeling
bias.

6.1.2. Qualitative Evaluation
A key property of our model is the inference of full probability distri-

butions over segmentations qc and qb, instead of only modes thereof. This
allows us to rate the quality of the prediction as a whole as well as indi-
cate regions with low certainty, or classify a scan as normal or potentially
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Table 3: Interobserver variability as well as prediction performance of our segmentation
approach compared to ground truth of observer 1 and 2 for the set of 80 healthy circular
scans (µm±SD (3.87µm =̂ 1px)). The algorithm was trained on the averaged ground truth.

Obs.1 vs.
Obs.2

Algo. vs.
Obs.1

Algo. vs.
Obs.2

Algo. vs.
Avg. Obs.

1 2.86±0.46 2.35±0.62 3.69±0.76 2.74±0.66
2 7.57±1.06 5.51±1.30 6.15±1.35 4.56±1.00
3 4.62±1.13 3.74±0.91 4.26±0.85 3.25±0.74
4 3.63±0.65 3.31±0.75 3.35±0.74 2.74±0.73
5 3.39±0.66 3.31±0.75 3.36±0.75 2.83±0.70
6 1.87±0.59 2.09±0.73 2.05±0.73 1.82±0.71
7 2.36±1.14 2.33±0.99 2.55±1.03 2.08±0.92
8 3.54±1.78 3.23±1.44 2.51±1.33 2.21±1.15
9 1.37±0.51 1.94±1.03 2.17±1.02 1.91±1.01

∅∅∅ 3.47±0.37 3.09±0.50 3.34±0.52 2.68±0.50

pathological. To this end, we evaluated the different terms of the objective
function (12). Fig. 10 reports average function values of four terms (b-e) and
compares them to the unsigned error (a). Singleton entropy (b) and mutual
information (c) are the two summands of the negative entropy of qc, given
in (22). The data (d) and shape (e) terms represent the first two summands
of (12), introduced in Section 3.1 and 3.2.

The shape term, which measures how much the data-driven distribu-
tion qc differs from the shape-driven expectation Eqb

[log p(c|b)], is highly
discriminative between healthy and pathological scans. The mutual infor-
mation on the other hand exhibit a good correlation with the unsigned error.
It measures the dependence between variables ck,j and ck−1,j . Imaging two
variables ck,j and ck−1,j each having a single strong peak in qc;k,j and qc;k−1,j .
Their joint probability qc;k∧k−1,j will show almost no dependency. On the
other hand, if we have several possibilities for each variable caused e.g. by
poor data terms, then their dependency increases and thereby the mutual
information. We will use these two terms in the forthcoming evaluation.
Classification. A state-of-the-art method for the clinical diagnosis of glau-
coma is based upon NFL thickness, averaged for example over the whole
scan or one of its four quadrants (Bowd et al., 2001; Leung et al., 2005;
Chang et al., 2009; Leite et al., 2011). Estimates of the NFL thickness for
all circular scans were obtained using the software of the Spectralis OCT de-
vice, version 5.6. We compared this established method against the second
summand of the objective function (12), as discussed above. Using the same
setup as in Bowd et al. (2001), we report sensitivities for specificities of 70%
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Fig. 10: Compares different terms of the objective function (b-e) with the unsigned
error (a) for healthy as well as glaucomatous scans (PPG, PGE, PGM and PGA). While
"Shape" is very discriminative for the glaucomatous scans, "Mutual" and "Data" correlate
well with the unsigned error.

and 90%, as well as the area under the curve (AUC) of the receiver operating
characteristic (ROC)7, see Table 4. In all cases, our shape-based discrimina-
tor performs at least as good as the best thickness-based one. Especially for
pre-perimetric scans, which feature only subtle structural changes, our ap-
proach improves diagnostic accuracies significantly. For this most interesting
group, Fig. 11 (a) provides ROC curves of the two overall best performing
NFL measures and our shape measure.
Global Quality. We obtained a global quality measure, by combining the
mutual information and the shape term. Given the values for all scans, we
re-weighted both terms into the ranges [0, 1] and took their sum. Thereby
we could establish a quality index that had a very good correlation of 0.82
with the unsigned segmentation error. See Fig. 11 (b) for a plot of all quality
index/error pairs and a linear fit thereof. The estimate of this fit and the
true segmentation error differs on average by only 0.51µm. This shows that
the model is able to additionally deliver the quality of its segmentation.
Local Quality. Finally, we determined a way to distinguish locally between
regions of high and low model confidence. This could for example point out
regions where a manual (or potentially automatic) correction is necessary.

7The AUC can be interpreted as the probability, that a random pathological scan gets
assigned a higher score than a random healthy scan.
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Table 4: Comparison of sensitivities for NFL-based features, measuring average thickness
in different parts of the scan, and our global shape based feature. Bold numbers indicate
the highest detection rate for the respective specificity and glaucoma class.

Specificity 70% 90% AUC
Type PPG PGE PGM PPG PGE PGM PPG PGE PGM

Average 68.2 90.9 100.0 36.4 86.4 100.0 0.72 0.93 1.00
Superior 63.6 81.8 92.3 45.5 77.3 76.9 0.78 0.84 0.90
Inferior 45.5 72.7 92.3 13.6 31.8 53.8 0.69 0.77 0.89
Temporal 63.6 95.5 100.0 54.5 90.9 100.0 0.74 0.95 0.99
Nasal 36.4 63.6 92.3 18.2 45.5 61.5 0.51 0.74 0.89

Shape 77.3 95.5 100.0 63.6 95.5 100.0 0.84 0.95 1.00
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Fig. 11: (left) ROC curves for the two overall best performing NFL-based classifiers and
our shape prior based approach for pre-perimetric scans. (right) High correlation of our
quality index, obtained by combining terms (c) and (e) from Fig. 10, with the actual
unsigned error. On average, the estimated error (linear fit) differed by only 0.51µm from
the true segmentation error.
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(a) (b) (c)

Fig. 12: (a) An advanced primary open-angle glaucoma scan and the segmentation
thereof (Eunsgn = 6.81µm), augmented by the local quality estimates of the model, with
red representing the most uncertain class. (b) and (c) Close-ups of the three areas, the
model is (correctly) most insecure about. White dotted lines represent ground truth.

To this end we examined the local correlation (i.e. on a column-wise level)
of the mutual information terms with the unsigned error. We calculated
its mean for instances with segmentation errors smaller than 0.5 and bigger
than 2 pixels. This yielded three ranges of confidence in the quality of the
segmentation. For each image we fine-tuned these ranges by dividing by
max(Quality Index(CurrentImage), 1).

Fig. 12 (a) shows a PGA-type scan with annotated segmentation, whose
error is 6.83µm. The advanced thinning of the NFL and the partly blurred
appearance caused the segmentation to fail in some parts of the scan. Close-
ups (b) and (c) show that the model correctly identified those erroneously
segmented regions. The average errors of the three categories are 4.67, 5.43
and 18.36µm respectively. Fig. 13 (a), on the other hand, shows a scan from
a healthy eye with a segmentation error of 2.83µm, that is accompanied by
a throughout positive quality rating.

We examined the accuracy of the local quality index numerically for
all scans. Fig. 13 (b) reports the average unsigned error for normal (H)
and glaucomatous scans (P-A) as well as all three grades of certainty, and
compares it to the average segmentation error for each data set, given as
black lines. As for the global quality index, also locally the model reflects
very well the distinction between correct and erroneous regions. Fig. 13 (c)
shows the ratio between the three quality ratings.
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Fig. 13: (a) A healthy scan (Eunsgn = 3.05µm) accompanied by a very high model
certainty. (b) Average segmentation error for healthy as well as glaucomatous scans for
each quality class. Black lines donate the average segmentation error for each data set
(c.f. Table 2). (c) Average partition into the three classes.

6.2. Volumetric Scans
In contrast to 2-D scans, the labeling of OCT volumes is very time con-

suming, hence our data set only consisted of 35 samples. Thus we were
left with less data points to train a shape model of much higher dimen-
sion. Consequently, we observed a reduced ability of p(b) respectively qb(b)
to generalize well to unseen scans. We tackled this problem by reducing
the dimensionality of p(b) and by interpolating it for intermediate columns,
which fixed the problem only to some extent.

We further pursued this idea and suppressed the connectivity between
different B-scans, which corresponds to a block-diagonal covariance matrix
Σ, where each block is obtained separately using PPCA. This significantly
reduced the amount of parameters that had to be determined, and improved
accuracy significantly. The last column in Table 2 reports results for all
boundaries.

The average segmentation error of 2.46µm is significantly smaller than
for circular scans, as well as the standard deviation of 0.22µm. Reasons are
smoother boundary shapes and less severe texture artifacts caused by e.g.
blood vessels. Representative for the average segmentation performance,
Fig. 14 shows B-scans of the same volume from four different regions, with
an error of 2.53µm averaged over the all scans in the volume.
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Fig. 14: Four segmented B-Scans from regions 2, 6, 9 and 11 of the same volume (Eunsgn =
2.53µm).

7. Discussion and Conclusion

A novel probabilistic approach for the segmentation of retina layers in
OCT scans was presented. It incorporates global shape information, which
distinguishes it from most other approaches relying solely on local shape
information. To obtain an approximate of the full posterior distribution
p(c, b|y), we employed variational methods, which entail efficiently solvable
optimization problems. We demonstrated the applicability of our approach
for a variety of different OCT scans as well as the benefit of inferring full
probability distributions over segmentations rather than segmentations as
point estimates.

Especially for 3-D OCT volumes, our segmentation performance was
significantly better than recently reported results from approaches that use
no shape information (Vermeer et al., 2011; Yang et al., 2010), local hard-
constrained shape information (Garvin et al., 2009), local probabilistic shape
information (Dufour et al., 2013; Song et al., 2013) or sparse global shape
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information (Kajić et al., 2010). Taking into account, for better compara-
bility, only publications that used data sets obtained from the same OCT
device as in this publication, the following trend evolves:

• While no shape information lead to only mediocre results: 6.20µm
and 5.28µm for healthy and moderate glaucomatous data respectively
(Vermeer et al., 2011),

• adding local shape information via hard constraints yielded improved
segmentation performance: 3.54 ± 0.56µm as evaluated by Dufour
et al. (2013) but comparable to the model proposed by Garvin et al.
(2009).

• Additionally using probabilistic local constraints, Dufour et al. (2013)
recently again boosted performance to 3.03± 0.54µm.

• Finally, by adding global shape information, we could in turn improve
segmentation performance to 2.46± 0.22µm.

Although this clearly seems to support the use of global shape information
for regularization, keep in mind that a concluding comparison can only be
carried out using the same data set. Nevertheless, we believe that these
results highlight the usefulness of global shape regularization for the seg-
mentation of retinal layers in OCT images. Reported time requirements
vary greatly, and our running time of 60 s is slower than the 18 s and 15 s
reported by Dufour et al. (2013) and Yang et al. (2010), but faster than the
remaining approaches cited above.

We also evaluated the performance for healthy and pathological 2-D
circular scans and, in both cases, obtained good results. The only excep-
tion was the group of most advanced glaucomatous scans, which was caused
mainly by the appearance models. Being trained on healthy data, the Gaus-
sian distribution that models the NFL is not able to recognize instances
with near-zero layer thickness. Therefore, a useful extension could be to
define a mixture of Gaussians for each appearance class, adding patches
centered below or above pixel (i, j), which model its surrounding but not
the layer/boundary itself. Additionally, given more pathological examples
especially for PGM and PGA, one could learn a pathological shape prior
and let the model choose the more probable shape prior given the initializa-
tion. Future work will try to improve performance for these extreme cases
and also test the approach on other pathologies like age-related macular
degeneration, if training data gets available.
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Finally, we investigated different ways to utilize the inferred distribu-
tions qc and qb. Experiments showed, that the model is quite sensitive to
abnormal shapes and thus can act as a detector of glaucoma, with a higher
sensitivity than established methods solely based on NFL thickness. This
could relate to recent findings, that glaucoma causes a thinning of all inner
retinal layers: NFL, GCL, IPL and (to a lesser extent) INL (Tan et al.,
2008). To confirm these promising results, further studies with more pa-
tients enrolled will be needed. Another benefit of our approach is the ability
to estimate the quality of the segmentation, altogether for the whole scan
or for each boundary position separately. In the context of screening large
patient databases, the former could be a valuable tool to minimize the effort
of the physician in reassessing the results. The latter could facilitate a auto-
matic or manual post-processing, targeted specifically at regions with a high
error probability. A thorough investigation of these regions could reveal a
suitable approach, and will be part of our future work.

To facilitate further research in the area of OCT segmentation and re-
lated areas, we publish our source code together with documentation on our
project page: http://graphmod.iwr.uni-heidelberg.de/Project-Details.
132.0.html.
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Appendix A. Calculating Ωk,j and ω1,j

In Sec. 3.2 we outlined the steps necessary to make explicit the expectation
w.r.t qb for the terms of log p(b|c), represented by (ω1,j)n and (Ωk,j)m,n. This
section will derive both terms, starting with (ω1,j)n:

(ω1,j)n = Eqb
[log p(b1,j = n|b\j)]

=
∫

b

qb(b) logN
(
b1,j = n; (µj|\j)1, (Σj|\j)1,1

)
db

= C − 1
2(Ej|\j)1,1

(
n2 − 2n(Eqb

[µj|\j)1] + Eqb
[
(
(µj|\j)1

)2]
)
.
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Using the definition of (17) for (µj|\j)1, abbreviating the k-th row of Σj|\jKj,\j

with Aj
k and moving all terms independent of µ̄ to C

(ω1,j)n = C − 1
2(Ej|\j)1,1

(
2(n− µ1,j)Aj

1Eqb
[b\j ] +Aj

1(Eqb
[b\jbT

\j ]− 2µ\jEqb
[b\j ])(Aj

1)T
)
,

and finally replacing the expectations with the respective moments given in (18)
yields

= C − 1
2(Ej|\j)1,1

(
2(n− µ1,j)Aj

1µ̄\j +Aj
1(Σ̄\j,\j + µ̄\j µ̄

T
\j − 2µ\j µ̄T

\j)(Aj
1)T
)
.

(A.1)

The terms (Ωk,j)m,n = Eqb
[log p(ck,j = n|ck−1,j = m, b)] are the product of

two Gaussians and therefore again Gaussian, modulo normalization. A lengthy
derivation, using the formula for the product of two Gaussians, yields the same
equation as above, with indices 1 replaced by k and a different constant C.

Appendix B. Optimization of qb(b)

We showed in Sec. 4.2, that the optimization of the objective function (23)
w.r.t. to the parameters of qb can be done in closed form. This section will detail
terms p̃ and P̃ introduced there, which capture the dependencies of Ωk,j and ω1,j

on the parameters of qb.

Appendix B.1. Derivation of P̃
Only considering terms in (A.1) depending on Σ̄, we obtain

(ω1,j)n(Σ̄) = − 1
2(Ej|\j)k,k

Aj
kΣ̄\j,\j(Aj

k)T

and similar for (Ωk,j)m,n(Σ̄). Since Aj
k is of dimension 1×NbM −Nb we introduce

an expanded version Ãj
k ∈ RNbM padded with zero entries, such that Ãj

kΣ(Ãj
k)T =

Aj
kΣ\j,\j(Aj

k)T . Note that (Ωk,j)m,n(Σ̄) and (ω1,j)n(Σ̄) are independent of m and
n and thus have identical entries for all (m,n), and therefore Ep[c] = c. Using
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bTBb = 〈bbT , B〉, we obtain for (19)

−
M∑

j=1

(
(qc;1,j)Tω1,j(Σ̄)+

Nb∑
k=2

〈
(qc;k∧k−1,j)T ,Ωk,j(Σ̄)

〉)

= 1
2

( M∑
j=1
‖qc;1,j‖1〈

1
(Ej|\j)1,1

(Ãj
1)T Ãj

1, Σ̄〉

+
Nb∑

k=2
‖qc;k∧k−1,j‖1〈

1
(Ej|\j)k,k

(Ãj
k)T Ãj

k, Σ̄〉
)

= 1
2
〈 M∑

j=1

Nb∑
k=1

P̃k,j , Σ̄
〉

= 1
2 〈P̃ , Σ̄〉

Appendix B.2. Derivation of p̃
Again, we begin by singling out terms of (A.1), dependent on µ̄

(ω1,j)n(µ̄) = − 1
2(Ej|\j)1,1

(
2nAj

1µ̄\j − 2µ1,jA
j
1µ̄\j +Aj

1(µ̄\j µ̄T
\j − 2µ\j µ̄T

\j)(Aj
1)T
)

and accordingly for (Ωk,j)m,n(µ̄). The first term is dependent on n and thereby
on qc, whereas the remaining terms are again independent on n and qc sums out.
Using Ãj

1 as introduced above, we plug ω1,j(µ̄) and Ωk,j(µ̄) into (19)

−
M∑

j=1

(
(qc;1,j)Tω1,j(µ̄) +

Nb∑
k=2

〈
(qc;k∧k−1,j)T ,Ωk,j(µ̄)

〉)

= 1
2

M∑
j=1

Nb∑
k=1

1
(Ej|\j)k,k

(
2
(
Eqc

[ck,j ]− µk,j

)
Ãj

kµ̄+
〈
(Ãj

k)T Ãj
k, µ̄(µ̄− 2µ)T

〉)

= 1
2

M∑
j=1

Nb∑
k=1

2p̃T
k,j µ̄+

〈
P̃k,j , µ̄(µ̄− 2µ)T

〉
= p̃T µ̄+ 1

2 〈P̃ , µ̄(µ̄− 2µ)T 〉,

where P̃ was defined in the previous section.
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