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Abstract

Screening large libraries of chemical compounds against a biological target, typically a

receptor or an enzyme, is a crucial step in the process of drug discovery. Virtual screening

(VS) can be seen as a ranking problem which prefers as many actives as possible at the top

of the ranking. As a standard current Quantitative Structure Activity Relation (QSAR) models

apply regression methods to predict the level of activity for each molecule, and then sort them

to establish the ranking. In this paper we propose a top-k ranking algorithm (StructRank) based

on Support Vector Machines to solve the early recognition problem directly. Empirically, we

show that our ranking approach not only outperforms regression methods but another ranking

approach recently proposed for QSAR ranking, RankSVM, in terms of actives found.

Introduction

High-Throughput Screening, the physical screening of large libraries of chemicals, is the dominant

technique for the identification of lead compounds in drug discovery.1 In recent years computa-
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tional methods, known as Virtual Screening (VS),2 have gained much attention as an alternative

and complementary approach since they can be performed comparatively cheap and fast;3 the use-

fulness of in silico screenings has been demonstrated in several studies.4,5

Virtual Screening can be divided into structured-based and ligand-based6 approaches. Given

the drug targets 3D-structure and 3D-structures of ligands, structure-based VS predicts and scores

confirmation and orientation of the ligands within the active site of the receptor.7 Ligand-based VS

on the other hand uses knowledge about a set of ligands that are known to be active for the given

drug target. This information is used to identify structurally similar molecules in a database.7

Different approaches are available depending on the number of known actives, however, all ap-

proaches share the common assumption that, with respect to the descriptors, structurally similar

molecules are likely to have similar properties.8 In other words, neighboring molecules are likely

to exhibit the same levels of activity.

Given a sufficient number of known actives one can build a Quantitative Structure Activity

Relation (QSAR) model. QSAR models correlate numerical molecular descriptors9 as physio-

chemical and topological properties with a biological property such as binding affinity. For each

molecule, the former is usually assembled in a vector of features: x ∈ Rd while the latter is sum-

marized as label y ∈ R. Describing molecules and their properties by pairs (x,y) paves the way

for machine learned QSAR models. Prominent techniques include Multiple Linear Regression

(MLR)10 and Partial Least Squares (PLS)11 and more recently Support Vector Machines for Re-

gression (SVRs), Random Forests, Neural Networks and Gaussian Processes.12–15 Various re-

views16–18 offer a detailed overview over these approaches and their application to ligand-based

Virtual Screening.

The task in VS, also known as "early recognition problem",19,20 can be characterized as fol-

lows: Given a library of molecules, the task is to output a ranking of these molecules in terms

of their binding coefficient for the investigated drug target, such that the top-k molecules can be

selected for further investigations. All of the above mentioned methods solve this task by perform-

ing a regression analysis: They learn a function f : x 7→ y, f : Rd → R that predicts a label for
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Figure 1: Two different ways to solve the ranking task of Virtual Screening: a) State-of-the-art
approaches use a 2-step approach. In the first step a regression model is used to predict binding
coefficients for all molecules in the library. In a second step the molecules are sorted according to
their predictions. b) Our ranking approach directly predicts the ranking within a single step.

any molecule given its features. To establish the subset of candidate molecules, predictions are

made for all molecules in the database. In a second step an ordered list is generated based on this

predictions. This two step approach is shown in Figure Figure 1 (top). Finally the top n ranked

compounds are selected to be investigated in more detail.

However, Virtual Screening approaches primarily aim to find molecules exhibiting high bind-

ing affinities with the target while the predictive accuracy with respect to the labels y is only of

secondary interest. Although a perfect regression model would also imply a perfect ranking of the

molecules of interest, the impact of suboptimal regressors on the ranking is not easily captured as

equal models in terms of their mean squared error could give rise to completely different rankings.

Thus, the question rises whether the detour via regression is necessary and whether the task can

be addressed in a more natural way. In this article, we propose a top-k ranking algorithm, Struc-

tRank, that directly solves the ranking problem and that focuses on the most promising molecules

(cf. Figure 1, bottom).

The driving force for the research of new ranking approaches so far has been the Informa-

tion Retrieval community.21,22 Aiming to improve the results of search engines, documents need

to be ranked within the first hits, according to their relevance for a given search query. In the
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Virtual Screening Community the use of ranking approaches has been rare. An approach that

directly minimizes a ranking loss was applied recently by Wasserman et al.23 and Agarwal et

al.24 RankSVM25,26 maximizes the number of correctly ordered pairs of molecules for all ranks.

Wassermann et al. report superior performance for RankSVM on classification datasets; Agarwal

et al. state that RankSVM performs similar as baselines tested for QSAR as well as classification

datasets.

Whereas RankSVM attempts to optimize the complete ranking, StructRank focuses on the

topmost ranks by optimizing the rank loss NDCG.27 As previously stated by Agarwal et al.24

approaches that lay special focus to this aspect should be able to outperform RankSVM. Our ex-

periments can confirm this assumption: StructRank outperforms RankSVM as well as Support

Vector Regression in terms of actives ranked within the top-k. We report results for NDCG as well

as two established Virtual Screening performance measures: Enrichment Factor (EF)28 and Robust

Initial Enhancement (RIE).29

The remainder of the article is structured as follows: The next section describes our top-k

ranking approach, StructRank, and then briefly reviews the baseline methods RankSVM and SVR.

We then introduce the Virtual Screening datasets in Section 3 and the toy example that where

used for performance evaluation. We report on empirical results in Section 4 and conclude with a

discussion in Section 5.

Methods

The formal problem setting of ranking for Virtual Screening is as follows: Given a set T consisting

of n molecules (xi,yi)
n
i=1, where xi ∈Rd denotes the feature vector of the i-th molecule containing

the molecular descriptors, and yi ∈ R is a scalar representing the biological/chemical property of

that molecule, e.g. binding affinity. We aim at learning a function f (x) which learns to rank the

molecules according to their targets yi. That is, if yi > y j for molecule i and j, we want that

f (xi)> f (x j). Moreover, as the purpose of virtual screening methods is to rank actives early in an
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ordered list (recall the "early recognition problem"19,20), we want the learning machine to focus

on the top-k molecules in the ranking.

Our top-k ranking SVM for QSAR utilizes work by Chapelle et al.30 They build on Structured

Support Vector Machines (Structured SVMs),31 a very flexible learning machine that has been

applied to many different learning tasks in Information Retrieval,30,32 natural language parsing,33

protein sequence alignment.34

In the following paragraphs we describe Structured Support Vector Machines and adjust them

to the task of ranking molecules. Additionally we propose a new method to evaluate QSAR rank-

ings: Normalized Discounted Cumulitive Gain (NDCG).

Evaluating Rankings

To assess the quality of rankings for QSAR, we propose to use a popular ranking measure that

originates from the Information Retrieval community: Normalized Discounted Cumulative Gain

(NDCG, see appendix for precise definition). Originally, NDCG27 was introduced to evaluate

the results of web searches. It measures how similar a predicted ranking is compared to the true

ranking. NDCG has several important properties:

• NDCGk only evaluates the first k positions a predicted rankings, thus an error on positions

below rank k is not punished.

• Furthermore the first k positions are weighted, which means that errors have different influ-

ence on the final score depending on which position of the ranking they occur. Naturally

position one is the most important, with lower positions discounted by the log of their rank

r: log2(1+ r).

• Finally, NDCG! is normalized, thus if the predicted ranking equals the true ranking the score

is 1. Thus, to tranlate it into loss function we could simply use ∆(y, ŷ) = 1−NDCG(y, ŷ).

In summary, NDCG aims at pushing the molecules with the biggest binding affinity on top of the

ranking.
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Figure 2: Comparison of different Support Vector Machines: a) Support Vector Machines for clas-
sification learn a linear hyperplane wT φ(x) = b with maximum margin ∆ that optimally separates
active from inactive molecules. b) Support Vector Regression learns a function wT φ(x) that predict
binding affinities for each molecule as correct as possible. c) Ranking SVM generates difference
vectors of all possible pairs of molecules. Afterwards similar to a) a linear hyperplane is learned
that separates correctly and incorrectly ordered pairs. d) Ψ takes a set of molecules x̃ and a rank-
ing y of this set and maps it onto a point in the joint feature space. StructRank learns a function
wT Ψ(x̃,y) which assigns the highest score to the point representing the true ranking.
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Structured Support Vector Machines for QSAR

We will now briefly describe the framework of Structured SVMs and focus on only the basic

concept. For a more detailed coverage we refer to the paper of Tsochantaridis et al.31

Our ultimate target is to learn a function f : X →Y : Given a set of molecules x̃=(x1, . . . ,xn)∈

X , f returns a ranking y∈Y of this set. In order to establish f , Structured SVMs learn a discrim-

inant function F : X ×Y → R. F can be thought of as a compatibility function, that measures

how well a certain ranking y fits the given set of molecules x̃. The final prediction is given by the

ranking y that achieves the maximal score F(x̃,y). Thus we have

f (x̃) = argmax
y∈Y

F(x̃,y).

F is defined over a combined space of sets of molecules and corresponding rankings, a so called

“joint feature space”. To be able to learn F directly in that combined space, we define a function Ψ

that maps each pair of a set of molecules x̃ together with a ranking y (of x̃) onto one corresponding

data point in the joint feature space. Details on the joint feature map used in our approach may be

found in the appendix. Given the joint feature map Ψ, F is defined as a linear function in the joint

feature space:

F(x̃,y) = wT
Ψ(x̃,y),

this way F is the scalar product of the corresponding joint feature map of x̃ given a particular

ranking y and the learned parameter vector w.

Modeling F can be cast as follows: Given a set of molecules x̃ we want the true ranking ȳ to

score highest among all possible rankings y ∈ Y transforming into constraints

wT (Ψ(x̃, ȳ)−Ψ(x̃,y))≥ 0 ∀y ∈ Y \ ȳ.

Alike classic Support Vector Machines for Classification35 this can be turned into a maximum-
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margin problem, where we want the difference between the true ranking ȳ and the closest runner-up

argmaxy6=ȳ wT Ψ(x̃,y) to be maximal (see eq. eq:primalstructsimpleintheappendix).Alsowewantdi f f erenty′sgetseparatedaccordingtothedegreeo f their f alseness :

Apredictedrankingwithonlytworanksinterchangedcomparedtothetruerankingismuchbetterthanapredictedrankingwithallranksinterchanged.Wethusrequirethelattertoget f urtherseparatedwithalargermargin f romthetruerankingthanthe f irstone.T hisisaccomplishedbyreplacingtheconstantmargin f ormulationwiththeloss−

dependentmargin(margin scaling31,36) : wT (Ψ(x̃, ȳ)−Ψ(x̃,y)) ≥ ∆(y, ȳ) ∀y ∈ Y \ ȳ(1)where

1-NDCGk is used for ∆(y, ȳ). Furthermore a slack variable ξ is introduced that reflects the maxi-

mal error made for the set of constraints in (eq:marginrescaling).Finally, toimproveper f ormance,weemployaboostingapproach :

werandomlydrawmdi f f erentsubsets j of molecules from the training set. Applying the methodol-

ogy described so far to each subset j we obtain the final optimization problem

min
w,ξ

1
2

wT w+C
m

∑
j=1

ξ
j (2)

subject to wT (Ψ(x̃ j, ȳ j)−Ψ(x̃ j,y))≥ ∆(ȳ j,y)−ξ
j ∀ j,∀y 6= ȳ j

ξ
j ≥ 0

Note that there is a very high formal similarity to the original SVM formalization (see eq.

eq:SVM in the appendix) with the differences: (a) margin rescaling, (b) joint feature map and (c)

very large quantity of constraints. A visualization of the function learned is given in Figure 2d).

The corresponding dual form of (eq:primalstruct)isgivenintheappendix(eq.eq : dualstruct).

For an set x̃ with n molecules, there exist n! possible ways of ranking these molecules. Im-

posing a constraint for each possible ranking would lead to problems becoming too big of being

solved. Therefore, Tsochantaridis et al.31 proposed a cutting plane approach that iteratively adds

new constraints which violate the current solution. They show that there exists a polynomially

sized subset of constraints whose solution fulfills all constraints of the full optimization problem.

Astonishingly, the optimization problem can be solved efficiently, an example is the cutting-plane

approach (algorithm alg:structsvmintheappendix).
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Baselines

We compare the novel ranking approach to two algorithms both belonging to the family of Support

Vector Machines: Support Vector Regression (SVR), a state-of-the-art regression method, often

used for Virtual Screening and Ranking SVM (RankSVM), another ranking approach.

Support Vector Regression (SVR)

Support Vector Regression37 is an adaption of classic Support Vector Classifiers for regression.

Like their classification counterpart they follow the Structural Risk Minimization principle intro-

duced by Vapnik,35 finding a trade-off between model complexity and training error. SVRs learn

a linear function f in some chosen kernel feature space.38 The final predictor is given by

f (x) =
N

∑
i=1

αik(xi,x)+b. (3)

The α’s weight the influence of training points xi on the prediction f (x). A ε-sensitive loss function

is minimized, penalizing only predictions ŷ = f (x) that differ more than ε from the true label y.

`(y, ŷ) = |(y− ŷ)|ε =


|(y− ŷ)| for |(y− ŷ)|> ε

0 else
(4)

See Figure 2b) for a visualization of SVR. Different studies13,39–41 showed that SVRs can out-

perform Multiple Linear Regression and Partial Least Squares and perform on par with Neuronal

Networks. As implementation we used LIBSVM together with an Matlab interface available from

http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

Ranking SVM

As a second baseline we tested a second ranking approach: Ranking SVM.25,26 Falling into the cat-

egory of pairwise ranking approaches, it maximizes the performance measure Kendall’s τ . It mea-
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sures the number of correctly ordered pairs within a ranking of length n, taking into account all pos-

sible n(n−1)
2 pairs. Kendall’s τ has two crucial differences compared to NDCG: All positions of the

ranking have an influence on the final performance unlike for NDCG, where only the top k positions

matter. Additionally all positions have the same weight, unlike for NDCG, where higher positions

are more important. The principle of Ranking SVM is visualized in Figure 2c). We used the imple-

mentation of Chapelle (http://olivier.chapelle.cc/primal/ranksvm.m), which

we extended for the use of kernels, according to.42

Data

We use Virtual Screening datasets from the supporting information of the paper of Sutherland et

al.43 where spline-fitting together with a genetic algorithm was tested to establish a good classifier

on five datasets. We selected a subset of three datasets most suitable for regression: The benzo-

diazepine receptor (BZR), the enzymes cyclooxygenase-2 (COX-2) and dihydrofolate reductase

(DHFR). We will now briefly describe the biological function of each target and give some infor-

mation about the corresponding dataset.

BZR

Being an ion channel located in the membrane of various neurons, BZR inhibits the neuron when

bound by its endogenous ligand GABA. Drugs like Benzodiazepine can have their own allosteric

binding site. They increase the frequency of channel opening thereby amplifying the inhibitory

effect of GABA.44

The dataset contains 405 molecules that were derived mostly from the work of two research

groups (Haefely et al. and Cook et al.). We removed 73 compounds with inexact measurements

(a < x) which are not suitable for regression approaches. The remaining 340 molecules had labels

ranging from 4.27 to 9.47 pIC50.
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COX-2

The enzyme Cyclooxygenase 2 (COX-2) together with it’s isoform COX-145 takes part in the syn-

thesis of prostanoids. While COX-2 is an adaptive enzyme which is only produced in response

to injury or inflammation, COX-1 is a constitutive enzyme which is produced constantly and pro-

vides for a physiological level of prostaglandins.46 Drugs that inhibit COX-2 were shown to reduce

gastrointestinal side-effects but at the price of increased cardiovascular risk.47

The dataset consists of 467 COX-2 inhibitors. They were assembled on the basis of the pub-

lished work of a single research group (Khanna et al.). We again deleted 53 molecules with inexact

measurements. The remaining 414 molecules had labels ranging from 4 to 9 pIC50.

DHFR

The enzyme Dihydrofolate Reductase (DHFR) is involved in the syntheses of purins (adenine and

guanine), pyrimidins (thymine) and some amino acids like glycine. As rapidly dividing cells like

cancer cells needs high amounts of thymine for DNA synthesis they are particularly vulnerable to

the inhibition of DHFR. Methotrexat, for example, is a DHFR-inhibitor which is used in treatment

amongst others of childhood leukemia and breast cancer.48

The dataset contains a set of 756 inhibitors of Dihydrofolate Reductase assembled on the basis

of the work of one research group (Queener et al.) and we removed 74 compounds with inexact

measurement. The remaining 682 molecules had labels ranging from 3.03 to 10.45 pIC50.

Descriptor Generation and Data Preparation

For descriptor generation we used Dragon in version 5.5. Like done in previous studies49,50 we

used the following subset of Dragon blocks: 1, 2, 6, 9, 12, 15, 16, 17, 18, and 20. This yielded

728–772 descriptors, depending on the dataset. We then normalized the feature vectors to zero

mean and unit variance on the training set. In order to keep the results between datasets in terms

of NDCG comparable we scaled binding coefficients for each dataset into the range [0,3] as this is
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Figure 3: The distribution of binding coefficients for the Virtual Screening datasets. The x-
axis shows the binding coefficients (scaled into the range [0,3] for each dataset). The y-axis
shows the number of molecules having that certain binding coefficient. Depending on the num-
ber of molecules with very high binding coefficients we can refer to them as "dense" (COX-2),
"medium" (BZR) and "sparse" (DHFR).

a typical range when NDCG is used as scoring function for information retrieval datasets.27

If we examine the distribution of binding coefficients for each dataset (see Figure 3), we can

distinguish different types of distributions: For COX-2 we see a high number of molecules with

high binding coefficients, thus we call this dataset "dense". DHFR on the other hand has only a

low number number of molecules with high binding coefficients, thus we call this dataset "sparse".

BZR is in between with few molecules possessing very high binding coefficients. We will make

use of this distinction later in the result section.

Test Framework

We used k-fold cross-validation to access performance for the Virtual Screening datasets. In order

to have constant training set sizes (about 225 molecules), we varied the number of folds for each

data set: we splitted BZR into three and COX-2 into two folds. Each fold was used as test set,

whereas the other two folds (one fold) were used for training and parameter optimization. This

was done by an inner cross-validation with 5 folds. For DHFR we also employed three folds but

used the single folds for training and the other two as test set, thus also getting about 225 molecules

in the training set. These cross-validations were performed 7 times for DHFR and BZR, and 10

times for COX-2.
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As all three approaches share the same underlying SVM framework, they need to determine

the same parameters within the cross-validation loop; for the RBF-kernel

k(xi,x j) = exp
(
−
(xi−x j)

T (xi−x j)

2dσ2

)
. (5)

the parameters are σ2 ∈{0.1,1,10} and d given by the number of descriptors. The SVM-parameter

C controlling the model complexity was chosen from the set {0.01,0.1,1,10,100}. For the SVR

we varied the tube width between {0.01,0.1,1}. For our StructRank approach we also selected the

number of ranks over which we optimized using 10, 20 and 30 as parameters.

Alternative Performance Measures

We add two performance measures well known in the Virtual Screening community: Enrichment

Factor (EF)28 and Robust Initial Enhancement (RIE).29 As shown by Truchon et. al,19 area under

the ROC Curve is not suitable for the "early recognition problem" of Virtual Screening.

RIE and ER only distinguish between active and inactive molecules, contrary to NDCG, which

takes precise binding affinities into account. Therefor we have to impose thresholds in order to

separate molecules into actives and inactives. To provide for challenging ranking problems (i.e.

a low ratio of actives/inactives) we chose 8.5 pIC50 (BZR), 8.0 pIC50 (COX-2) and 7.5 pIC50

(DHFR) resp. According to these thresholds the datasets contain 60, 70 and 38 actives (BZR,

COX-2 and DHFR).

The Enrichment Factor measures how many more actives are found in an defined fraction ζ

of the ordered list, relative to a random distribution. Thus like NDCG it only looks at the top k

positions of the ranking, but weights each position equally. It is given by

EF =
∑

n
i=1 δi

ζ ·n
(6)

where n is the number of actives. δi is 1 if the active is ranked within the defined fraction of the list,

otherwise it is 0. Robust Initial Enhancement measures how much better a given ranking of actives

13



is compared to their random distribution within the ranking. It considers the complete ranking, but

like NDCG weights positions descending (depending on the parameter α , see 7). It is given by

RIE =
∑

n
i=1 e−αri

〈∑n
i=1 e−αri〉r

(7)

where ri is the relative rank (i.e. the rank divided by the length of the ranking), and 1/α is the

fraction of the list that is most important for the final score, which has a similar meaning as the

cutoff k of NDCG. The denominator is the mean score when the actives are distributed randomly

across the ordered list.

Toy Example

Before analyzing real-world VS data we designed a toy example to reproduce a set of different

label distributions typically found in Virtual Screening data sets: Datasets which possess only a

low number of molecules with high binding affinities. And those which contain a medium or

high number of those molecules. Therefore we applied the following approach: We selected 300

training sets (100 of each type) with distribution of labels as outlined above. Each training set

consisted of 75 examples. Figure 4 shows the histograms, each averaged over all 100 sets.

The aim is to compare the influence of the different label distributions on ranking performance.

We thus draw validation and test sets with uniform label distributions for all three types of train-

ing sets: We train models for different parameter combinations and select the optimal parame-

ter combination on a validation set. Using the resulting model, ranking performance was mea-

sured out of sample on a left out test set. The function we used to generate these datasets was:

f (x) = x4
1−x3

2−x2
3−x4

4., randomly drawn from the space of 4-dimensional polynomials. We sam-

pled 100.000 times from the 4-dimensional unit cube x∈ {[−1,1]4}. Labels again were scaled into

the range [0,3] and the feature vector x was normalized.
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Figure 4: The histograms show the average label distribution for all three types of training sets (cf.
text). The y-axis shows the number of elements having label given by the x-axis.

Results

We will now report on results obtained for the three Virtual Screening datasets, published by

Sutherland et al.43 Performance is measured for Support Vector Regression (SVR), Ranking SVM

and our proposed StructRank approach. Furthermore a toy example will shed some light on the

results obtained for the Virtual Screening datasets.

Virtual Screening Datasets

We measure ranking performance in terms of NDCG, ER and RIE for both our baselines and

our ranking approach StructRank. Performance is measured for the first 10 ranks, which means

cutoffs of 10 for NDCG10 and ER10, as well as a parameter α for RIE, which puts the most weight

on the top 10 ranks. We performed k-fold cross-validation as described before, were all three

approaches were optimized for NDCG. Figure 5 shows the results in terms of NDCG. Error Bars

indicate standard error. Table 1 includes results for NDCG as well as ER and RIE. Significant

improvements (level of significance 0.05) are indicated by bold numbers over approaches given as

superscript. Additionally our approach is highlighted in gray. For all three performance measures,

higher numbers indicate better rankings.

Starting with the dense dataset COX-2 we observe that all three approaches perform nearly

equally well in terms of NDCG, with no approach gaining a significant advantage over the others.
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Figure 5: Averaged ranking performance measured in NDCG for the Virtual Screening datasets.
Error bars indicate standard error.

These results are confirmed by the two "Virtual Screening" performance measures ER and RIE.

For BZR, which could be classified as "medium" in terms of the high labeled molecules, our ap-

proach performs better than both baseline algorithms in terms of NDCG, improving significantly

over SVR. RankSVM also can outperform SVR. These results are confirmed by ER but not by

RIE. Finally, for the "sparse" dataset DHFR, our approach can significantly outperform both base-

line methods in terms of ranking performance. This results holds for NDCG as well as ER and

RIE. RankSVM is outperformed with a p-value below 0.001. Furthermore SVR can outperform

RankSVM in terms of both Virtual Screening ranking measures.

Subsuming our observations, we state that our ranking approaches can outperform both base-

lines for the BZR and the DHFR set while for the "dense" dataset COX-2, all approaches perform

equally. This dataset contains many molecules with high labels, thus the event that one of these

molecules is ranked high by chance is very likely. For BZR we see (Figure 3) that the topmost
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Table 1: Results for the virtual screening datasets for all baselines and our Structural Ranking
approach (highlighted in gray). Bold numbers mark significant improvements with p-value ≤ 0.05
over approaches given as superscript: 1 =̂ SVR and 2 =̂ RankSVM. For all performance measures
higher numbers indicate better results.

Method COX-2 BZR DHFR

NDCG10

SVR 0.920 0.877 0.8722

RankSVM 0.928 0.9011 0.798
StructRank 0.921 0.9191 0.9051,2

ER10

SVR 5.452 3.955 16.0612

RankSVM 5.583 4.3101 13.966
StructRank 5.326 4.5271 17.1681,2

RIE
SVR 4.692 3.481 11.9391

RankSVM 4.736 3.575 11.010
StructRank 4.595 3.698 12.6041,2

bins, representing molecules with the highest labels, are sparsely populated. But subsequent bins,

representing molecules with slightly lower labels, show a dense population like for COX-2. But

these "sparse" bins seem to make it harder to obtain the perfect ranking, as performance drops in

terms of NDCG for SVR and RankSVM. For the "sparse" dataset DHFR we can observe another

decline in terms of ranking performance. Containing only very few molecules with high labels,

this dataset seems to be the hardest but also the most realistic VS scenario. Thus we observed a

continuous decline of performance of the baseline methods with decreasing number of high labeled

molecules.

Toy Example

Three different label distributions are generated as described in the data section. Performance is

again measured for SVR, RankSVM and StructRank. The results, which are shown in Figure 6,

reveal nearly the same behavior as for the real world Virtual Screening datasets. The "dense"-type

dataset has a big number of data points with large label and is therefor comparable to COX-2.

Like for COX-2 all approaches perform nearly the same. The "medium"-type dataset has less data

points with large labels and is comparable to BZR. Performance drops for both baselines, whereas
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Figure 6: Ranking performance of Support Vector Regression (SVR), Ranking SVM (RankSVM)
and Structural Ranking (StructRank) for three different types of training sets. The region with high
labeled examples was covered either sparsely, medium or densely. Error bars indicate standard
error.

StructRank’s performance stays nearly the same. Also like for BZR RankSVM performs slightly

better than SVR.

Finally the "sparse"-type dataset is comparable to DHFR, having the lowest number of data

points with large labels. Being the most difficult dataset all approaches display a drop in ranking

performance. Nevertheless for StructRank the drop is small compared to the baselines, which are

both clearly outperformed. Interestingly, SVR and RankSVM display the same behavior as for

the Virtual Screening datasets: While RankSVM has the lead over SVR for the "medium" dataset,

SVR has over RankSVM for the "sparse" dataset.
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Run Time Comparison

This section gives an overview of the CPU time needed by each approach for training and predic-

tion. Given values present average values for the Virtual Screening datasets, i.e. training a model

with about 225 molecules and obtain a prediction for the test set. SVR requires the least CPU time

to train a model since it needs to solve only one optimization problem. RankSVM has to solve

a much more complex optimization problem which is reflected in the increased time needed. For

StructRank the optimization problems become too big to be solved within one step. Thus an itera-

tive cut-and-bound technique31 is applied, where for each iteration a convex quadratic subproblem

has to be solved. This repeated convex optimization step is the reason for the increase of CPU time

by the factor of 25 compared to the SVR. For prediction time we have inverse results with the

ranking approach perform fastest.

Discussion and Outlook

This work investigated the use of ranking approaches when building QSAR-models for ligand-

based Virtual Screening. Two ranking approaches, optimizing NDCG (StructRank) and Kendall’s

τ (RankSVM), were compared to one state-of-the-art approach for Virtual Screening: Support

Vector Regression. The performance was measured using NDCG as well as two established VS

metrics: Enrichment Factor and Robust Initial Enhancement.

This was the first time a ranking approach similar to StructRank was used within the field of

QSAR modeling. Regarding the mathematical concept using a ranking approach like StructRank

offers two advantages for Virtual Screening:

Table 2: Average CPU time for training/prediction for the Virtual Screening datasets.

SVR RankSVM StructRank

Training 0.18 s 1.71 s 2.32 s
Prediction 0.31 s 0.05 s 0.05 s
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1. direct optimization of rankings: StructRank directly optimizes a ranking measure, com-

pared to the indirect optimization of regression approaches, which in the first place optimize

a regression performance measure.

2. focus on highly binding compounds: Because of its composition, NDCG focuses on molecules

with high binding coefficients, whereas regression approaches like SVR or ranking ap-

proaches like RankSVM pay equal attention to each molecule owing to the structure of their

loss functions. Thus necessary complexity for solving the problem may be wasted uniformly

over the data instead of focusing the algorithms complexity on high rank entries.

One potential drawback of our approach might be the comparatively large runtime. For datasets

of similar size to those used in this work this poses no real obstacle, for very large datasets further

approximative algorithmic contributions will have to be used similarly to Information Retrieval.

The evaluation results demonstrate that for datasets which posses only a small or medium

number of molecules with high binding coefficients (e.g. BZR and especially DHFR) our approach

performs significantly better than the baselines. For datasets which show a high density for these

molecules, ranking approaches deliver no real advantage (e.g. for COX-2). These findings are

underlined by the toy example: Whereas our ranking approach outperforms SVR and RankSVM

clearly for the "sparse" type dataset, the advantage is lost for the "dense" type dataset.

Concluding we note that Structural Ranking represents a promising new approach that is

very natural for Virtual Screening. To facilitate the further use of ranking approaches for Vir-

tual Screening, we published our source code together with a documentation on the webpage:

http://doc.ml.tu-berlin.de/structrank/.
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Appendix

Classic Support Vector Classification

Originally Support Vector Machines where formulated by Vapnik35 to solve classification tasks:

Given a set of data points, belonging to either class +1 or -1, how can one separate these classes

and additionally maximize the margin around the hyperplane such that yi(wT φ(xi)+b)≥ 1 for all

xi. The optimization problem is given by

min
w,b,ξ

1
2

wT w+C
n

∑
i=1

ξi (8)

subject to yi(wT
φ(xi)+b)≥ 1−ξi,

ξi ≥ 0, i = 1, . . . ,n.

ξi are called slack variables and are nonzero for points that violate yi(wT φ(xi)+ b) ≥ 1, i.e. for

those that are either misclassified or within the margin ±1 around the hyperplane wT x−b = 0.

NDCG

Given the true ranking ȳ, a predicted ranking ŷ and a cut-off k, NDCG is given by the DCG (Dis-

counted Cumulative Gain) for the predicted ranking normalized by the DCG of the true ranking.

NDCGk(ȳ, ŷ) =
DCGk(ŷ)
DCGk(ȳ)

DCGk(y) =
k

∑
r=1

2y(r)−1
log2(1+ r)

(9)

where ŷ(r) is the binding coefficient yi of the molecule xi ranked at position r.

Joint Feature Space

For a set of molecules x̃ = (x1, . . . ,xn) and a ranking y of this set the joint feature map Ψ is given

by

Ψ(x̃,y) =
n

∑
i=1

φ(x̃i)A(yi) (10)
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as proposed by Chapelle.30 φ is a mapping into a Hilbert space corresponding to a kernel function

k(xi,xj), e.g. the RBF-kernel. The new vector in Ψ is a sum of vectors φ(x̃i) weighted by their

ranks according to A(r) = max(0,k+1− r). Only molecules corresponding to the first k ranks are

incorporated.

Structured Support Vector Machines

Here we present a more technical description of Structured Support Vector Machines supplement-

ing the description given in the paper before. The "naive" maximum-margin problem is given

by

min
w,ξ

1
2

wT w (11)

subject to wT (Ψ(x̃ j, ȳ j)−Ψ(x̃ j,y))≥ 1 ∀ j,∀y 6= ȳ j

Keep in mind that each x̃ j consists of a set of k molecules xi and the corresponding ȳ j holds the

corresponding true ranking of all molecules within the set. All k!−1 other possible rankings of x̃ j

are represented by y. After replacing the constant margin 1 with a loss-dependent margin ∆ and

introducing slack variables ξ j for each set x̃ j we get the final optimization problem

min
w,ξ

1
2

wT w+C
m

∑
j=1

ξ
j (12)

subject to wT (Ψ(x̃ j, ȳ j)−Ψ(x̃ j,y))≥ ∆(ȳ j,y)−ξ
j ∀ j,∀y 6= ȳ j

ξ
j ≥ 0

The corresponding dual is given by

max
α

−1
2

α
T Lα +bT

α (13)

subject to ∑
y∈Y

α
j

y ≤C, α
j

y ≥ 0 ∀ j,∀y 6= ȳ j (14)
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where we have an α for each possible ranking y of subset x̃ j. The matrix L consists of entries

(L)iy, jy′ = (Ψ(x̃i, ȳi)−Ψ(x̃i,y))T (Ψ(x̃ j, ȳ j)−Ψ(x̃ j,y′)) and biy = ∆(ȳi,y).

Abbreviations

BZR Benzodiazepine Receptor

COX-2 Cyclooxygenase 2

DHFR Dihydrofolate Reductase

NDCG Normalized Discounted Cumulitive Gain

QSAR Quantitive Structure-Activity Relationship

RankSVM Ranking SVM

StructRank Structural Ranking

SVM Support Vector Machine

SVR Support Vector Regression

Supporting Information Available

The algorithm as well as the toy example data may be found at http://doc.ml.tu-berlin.

de/structrank/. This material is available free of charge via the Internet at http://pubs.

acs.org.
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