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Ground TruthResult

- Distance Signature [Huang1995] 
- Fuzzy Jaccard Index [McGuinnes2010] 
- ROC Curves for Boundaries [Estrada2005][Estrada2009] 
- Greedy Boundary Matching [Bowyer2001] 
- Precision-Recall for Boundaries [Martin2003][Martin2004] 
- Rand Index [Rand1971, Ben-Hur2002] 
- Probabilistic Rand Index (PRI) [Unnikrishnan2005] 
- Normalized Probabilistic Rand index (NPR) [Unnikrishnan2007] 
- Precision-Recall for Regions [Martin2003] 
- Directional Hamming distance [Kanungo94], [Huang95] 
- Asymmetric Partition distance [Cardoso2005] 
- Projection Number [Dongen2000], [Jiang2006] 
- Larsen measure [Larsen1999] 
- Segmentation Covering [Arbeláez2011] 
- Symmetric Partition Distance [Gusfield2002], [Cardoso2005] 
- Bipartite Graph Matching [Jiang2006] 
- Classification Error Distance [Meila2005] 
- Bidirectional, Local, and Global Consistency Errors [Martin2003] 
- Variation of Information (VoI) [Meila2003], [Meila2005] 
- Mirkin metric [Mirkin1996] 
- Hoover Measures [Hoover1996], [Min2004]
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Deduplicate and 
Structure

Exhaustive

Structured
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Clustering of the 

set of pixels 
(region based)

Two-class 
clustering of the 
pairs of pixels

Two-class clustering 
of the pixel contour 

segments 
(boundary based)
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To sum up…

…we had N measures…

…now we have N+1 measures…

Meta 
Measures!
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“An axiom is a statement that is taken to be true, 
to serve as a premise for further reasoning”Axiom

Axiom 1 m(P,P) = 1

Axiom 3 m(P,Q) << 1 If P and Q are very different

Axiom 2 m(P,Q) ~ 1 If P and Q are very similar

28

https://en.wikipedia.org/wiki/Premise


R. Unnikrishnan, C. Pantofaru, and M. Hebert. Toward Objective Evaluation of Image Segmentation Algorithms, 
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, No. 6, June, 2007, pp. 929-944.

representative of perceptually consistent groupings of
random but realistic images. This translates to estimating
p0ij from segmentations of all images for all unordered
pairs ði; jÞ. Let ! be the number of images in a data set and
K! the number of ground-truth segmentations of image !.
Then, p0ij can be expressed as:

p0ij ¼
1

!

X

!

1

K!

XK!

k¼1

II l
S!k
i ¼ l

S!k
j

! "
: ð7Þ

Note that using this formulation for p0ij implies that

IE½PRðStest; fSkgÞ% is just a (weighted) sum of PRðS!k ; fSkgÞ.
Although PRðS!k ; fSkgÞ can be computed efficiently, perform-

ing this computation for every segmentation S!k is expensive,

so, in practice, we uniformly sample 5& 106 pixel pairs for an

image size of 321& 481ðN ¼ 1:5& 105Þ instead of computing

it exhaustively over all pixel pairs. Experiments performed

using a subset of the images indicated that the loss in

precision in comparison with exhaustive evaluation was not

significant for the above number of samples.
The philosophy that the baseline should depend on the

empirical evidence from all of the images in a ground-truth
training set differs from the philosophy used to normalize
the Rand Index [3]. In the Adjusted Rand Index [16], the
expected value is computed over all theoretically possible

segmentations with constant cluster proportions, regardless
of how probable those segmentations are in reality. In
comparison, the approach taken by the Normalized Prob-
abilistic Rand index (NPR) has two important benefits.

First, since p0ij and pij are modeled from the ground-truth
data, the number and size of the clusters in the images do not
need to be held constant. Thus, the error produced by two
segmentations with differing cluster sizes can be compared.
In terms of evaluating a segmentation algorithm, this allows
the comparison of the algorithm’s performance with different
parameters. Fig. 7 demonstrates this behavior. The top two
rows show an image from the segmentation database [1] and
segmentations of different granularity. Note that the LCI
similarity is high for all of the images since it is not sensitive to
refinement; hence, it cannot determine which segmentation is
the most desirable. The BCI' measure sensibly reports lower
scores for the oversegmented images, but is unable to
appreciably penalize the similarity score for the under-
segmented images in comparison with the more favorable
segmentations. The PR index reflects the correct relationship
among the segmentations. However, its range is small and the
expected value is unknown, hence it is difficult to make a
judgment as to what a “good” segmentation is.

The NPR index fixes these problems. It reflects the desired
relationships among the segmentations with no degenerate
cases, and any segmentation which gives a score significantly
above 0 is known to be useful. As intuition, Fig. 8 shows two
segmentations with NPR indices close to zero.

Second, since p0ij is modeled using all of the ground-truth
data, not just the data for the particular image in question, it
is possible to compare the segmentation errors for different
images to their respective ground truths. This facilitates the
comparison of an algorithm’s performance on different
images. Fig. 9 shows the scores of segmentations of different
images. The first row contains the original images and the
second row contains the segmentations. Once again, note
that the NPR is the only index which both shows the
desired relationship among the segmentations and whose
output is easily interpreted.

The images in Fig. 10 and Fig. 11 demonstrate the
consistency of the NPR. In Fig. 10b, both mean shift [15]
segmentations are perceptually equally “good” (given the
ground-truth segmentations), and correspondingly their
NPR indices are high and similar. The segmentations in
Fig. 11b are both perceptually “bad” (oversegmented), and
correspondingly both of their NPR indices are very low.
Note that the NPR indices of the segmentations in Fig. 6b
and Fig. 11b are comparable, although the former is an
undersegmentation and the latter are oversegmentations.

The normalization step has addressed Requirement 4,
facilitating meaningful comparison of scores between
different images and segmentations. Note also that the
NPR still does not make assumptions about data generation
(Requirement 2). Hence, we have met all of the require-
ments set out at the beginning of the paper.
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Fig. 7. Example of changing scores for different segmentation
granularities: (a) Original image, (b), (c), (d), (e), (f), (g), and (h) mean
shift segmentations [15] using scale bandwidth ðhsÞ 7 and color
bandwidths ðhrÞ 3, 7, 11, 15, 19, 23, and 27, respectively. The plot
shows the LCI, BCI', PR, and the NPR similarity scores for each
segmentation. Note that only the NPR index reflects the intuitive
accuracy of each segmentation of the image. The NPR index correctly
shows that segmentation (f) is the best one, segmentations (d), (e), and
(f) are reasonable, and segmentations (g) and (h) are horrible.

Fig. 8. Examples of segmentations with NPR indices near 0.

3.1.2 Region-Sensitive Refinement Accommodation
Another desirable property of a meaningful measure is that it
only penalizes fragmentation in regions that are unsupported
by the ground-truth images, and allows refinement without
penalty if it is consistently reflected in the ground-truth set.
Consider now a set of two manually labeled segmentations
consisting of S2 and S3 (Fig. 1). As seen in Fig. 1, the two
human segmenters are in “agreement” on region R1, but
region R2 in S2 is split into two equal halves R3 and R4.

Following the procedure in Section 3.1.1, it can be shown
that PRðS; sS2;3Þ! 15

16 in upper bound as N !1 for both
S ¼ S2 and S ¼ S3. However, if a candidate S contained
region R1 fragmented into (say) two regions of size !N

2 and
ð1$!ÞN

2 for ! 2 ½0; 1&, it is straightforward to show that the PR
index decreases in proportion to !ð1$ !Þ as desired.

3.1.3 Accommodating Boundary Ambiguity
It is widely agreed that human segmenters differ in the level
of detail at which they perceive images. However, differences
exist even among segmentations of an image having equal
number of segments [1]. In many images, pixel label assign-
ments are ambiguous near segment boundaries. Hence, one
desirable property of a good comparison measure is robust-
ness to small shifts in the location of the boundaries between
segments, if those shifts are represented in the manually
labeled training set, even when the “true” locations of those
boundaries are unknown.

To illustrate this property in the PR index, we will
construct an example scenario exhibiting this near-boundary

ambiguity and observe the quantitative behavior of the PR
index as a function of the variables of interest. Consider an
example of the segmentation shown in Fig. 2, where all the
human segmenters agree on splitting a N 'N pixel image
into two regions (red and white) but differ on the precise
location of the boundary. For mathematical clarity, let us
adopt a simplified model of the shape of the boundary
separating the two segments. We assume the boundary to be a
straight vertical line whose horizontal position in the set of
available manual segmentations is uniformly distributed in a
region of width w pixels.

Let the candidate segmentation consist of a vertical split
at distance x pixels from the left edge of the image. For a
given boundary position x, we can analytically compute, for
each pixel pair, the probability pij of their label relationship
existing in the manually labeled images under the pre-
viously described boundary model. This essentially in-
volves a slightly tedious counting procedure that we will
not elaborate here to preserve clarity. The key result of this
procedure for our example scenario in Fig. 2 is an analytical
expression of the PR index as a function of x given by:

PR SðxÞ; fS0gð Þ ¼
A1x2 þ C1 if x 2 ½1; N$w2 &
$A2x2 þB2xþ C2 if x 2 ½N$w2 ; Nþw2 &
A1ðN$xÞ2 þ C1 if x 2 ½Nþw2 ; N&;

8
><

>:

ð4Þ

where the coefficients Ai, B2, and Ciði ¼ 1; 2Þ are positive
valued functions of N and w.

Figs. 3 and 4 plot the expression in (4) for varying values
of N and w, respectively. It can be seen that the function is
symmetric and concave in the region of boundary ambi-
guity, and convex elsewhere. Thus, the PR index for the
example of Fig. 2 essentially has the profile of a piecewise
quadratic inverted M-estimator, making it robust to small
local changes in the boundary locations when they are
reflected in the manual segmentation set.

Figs. 5 and 6 show (from left to right) images from the
Berkeley segmentation database [1], segmentations of those
images, and the ground-truth hand segmentations of those
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Fig. 2. A toy example of the PR index adapting to pixel-level labeling
errors near segment boundaries. The region in the image between the
two vertical dashed lines indicates the zone of ambiguity. See text for
details.

Fig. 3. Plot of PR index computed using (4) for the scenario of Fig. 2 with
fixed w ¼ 20 and varying image size N. Note that the function profile is
maintained while the maximum attainable PR index increases with N.

Fig. 4. Plot of PR index computed using (4) for the scenario of Fig. 2 with
fixed image size ðN ¼ 100Þ and varying w. Note that the function is
everywhere continuous, concave in the zone of ambiguity, and convex
elsewhere.

3.1.2 Region-Sensitive Refinement Accommodation
Another desirable property of a meaningful measure is that it
only penalizes fragmentation in regions that are unsupported
by the ground-truth images, and allows refinement without
penalty if it is consistently reflected in the ground-truth set.
Consider now a set of two manually labeled segmentations
consisting of S2 and S3 (Fig. 1). As seen in Fig. 1, the two
human segmenters are in “agreement” on region R1, but
region R2 in S2 is split into two equal halves R3 and R4.

Following the procedure in Section 3.1.1, it can be shown
that PRðS; sS2;3Þ! 15

16 in upper bound as N !1 for both
S ¼ S2 and S ¼ S3. However, if a candidate S contained
region R1 fragmented into (say) two regions of size !N

2 and
ð1$!ÞN

2 for ! 2 ½0; 1&, it is straightforward to show that the PR
index decreases in proportion to !ð1$ !Þ as desired.

3.1.3 Accommodating Boundary Ambiguity
It is widely agreed that human segmenters differ in the level
of detail at which they perceive images. However, differences
exist even among segmentations of an image having equal
number of segments [1]. In many images, pixel label assign-
ments are ambiguous near segment boundaries. Hence, one
desirable property of a good comparison measure is robust-
ness to small shifts in the location of the boundaries between
segments, if those shifts are represented in the manually
labeled training set, even when the “true” locations of those
boundaries are unknown.

To illustrate this property in the PR index, we will
construct an example scenario exhibiting this near-boundary

ambiguity and observe the quantitative behavior of the PR
index as a function of the variables of interest. Consider an
example of the segmentation shown in Fig. 2, where all the
human segmenters agree on splitting a N 'N pixel image
into two regions (red and white) but differ on the precise
location of the boundary. For mathematical clarity, let us
adopt a simplified model of the shape of the boundary
separating the two segments. We assume the boundary to be a
straight vertical line whose horizontal position in the set of
available manual segmentations is uniformly distributed in a
region of width w pixels.

Let the candidate segmentation consist of a vertical split
at distance x pixels from the left edge of the image. For a
given boundary position x, we can analytically compute, for
each pixel pair, the probability pij of their label relationship
existing in the manually labeled images under the pre-
viously described boundary model. This essentially in-
volves a slightly tedious counting procedure that we will
not elaborate here to preserve clarity. The key result of this
procedure for our example scenario in Fig. 2 is an analytical
expression of the PR index as a function of x given by:

PR SðxÞ; fS0gð Þ ¼
A1x2 þ C1 if x 2 ½1; N$w2 &
$A2x2 þB2xþ C2 if x 2 ½N$w2 ; Nþw2 &
A1ðN$xÞ2 þ C1 if x 2 ½Nþw2 ; N&;

8
><

>:

ð4Þ

where the coefficients Ai, B2, and Ciði ¼ 1; 2Þ are positive
valued functions of N and w.

Figs. 3 and 4 plot the expression in (4) for varying values
of N and w, respectively. It can be seen that the function is
symmetric and concave in the region of boundary ambi-
guity, and convex elsewhere. Thus, the PR index for the
example of Fig. 2 essentially has the profile of a piecewise
quadratic inverted M-estimator, making it robust to small
local changes in the boundary locations when they are
reflected in the manual segmentation set.

Figs. 5 and 6 show (from left to right) images from the
Berkeley segmentation database [1], segmentations of those
images, and the ground-truth hand segmentations of those

UNNIKRISHNAN ET AL.: TOWARD OBJECTIVE EVALUATION OF IMAGE SEGMENTATION ALGORITHMS 933

Fig. 2. A toy example of the PR index adapting to pixel-level labeling
errors near segment boundaries. The region in the image between the
two vertical dashed lines indicates the zone of ambiguity. See text for
details.

Fig. 3. Plot of PR index computed using (4) for the scenario of Fig. 2 with
fixed w ¼ 20 and varying image size N. Note that the function profile is
maintained while the maximum attainable PR index increases with N.

Fig. 4. Plot of PR index computed using (4) for the scenario of Fig. 2 with
fixed image size ðN ¼ 100Þ and varying w. Note that the function is
everywhere continuous, concave in the zone of ambiguity, and convex
elsewhere.

29

Meta Measures
How to Quantitatively Compare Evaluation Measures

Axiom 3
m(P,Q) << 1 If P and Q are very different

Axiom 2
m(P,Q) ~ 1 If P and Q are very similar

http://www.cs.cmu.edu/%7Eranjith/
http://www.cs.cmu.edu/%7Ehebert
http://www.ri.cmu.edu/pub_files/pub4/unnikrishnan_ranjith_2007_1/unnikrishnan_ranjith_2007_1.pdf


David Martin, An empirical approach to grouping and segmentation, 
Ph.D. thesis, EECS Department, University of California, Berkeley, Aug 2003. 30
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Axiom 4 m(P,Q) < m(Q,Q’) If Q and Q’ should be more similar that P and Q

Fb=0.28 Fb=0.33
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Ground Truth

PRI=0.95 PRI=0.71

Baseline resultgPb-UCM resultGround TruthImage

Image

PRI=0.64 PRI=0.76

State-of-the-Art Baseline Discrimination (SABD)

Axiom 4 m(P,Q) < m(Q,Q’) If Q and Q’ should be more similar that P and Q



Ground TruthgPb-UCM result UCM swapped  result

UCM swapped  resultGround Truth
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C=0.67 C=0.31

C=0.50

Swapped Image State-of-the-art Discrimination (SISD)

Image gPb-UCM result

C=0.40

Image

Axiom 4 m(P,Q) < m(Q,Q’) If Q and Q’ should be more similar that P and Q
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Image Ground Truths QuadTree Random

SMapsIID-KLNWMCMeanShiftNCutEGBISCRAgPb-UCM

Fig. 12. State of the art (SoA), ground truth, and baseline examples; each of them at the ODS with respect to Fb

Measure Qual. M.M. Quant. Meta-Meas.
O.S. B.M. SIHD SABD SISD Global

Fb 3 3 99.5 92.9 99.9 97.4
F
op

3 3 98.4 94.2 97.7 96.8
NVI 7 7 96.7 81.4 96.5 91.5
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BCE 7 7 93.1 77.9 95.2 88.8
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d
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7 7 95.0 74.6 90.5 86.7
BGM 7 7 90.2 77.4 92.5 86.7
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Fr 7 7 89.3 74.6 92.6 85.5
C
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�
7 7 91.4 69.8 90.0 83.7

DH

��
Gi

 
)S

�
7 7 73.8 56.4 77.7 69.3

TABLE 2
Measure comparison in terms of quantitative and

qualitative meta-measures

entail the best value of the measure in mean on the
whole training set of BSDS500. Figure 12 shows an
image, the various ground-truth partitions, and the
SoA and baseline partitions at the ODS with respect
to Fb.

The parameter values of the newly proposed mea-
sure are: �o = 0.95, �p = 0.25, and � = 0.1. They
have been trained on the training set of BSDS500, by
optimizing the global meta-measure described below.
Note that this optimization would not have been
feasible without quantitative meta-measures.

Table 2 shows the three meta-measure results for
the test set of BSDS500, as well as a global sum-
mary meta-measure. Given that each meta-measure
represents a percentage of correct results, we define
the global meta-measure as the global percentage of
correct results.

In global terms, Fb and F
op

are the two top-ranked
summary measures. On top of that, they both provide
much richer information in form of precision-recall
curves. Adding that the two measures are the only

ones with a good result in terms of the proposed
qualitative meta-measures, we believe the tandem Fb-
F
op

should be the evaluation measures of choice.
Regarding the computational cost of the measures,

the mean time for image to compute the distances
to the multiple-partition ground truth of BSDS500 is
3.79± 2.06 s for Fb and at least one order of mag-
nitude lower for the rest of measures. In particular,
F
op

takes 0.078± 0.020 s. In scenarios where the time
constraints are tight, therefore, F

op

would be the
recommended measure.

6.3 Precision-Recall Frameworks:
This section tests the proposed tandem of measures
to compare a large set of state-of-the-art segmenta-
tion techniques, and evaluates the different behavior
between Fb and F

op

.
Figure 13 shows the boundary and objects-and-

parts precision-recall curves for the eight SoA seg-
mentation methods studied, the two baselines, and
the human performance. Prior to the assessment of
segmentation techniques, let us focus on the compar-
ison of the two evaluation frameworks.

Precision-recall curves analysis: It is noticeable that
the human baseline performance (human assessed
on a different image) for Fb is 0.21, which could be
interpreted as Fb being too lax. In this same direction,
the baseline boundary precision for Fb is between 0.2
and 0.3, that is, any result, no matter how wrong it is,
will be judged as providing at least a 0.2 precision.

While in the case of F
op

the human baseline is
correctly downgraded to 0.05 (as well as the swapped-
image results), then the surprising fact is that human
performance is as low as 0.56 (0.81 in Fb), which could
entail that F

op

is too strict.
Although the dynamic range is a little higher in Fb

(0.60 versus 0.51), the gap between the best method
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Fig. 12. State of the art (SoA), ground truth, and baseline examples; each of them at the ODS with respect to Fb

Measure Qual. M.M. Quant. Meta-Meas.
O.S. B.M. SIHD SABD SISD Global

Fb 3 3 99.5 92.9 99.9 97.4
F
op

3 3 98.4 94.2 97.7 96.8
NVI 7 7 96.7 81.4 96.5 91.5

C
�
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�
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7 7 92.7 84.2 95.1 90.7

BCE 7 7 93.1 77.9 95.2 88.8
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d
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7 7 95.0 74.6 90.5 86.7
BGM 7 7 90.2 77.4 92.5 86.7
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�
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�
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7 7 78.1 81.7 99.1 86.3

Fr 7 7 89.3 74.6 92.6 85.5
C
��
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!S

�
7 7 91.4 69.8 90.0 83.7

DH

��
Gi

 
)S

�
7 7 73.8 56.4 77.7 69.3

TABLE 2
Measure comparison in terms of quantitative and

qualitative meta-measures

entail the best value of the measure in mean on the
whole training set of BSDS500. Figure 12 shows an
image, the various ground-truth partitions, and the
SoA and baseline partitions at the ODS with respect
to Fb.

The parameter values of the newly proposed mea-
sure are: �o = 0.95, �p = 0.25, and � = 0.1. They
have been trained on the training set of BSDS500, by
optimizing the global meta-measure described below.
Note that this optimization would not have been
feasible without quantitative meta-measures.

Table 2 shows the three meta-measure results for
the test set of BSDS500, as well as a global sum-
mary meta-measure. Given that each meta-measure
represents a percentage of correct results, we define
the global meta-measure as the global percentage of
correct results.

In global terms, Fb and F
op

are the two top-ranked
summary measures. On top of that, they both provide
much richer information in form of precision-recall
curves. Adding that the two measures are the only

ones with a good result in terms of the proposed
qualitative meta-measures, we believe the tandem Fb-
F
op

should be the evaluation measures of choice.
Regarding the computational cost of the measures,

the mean time for image to compute the distances
to the multiple-partition ground truth of BSDS500 is
3.79± 2.06 s for Fb and at least one order of mag-
nitude lower for the rest of measures. In particular,
F
op

takes 0.078± 0.020 s. In scenarios where the time
constraints are tight, therefore, F

op

would be the
recommended measure.

6.3 Precision-Recall Frameworks:
This section tests the proposed tandem of measures
to compare a large set of state-of-the-art segmenta-
tion techniques, and evaluates the different behavior
between Fb and F

op

.
Figure 13 shows the boundary and objects-and-

parts precision-recall curves for the eight SoA seg-
mentation methods studied, the two baselines, and
the human performance. Prior to the assessment of
segmentation techniques, let us focus on the compar-
ison of the two evaluation frameworks.

Precision-recall curves analysis: It is noticeable that
the human baseline performance (human assessed
on a different image) for Fb is 0.21, which could be
interpreted as Fb being too lax. In this same direction,
the baseline boundary precision for Fb is between 0.2
and 0.3, that is, any result, no matter how wrong it is,
will be judged as providing at least a 0.2 precision.

While in the case of F
op

the human baseline is
correctly downgraded to 0.05 (as well as the swapped-
image results), then the surprising fact is that human
performance is as low as 0.56 (0.81 in Fb), which could
entail that F

op

is too strict.
Although the dynamic range is a little higher in Fb

(0.60 versus 0.51), the gap between the best method
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Fig. 13. Precision-Recall curves for boundaries (left) and for objects and parts (right). The solid curves represent
the eight SoA segmentation methods and the baselines (see legends). In dashed lines with the same color, the
SoA techniques assessed on a swapped image. The marker on each curve is placed on the Optimal Dataset
Scale (ODS). The isolated red asterisks refers to the human performance assessed on the same image and on
a swapped image. In the legend, the F measure of the marked point on each curve is presented in brackets.
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a swapped image. In the legend, the F measure of the marked point on each curve is presented in brackets.
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Beyond Image Segmentation

Ran Margolin, Lihi Zelnik-Manor, Ayellet Tal How to evaluate foreground maps? CVPR 2014
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Deduplicate and structure measures in the literature

Take-Home Messages

Are there possible gaps to fill?

Meta-measures: Set axioms and check them
- Multiple annotations of the ground truth
- Discrimination of baseline results

- Discrimination of swapped results

Check results qualitatively and quantitatively  
   on a wide range of state-of-the-art results and baselines

J. Pont-Tuset and F. Marques  
Supervised Evaluation of Image Segmentation and Object Proposal Techniques 
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 38, no. 7, pp. 1465-1478, 2016. 

J. Pont-Tuset and F. Marques  
Measures and Meta-Measures for the Supervised Evaluation of Image Segmentation  
Computer Vision and Pattern Recognition (CVPR), 2013 

https://imatge.upc.edu/web/ferran
https://imatge.upc.edu/web/ferran
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Jordi Pont-Tuset 
ECCV Workshop on Datasets and 
Performance Analysis in Early Vision 
Amsterdam, 8th October 2016

http://jponttuset.github.io

