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Abstract. We present a probabilistic approach to the segmentation of
OCT scans of retinal tissue. By combining discrete exact inference and a
global shape prior, accurate segmentations are computed that preserve
the physiological order of intra-retinal layers. A major part of the compu-
tations can be performed in parallel. The evaluation reveals robustness
against speckle noise, shadowing caused by blood vessels, and other scan
artifacts.

1 Introduction

Over the last years Optical Coherence Tomography (OCT) has become a key
technique for non-invasive diagnostic retina imaging. By measuring the backscat-
tering of light, OCT enables to produce high-resolution 2-D and 3-D scans of
retinal tissues. Quantitative measurement of the intra-retinal layers plays a cen-
tral role for the early diagnosis of diseases like glaucoma or age-related macular
degeneration. Since manual segmentation is tedious and time-consuming, there
is a high demand for automated algorithms – see Fig. 1.

Related Work. The literature on segmentation is vast. Closely related work
includes heuristics to perform 1-D edge detection and to connect candidate
points across image columns into consecutive boundaries, e.g. [1]. Another series
of papers reformulate the segmentation problem as a graph cut problem, see [2]
and references therein. By construction of the graph, the ordering of layers as
well as the smoothness of boundaries are enforced. Edge weights are defined in
terms of simple pixel-wise intensity and gradient based features. The approach
takes several hours per 3-D volume. Recently, active contour approaches [3] were
applied to OCT-segmentation. A functional is minimized that enforces circular
boundaries (shape prior) and constant intensity within layers as well as smooth
boundaries. Albeit being very fast (1s per 2-D scan), this approach requires the
user to manually select the parameters.

Contribution. We present a novel probabilistic approach to the OCT seg-
mentation problem. A global shape prior and a local appearance model are
combined in a discrete graphical model which is solved for each image column
separately, thus allowing for order preserving, exact and fast parallel inference.



Few updates of the model parameters by iterative conditioning suffice to incorpo-
rate the global shape prior, trained offline using ground truth data. Evaluations
using independent test data yield accurate segmentations and show robustness
against strong speckle noise, shadowing caused by blood vessels and other scan
artifacts.

Organization. In the next section, we present an OCT image model com-
prising a local appearance model and a global shape prior. We describe in Sect. 3
the coupling of both models. Sect. 4 introduces the dataset we used for evaluation
and reports empirical results. We conclude in Sect. 5.

Fig. 1. An OCT B-Scan with the segmentation output of our approach: The right
half shows labels l1, . . . , l10 in different colors, the left half depicts the corresponding
boundaries b1, . . . , b9. The full names for layers l2, . . . , l9 are: nerve fiber layer (NFL),
ganglion cell layer and inner plexiform layer (GCL + IPL), inner nuclear layer (INL),
outer plexiform layer (OPL), outer nuclear layer and inner segment (ONL + IS), con-
necting cilia (CC), outer segment (OS), retinal pigment epithelium (RPE).

2 An OCT Image Model

We model

– in Sect. 2.1 the local appearance in a given N ×M image I of boundaries
b1, . . . , b9, and corresponding layers l2, . . . , l9 located in between, and layers
l1, l10 located above b1 and below b9, respectively (all shown in Fig. 1);

– in Sect. 2.2 a global joint shape prior for all boundaries b1, . . . , b9.

2.1 Local Appearance Model

We model the appearance of pixel values Iij in terms of Gaussian Markov Ran-
dom Fields (GMRFs) [4] for the corresponding patches s(i, j) of size 3 × 15
around pixel (i, j).

For each class k ∈ {l1, . . . , l10, b1, . . . , b9}, we draw 1000 sample patches from
labeled training images and convert them into vectors ski , i = 1, . . . , 1000, of



size 1 × 45. Using these empirical data, we estimate for each k a class-specific
density N (s;µk, Θ

−1
k ) with mean parameter µk and sparse precision matrix Θk,

by applying a lasso penalty [5] as a regularizer.
We assign class variables mij to all pixels (i, j). Given an image I, we define

the class-conditional likelihood of Iij – with slight abuse of notation – to be the
likelihood of the corresponding patch

p(Iij |mij = k) := N (s(i, j)|µk, Θ
−1
k ), k ∈ {l1, . . . , l10, b1, . . . , b9}. (1)

2.2 Global Shape Model

As model of the typical shape variation of layers due to both biological vari-
ability as well as to the image formation process3, we adopt a joint Gaus-
sian distribution of the continuous height values of all boundaries {b1, . . . , b9}
for all image columns j, that we denote by the 9M -dimensional vector b =
(bnj )n=1,...,9; j=1,...,M . Hence,

p(b) = N (b;µ,Σ) . (2)

We regularize the estimation of this high-dimensional model by Probabilistic
Principal Component Analysis (PPCA) [6] with a preset number kb of eigen-
modes, which yields the representation Σ = WWT + σ2I with a low-rank ma-
trix W . Given the spectral decomposition of the empirical covariance matrix
estimate Σ̃ = UΛUT , with eigenvalues Λ = diag(λ1, . . . , λ9M ) arranged in de-
creasing order, the maximum likelihood estimates of the shape prior parameters
σ2,W are given by σ2 = (9M − kb)−1

∑9M
i=kb+1 λi and W = Ub(Λb − σ2I)1/2,

where Ub and Λb denote the submatrices of U and Λ corresponding to the kb
largest eigenvalues.

3 Model Fusion and Inference

We fuse our models of appearance and shape

– in Sect. 3.1 to obtain a discrete graphical model, for which globally optimal
inference (determining positions of layer boundaries) can be efficiently done
in parallel for all image columns, taking the order of layers and marginal
shape prior knowledge into account;

– by incorporating the full global shape prior knowledge across image columns
in two alternative ways, as described in Sect. 3.2.

In a preprocessing step, we compute local class variable distributions based on
the local appearance model (1),

p(mij |Iij) =
p(Iij |mij)p(mij)∑
mij

p(Iij |mij)p(mij)
=
p(Iij ,mij)

p(Iij)
, (3)

3 For circular scans, a wave-like distortion pattern is observed due to the conic scanning
geometry and the spherical shape of the retina, which we capture statistically rather
than modelling it explicitly.



Fig. 2. The factor graph corresponding to the undirected graphical model in (4).

using a uniform prior p(mij).

3.1 Order Preserving Inference and Marginal Shape Priors

For each image column j ∈ {1, . . . ,M}, we separately set up graphical models
of the form

p(bj |Ij) =
1

Z
ψ1(b1j )

9∏
n=2

ψn(bnj , b
n−1
j ), (4)

in order to infer row positions of layer boundaries bnj ∈ {1, . . . , N}, for all n =

1, . . . , 9, conditioned on given column intensities Ij := (I1j , . . . , INj)
T . Here, we

adopt common Markovian conditional independency assumptions, leading to the
factorization (4) that is graphically depicted in Fig. 2. As a consequence, we can
infer in parallel for all columns, and very efficiently, layer boundary positions bnj .

The factors in (4) are given by

ψ1(b1j = i) = p(mij = b1|Iij) p(b1j = i) (5a)

ψn(bnj = i, bn−1j = l) = p(mij = bn|Iij) p(bnj = i|bn−1j = l), (5b)

and computed using (3) and by marginalizing out all columns but j using the
global shape prior (2). Notice that the latter is a trivial operation for GMRFs
[4] enabling the factorization (4) and, in turn, efficient inference.

Reading out the continuous shape prior at discrete row positions, and ignor-
ing probability mass assigned to shape configurations that violate the natural
order of layers, seems somewhat crude. Yet, this performs surprisingly well as
we will demonstrate below and, after all, is computationally very efficient.

The output of the parallel inference process are expected layer positions

b̂nj = E[bnj ], n = 1, . . . , 9, j = 1, . . . ,M, (6)

computed using the distributions (4) and the sum-product algorithm for marginal-
ization.

3.2 Iterative Conditioning and Global Shape Prior

An obvious shortcoming of the parallel approach (6) is that the global shape
prior (2) is only exploited by marginal distributions of bj , separately for all
columns j, in (5).

In order to overcome this drawback, we investigated two different approaches.



1. The first one simply projects b̂ given by (6) onto the latent PPCA subspace
underlying the global shape prior (2) – see [6] for details – to obtain our final

estimate b̂proj.
2. Alternatively, the second approach iteratively updates the observation prob-

abilities p(mij |Iij) in (5) using the evidence (6). Specifically, using the global
shape prior (2), we compute marginals for all columns j by conditioning on
(6) for all other columns −j, and update the observation probabilities by
adding weighted pseudo-observations

p(mij = bn|Iij) ← p(mij = bn|Iij) +
pbest − ppred

pbest
δi,b̃nj

, (7)

n = 1, . . . , 9, i = 1, . . . , N

where δi,b̃nj
is the Kronecker delta, and ppred and pbest are conditional margi-

nals evaluated for the prediction b̂nj and the (in terms of the shape model)

best boundary b̃nj = argmaxi∈{1,...,N} p(b
n
j = i|b̂−j) respectively.

Subsequently, we again infer (6) based on the terms (5) updated by (7), and

iterate this process until b̂ converges. Experiments show that this happens
after few steps, and thus does not compromise computational efficiency.

4 Evaluation and Discussion

This section reports the performance of the approaches described in Sect. 2 and
3. To this end, we evaluated the following models:

1. Uniform Prior : p(bnj = i|bn−1j = l) = const., ∀ i > l, used in order to inspect
how performance degrades without shape prior information.

2. Shape Prior (SP): The graphical model described in Sect. 3.1.

3. SP + Projection: Post-processing b̂ by projection onto the PPCA subspace,
described in Sect. 3.2, alternative 1.

4. SP + Iteration: Post-processing b̂ by iterative conditioning, described in
Sect. 3.2, alternative 2.

Data Aquisition. Our dataset comprises 80 circular B-scans from 80 healthy
persons with given ground truth labeling. The dataset was acquired by using a
Heidelberg Engineering Spectralis HRA+OCT device. Each scan has a diameter
of 3.4mm and consists of M = 768 A-scans of depth resolution 3.87µm/pixel
(N = 496 pixels).

Evaluation. For each boundary we compute the unsigned, signed and squared
distances between the estimate b̂n and the manual segmentation b̃nj (ground
truth),

En
unsgn =

M∑
j=1

b̂nj − b̃nj , En
sgn =

M∑
j=1

|b̂nj − b̃nj |, En
sq =

M∑
j=1

(b̂nj − b̃nj )2, (8)



where M indicates the number of image columns (A-scans). The errors of the
whole segmentation are computed as

E∗ = (9M)−1
9∑

n=1

En
∗ , ∗ ∈ {unsgn, sgn, sq}. (9)

Uniform Prior Shape Prior SP + Projection SP + Iteration
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Fig. 3. Error means and standard deviation for all approaches 1., . . . , 4., evaluated for
all 80 scans by means of a 10-fold nested cross-validation. The standard deviations of
the squared error for the uniform prior and the shape prior model are 128.34 and 8.75
respectively.

A 10-fold nested cross-validation over the lasso parameter (Sec. 2.1) was per-
formed: First, the dataset was split into 10 subsets. For each subset (the hold-out
set), the optimal parameter was determined by an inner 5-fold cross-validation
on the remaining 9 subsets. Given this parameter, a model was trained using
all 9 subsets and performance was evaluated on the hold-out set. Fig. 3 reports
results in terms of Eunsgn, Esgn and Esq with error bars indicating standard de-
viation. Fig. 4 shows characteristic segmentation results for all four approaches
in comparison.

Segmentation with the uniform prior performs worst, indicating the necessity
of using a shape prior. Adding prior statistical information about the relative
distances of layer boundaries (model 2. listed above) within each column boosts
performance significantly. For many columns this approach finds the true bound-
ary positions. Nevertheless, for columns with specific appearance, e.g. caused by
blood vessels, segmentation may fail (see Fig. 4b). This reveals the lack of com-
munication across image columns. Adding either PPCA projection (model 3.)
or iterative conditioning (model 4.) as a post-processing step can resolve such
issues (Fig. 4c and d).

As an illustration, Fig. 5 depicts the addition of pseudo-observations (7) for
boundaries 6 and 9 in column j for the first round of iterative conditioning.



(a) Uniform Prior (b) Shape Prior (c) SP + Projection (d) SP + Iteration

Fig. 4. Close-up view of segmentation results for the approaches 1., . . . , 4.. Left panel:
no shape prior. Adding the shape prior significantly improves segmentation perfor-
mance, especially for boundaries b2−b5, but still may fail locally (2nd panel from left).
Iteratively enforcing the full shape prior leads to good results (3rd and 4th panel).

Depending on the distance between b̃nj (marked as green points) and b̂nj , strong
(boundary 6) or weak (boundary 9) pseudo-observations are added. As a conse-

quence, estimates b̂nj that rely on weak observations and/or differ significantly

from b̃nj are corrected by the shape prior. While the iterative approach is working

well for the lower boundaries b6 - b9, it may happen that estimates for b2 - b5 are
too smooth, as shown for b2 in Fig. 4d, where the shape prior somewhat tends
to overrule the appearance model.

Our current implementation in Matlab requires ∼ 15 seconds per 2D-scan on
an Intel Core 2 Quad Q9550 with 2.83 Ghz.

5 Conclusion and Further Work

This work presented a novel probabilistic model for the segmentation of circular
OCT scans. It combines a local appearance model and a global shape model using
a graphical model that enables very efficient computational inference. Compar-
ison of different model variants has shown that utilizing the full shape prior
performs best. The approach works without user interaction, is robust against
appearance artifacts, and returns accurate segmentation results.

Our future work will investigate computationally tractable extensions that
enable horizontal coupling of image columns not only by the appearance model
but also by the shape prior. Furthermore, we will apply our approach to other
types of OCT scans, e.g. 3D volumes or scans from the fovea region. The exten-
sion to 3D is straightforward: The shape prior as well as the texture model can
be trained on 3D patches/boundaries, while the graphical model in Sec. 3 can
be augmented to include columns (A-scans) of all slices in the volume. Finally,
we will focus on discriminating non-/pathological scans and the development of
statistical tools for assessing such images locally.
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Fig. 5. The left panels show segmentations before (a) and after (b) the first step of
iterative conditioning. Green points indicate b̃nj for n = 6, 9 (see Sect. 3.2). The middle
and right panels show the corresponding observation probabilities of both boundaries
for the red marked segment of column j. Green bars indicate the magnitude of pseudo-
observations added in (7), being stronger if the estimate b̂nj differs significantly from b̃nj .
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