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Fast median filtering for phase or orientation
data

Martin Storath, Andreas Weinmann

Abstract—Median filtering is among the most utilized tools for smoothing real-valued data, as it is robust, edge-preserving, value-
preserving, and yet can be computed efficiently. For data living on the unit circle, such as phase data or orientation data, a filter with
similar properties is desirable. For these data, there is no unique means to define a median; so we discuss various possibilities. The arc
distance median turns out to be the only variant which leads to robust, edge-preserving and value-preserving smoothing. However, there
are no efficient algorithms for filtering based on the arc distance median. Here, we propose fast algorithms for filtering of signals and
images with values on the unit circle based on the arc distance median. For non-quantized data, we develop an algorithm that scales
linearly with the filter size. The runtime of our reference implementation is only moderately higher than the Matlab implementation of the
classical median filter for real-valued data. For quantized data, we obtain an algorithm of constant complexity w.r.t. the filter size. We
demonstrate the performance of our algorithms for real life data sets: phase images from interferometric synthetic aperture radar, planar
flow fields from optical flow, and time series of wind directions.

Index Terms—Median filter, circle-median, phase data, orientation data, circle-valued data, manifold-valued data.
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1 INTRODUCTION

Median filtering is a frequently used basic tool for
smoothing signals and images. Its main advantages over li-
near filtering are the preservation of edges, its robustness to
outliers, and the preservation of the values of the data. Yet,
the median filter can be computed exactly and efficiently
for real-valued data [1, 2]. However, there are many signals
and images that do not take their values in the real numbers
but on the unit circle T = S1. Circle-valued data appear
naturally as orientation data as, for example, in the rotation
in the bacterial flagellar motor [3] or as wind directions [4].
They appear as phase signals that are defined modulo 2π, as
for example in interferometric synthetic aperture radar [5].
Or, they appear when considering the orientation compo-
nent of planar flow fields as for instance in optical flow [6]
or in connection with wind fields [7].

For data with values on the circle, a filter with similar
properties as in the real-valued case is desirable. There are
various means of defining a circle median, and, thus, a
circle median filter. An early definition is a bisecting circle
median [8] which generalizes the concept that a median is
a data point bisecting the data values into two groups of
equal size. Also extrinsic concepts can be used to define
a circle median: a median of the ambient vector space is
projected to the circle; see for instance [9]. Another way is
to generalize the energy minimizing property of the real-
valued median to the circle [8, 10]. Then, for a circle-valued
image y ∈ TM×N , the resulting arc distance median filter is
given by

umn = argmin
a∈T

r∑
i=−r

t∑
j=−t

d(a, ym+i,n+j), (1)
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where d(a, b) denotes the (shortest) arc length distance
between a and b; see [11]. The arc distance median is
a special instance of the general concept of a geometric
median for Riemannian manifolds studied by Fletcher et
al. [12]. Most importantly, among the above variants, the
arc distance median filter is the only concept that shares
the desirable properties with the real-valued median filter
mentioned above, i.e., preservation of edges, robustness,
and the preservation of the values. But as the functional
in (1) is not convex it is more involved to compute than
the real-valued median filter. Currently, there are no fast
algorithms for computing the arc distance median filter.

1.1 Prior and related work

For real-valued data, medians are a very well studied ob-
ject in robust statistics. For median filtering of real-valued
data, there are two types of algorithms: those that work
with quantized data and those for non-quantized data.
For quantized data, an early method with linear scaling
in the side length of the filter mask, i.e., it scales with
O(R) for an R × R filter mask, has been proposed by
Huang et al. [13]. This has been improved to logarithmic
complexity [14], and even to constant complexity [2, 15]. For
non-quantized real-valued data, Gil and Werman [1] have
proposed an algorithm of squared logarithmic complexity,
which is close to a theoretical logarithmic lower bound
established by the same authors. However, as the algorithm
uses quite involved data structures often linearly scaling
algorithms are used in practice; an example is the Matlab
implementation of the median filter. Median filtering is still
an active field of research even for real-valued data; for
example, recent advances are fast algorithms for weighted
median filters [16, 17].

From a statistical perspective, it is desirable to have a
robust estimate of the preferred direction as well. Therefore,
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there is quite some statistical literature on circle valued
medians. We exemplarily refer to the books [8, 18, 19], the
articles [20–27], and to the references therein. There, the
notions bisecting median and arc distance median appear.
The bisecting median is mostly used in the context of sample
medians, whereas the arc distance median is mostly used in
the (more theoretical) context of population medians. We
could not find a clarification of the relation between the two
definitions in the literature. The properties of circle medians
in a wider sense are studied in [20]. It has been observed in
[11] that the arc distance median filter has edge preserving
properties similar to the real-valued median filter, and it
has been applied for detection of edges in angular images.
Hanbury and Serra [28] have studied further morphological
operators such as the morphological gradient and top-hat
operator on the unit circle. Circle-valued data can also be
processed on the basis of the circle mean value. It is the
maximum likelihood estimator for the Von Mises distribu-
tion [19] which can be seen as an analogue of the normal
distribution on the unit circle. As for real-valued data, mean
value filtering is suitable when the noise follows this type
of distribution whereas median filtering is preferable for
impulsive noise. We refer to [11] for a comparison of circle
mean and circle median filters.

Variational models for circle-valued data, in particular
total variation (TV) regularization, have been investigated
recently in a series of papers [29–37]. These more advanced
global energy minimization methods are typically compu-
tationally more demanding than local filtering approaches.
Although it has has been shown that TV problems can be
solved efficiently for 1D signals with values on the unit
circle [35], the solvers proposed there unfortunately cannot
be generalized to 2D images; the strategies proposed for TV
regularization for 2D circle-valued images are computation-
ally more demanding [33, 38].

1.2 Contribution

The goal of this work is to develop efficient algorithms for
median filtering of images with values on the unit circle. At
first, we clarify the relation between different concepts of
defining a median on the circle. In particular, we discuss
the relations between the arc distance circle median and
the bisecting circle median. We show that the arc distance
median filter with odd filter size gives a unique result for
almost all input data. The main contributions are fast algo-
rithms for arc distance median filtering: one for quantized
data (e.g., data quantized to degrees or minutes) and one
for non-quantized data. The complexity of our algorithm
for quantized data is constant w.r.t. the size of filter mask.
This is optimal, and it matches the complexity of the corre-
sponding median filter for real-valued data [2]. We propose
an algorithm that deals with non-quantized data as well.
It scales linearly w.r.t. the size of the filter mask. This does
not reach the squared logarithmic scaling of the real-valued
median filter with the lowest complexity [1], but – as the
defining functional is non-convex and the bisecting property
is not sufficient for being an arc distance median – we
conjecture that this cannot be improved. (We refer to the end
of the paper for a discussion.) Our reference implementation
is in practice only moderately more expensive than the

real-valued median filter algorithm implemented in Matlab.
Furthermore, our method is much faster than filtering using
the (extrinsic) normalized L1 median, which is based on the
vector median in R2. Let us also mention that, for small
masks and quantized data, the runtime is even lower than
the runtime of the proposed algorithm for quantized data.
We illustrate the performance of the proposed methods for
smoothing of orientation data, phase data, and flow fields.
In particular, we consider time series of wind directions,
interferometric synthetic aperture radar images, and optical
flow images.

1.3 Organization of the paper

In Section 2, we clarify the relation between different means
of defining a median on the circle, and we derive important
properties of the arc distance median. In Section 3, we
derive an algorithm for arc distance median filtering for
non-quantized data. In Section 4, we develop an algorithm
for quantized data. In Section 5, we drive numerical experi-
ments.

2 MEDIANS ON THE UNIT CIRCLE

We first discuss different ways of defining a median on
the unit circle. Recall that the classical real-valued me-
dian µR of real-valued data y ∈ RN has two important
characterizing properties: (i) a minimality property, i.e., it
is the minimizer of the total absolute deviation meaning
that µR ∈ argmina∈R

∑
i |a − yi|; (ii) a bisecting property

stating that at most half of the elements of y are above and
below µR. Remarkably, the analogues of these properties
on the unit circle lead to non-equivalent definitions. In
the following, we give precise definitions and discuss their
relations. Then, we also discuss extrinsic medians, i.e., quan-
tities that are derived from medians of the ambient vector
space R2. Eventually we compare the different definitions.

2.1 Circle-median based on the minimization of the arc
distance

We consider signals and images with values on the unit
circle, denoted by T or S1. If not stated differently, we use
the angular representation a ∈ (−π, π] for an element of the
unit circle, and y denotes data on the unit circle.

A natural metric on the unit circle is given by the arc
length distance d which is defined for a, b ∈ T by

d(a, b) =

{
|a− b|, if |a− b| ≤ π,
2π − |a− b|, else.

This distance just measures the smallest angle between a, b.
In analogy to the minimization property of the real-valued
median, the median for the unit circle can be defined as

med(y) = argmin
a∈T

∑
i

d(a, yi). (2)

As in [20], we say that µ ∈ med(y) is an arc distance (circle)
median.

Defining the median on the unit circle as energy mi-
nimizer can be traced back to Mardia [8] in 1972 in the
context of population medians; see also [19]. For samples of



3

spherical data it has been considered by Fisher [10]. There-
fore, (2) is also known as Mardia-Fisher median [39]. As
mentioned in the introduction, the arc distance median is a
specialization of the general concept of a geometric median
for general Riemannian manifolds studied by Fletcher et
al. [12].

2.2 Circle-median based on a bisecting property
The following definition of a (bisecting) median for N data
points on the circle corresponds to the one of a sample
median used by Mardia [8, 19]. We denote the antipodal
point of a by ã; that is, ã is the uniquely determined
point such that d(ã, a) = π. The definition employs the
following bisecting property: ρ ∈ T is a bisecting point,
if more than half of the data lies on either (closed) half-
circle/hemisphere defined by ρ and its antipodal point ρ̃.
Precisely, using the notation H−ρ , H

+
ρ for the clockwise and

the counterclockwise hemisphere, respectively, determined
by ρ, ρ̃, we define

ρ ∈ bi(y) :⇔ |{yi ∈ H−ρ }| ≥ N
2 and |{yi ∈ H+

ρ }| ≥ N
2.

(3)
With a point ρ, its antipodal point ρ̃ is a bisecting point for
data y as well. A bisecting (circle) median is now the one of
the candidates ρ, ρ̃ which has more data points on its side.
More precisely, using the notation Sµ, Sµ̃ for the half circle
centered at the points µ and µ̃,

µ ∈ b-med(y) :⇔ µ ∈ bi(y) and |{yi ∈ Sµ}| ≥ |{yi ∈ Sµ̃}|.
(4)

This definition generalizes the characterization of the real-
valued median by its bisecting property. The median de-
fined this way is also called Mardia median nowadays.
We here use the name bisecting median to avoid possible
confusion with the denomination Mardia-Fisher median
for (2).

2.3 Relations between the bisecting median and the arc
distance circle-median
Since we did not find it in the literature, we here clarify
the relation between arc distance circle medians defined
by (2) and bisecting circle medians defined by (4). In the
following, we illustrate the differences by several simple
examples which are collectively visualized in Figure 1.

In contrast to the real-valued case, on the circle, bisecting
medians need not be arc distance medians, and vice versa,
as the next example shows.

Example 1. We consider the data y = (−9π/16,−9π/16,
0, 9π/16, 9π/16). The unique arc distance median is 0. The
points 0,−9π/16, 9π/16 as well as their antipodal points
have the bisecting property (3), and the bisecting medians
are π, 7π/16,−7π/16. In particular, b-med(y)∩med(y) = ∅.

The previous example tells us that it might even happen
that the bisecting median and the arc distance median sets
are disjoint. It also reveals that there might be no bisecting
median which is a data point.

On the positive side, we have the following relation.

Proposition 1. Every arc distance median µ has the bisecting
property (3).

We note that we work rather formal in the following
since the intuition might be sometimes misleading when
working with circle-valued data. In order to show Propo-
sition 1 we need the following lemma as a preparation. It
states that, if a pair of a point and its antipodal is contained
in the data, we may remove it without changing the median
set. It will be helpful later on as well.

Lemma 2. Consider data y1, . . . , yN which contains an-
tipodal points yk and yl = ỹk, k < l. Then
the set of arc distance medians med(y1, . . . , yN ) for
data y1, . . . , yN equals the set of arc distance medi-
ans med(y1, . . . , yk−1, yk+1, . . . , yl−1, , yl+1, . . . , yN ) with the
data items yk and yl removed from the data.

Proof. We note that, for all points a, a′ on the circle,
d(a, yk)+d(a, yl) = d(a′, yk)+d(a

′, yl). Hence, for all point
a, a′, we have that

∑N
i=1 d(a, yi) ≤

∑N
i=1 d(a

′, yi) if and
only if

∑N
i=1,i6=k,l d(a, yi) ≤

∑N
i=1,i6=k,l d(a

′, yi). Hence µ
minimizes the above sum w.r.t. all data items if and only
if it minimizes the corresponding sum with the kth and lth
summand removed.

Proof of Proposition 1. We assume that µ is an arc distance
median. Without loss of generality, we may, by Lemma 2,
assume that no antipodal points of data points are in the
data. We denote the number of data points in the (closed)
clockwise and counterclockwise hemispheres H−ρ , H

+
ρ by r

and l, respectively. Further, we denote the number of data
items which equal µ by n and those which equal µ̃ by m. By
our assumption, if the antipodal point µ̃ is in the data, then
µ is not in the data, and the other way round. Hence, one of
the two numbers n,m always equals zero. We take a point
µ′ in one of the hemispheres H−ρ , H

+
ρ , which contain more

data items, i.e., take µ′ ∈ H := H−ρ if r ≥ l and H := H+
ρ

else. Assume further that µ′ 6= µ is so close to µ that no
data item or antipodal point of a data item is contained in
the interval between µ′ and µ. We now assume that m 6= 0.
Then d(µ′, yi) < d(µ, yi) for all yi with yi = µ̃. Furthermore,
for yi ∈ H, we have d(µ′, yi) = d(µ, yi) − d(µ′, µ). For the
yi on the other hemisphere, we have d(µ′, yi) = d(µ, yi) +
d(µ′, µ). Since the number of points in the hemisphere H
is at least as large as the number of points on the opposite
hemisphere, this implies fT(µ′) < fT(µ), where fT(a) =∑
i d(a, yi). This contradicts µ being a minimizer. Hence, it

remains to consider the case m = 0. We show that l ≥ N/2
and that r ≥ N/2. Without loss of generality, we assume
to the contrary that l < N/2. As above, we chose µ′ ∈ H
and similarly obtain that fT(µ′) < fT(µ) which contradicts
µ being a minimizer. Hence, µ has the bisecting property (3).

It is briefly mentioned in the introduction of [20] which
deals with population medians that there is a one to one
correspondence between bisecting medians and local mini-
mizers of the mean absolute deviation w.r.t. the considered
measure. In our case, the energy is given in (2), i.e.,

fT(a) =
∑
i

d(a, yi). (5)

In our setup, a one to one correspondence between bisecting
medians and local minimizers of (5) is not given in general,
as the following example shows.
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Example 2. We consider the data −π/8, π/8, π, π which
is of even length. The bisecting median set is given by
the union of the intervals [−7π/8,−π/2], [−3π/8,−π/8],
[π/8, 3π/8], [π/2, 7π/8], and the points 0 and π. The global
minimizer of (5), i.e., the arc distance median, is π. The local
minimizers ρ of (5), in the sense that there is a neighborhood
on which fT is not smaller than fT(ρ), are given by the
open intervals (−7π/8,−π/8), (π/8, 7π/8), and π. Hence,
there are local minimizers of (5), e.g., 7π/16, which are not
bisecting medians. Further, the bisecting median 0 is not a
local minimizer of (5); it is even the global maximum of fT.

However, for data of odd size, the set of local minimiz-
ers of (5) is characterized as the set of points having the
bisecting property (3) and which are contained in the data.

Proposition 3. Let data y ∈ TN with N odd. The total absolute
deviation functional fT defined by (5) attains a local minimum in
ν ∈ T if and only if ν both has the bisecting property (3) and is
contained in the data.

Proof. By Lemma 2 we may assume that the data does not
contain antipodal points. Inspecting the proof of Proposi-
tion 1, we see that ν being a local minimizer of (5) implies
that ν has the bisecting property and that ν does not agree
with an antipodal point of a data point. (Global minimality
was not used in this part.) Since data is of odd size, the
bisecting property implies that either ν or ν̃ is contained in
the data. Hence, ν is contained in the data.

For the converse direction, assume that ν is contained
in the data and that has the bisecting property (3). We
consider ν′ in a small neighborhood of ν not contain-
ing any other data point or its antipodal. Similar to the
proof of Proposition 1, we divide the data points yi into
those with d(µ′, yi) = d(µ, yi) − d(µ′, µ) and those with
d(µ′, yi) = d(µ, yi)+d(µ

′, µ). Then the bisecting property (3)
implies that the number of data points fulfilling the first
equality is smaller than the number of points fulfilling the
second inequality. Hence, fT(µ) < fT(µ

′) which shows that
µ is a local minimizer.

Concerning the non-uniqueness of the bisecting circle-
median we consider the following example.

Example 3. Consider data −3π/8, 0, 2π/3. Then the data
points 0 and −3π/8 as well as the antipodal point of 2π/3
are bisecting medians. The unique arc distance median is
0. If we perturb the data slightly but arbitrarily, the bisect-
ing median sets still consist of three elements. Therefore,
the bisecting median remains non-unique on a (Lebesgue)
nonzero set.

We record that the bisecting median can be non-unique
for a (Lebesgue) nonzero set of data, even for data of odd
size. Uniqueness properties of the arc distance median will
be investigated in the following subsection.

Summing up this subsection, we have seen that the arc
distance median and the bisecting median are quite differ-
ent. The corresponding median sets can be even disjoint. It
can also happen that bisecting medians are not contained
in the data. On the positive side, we have seen that every
arc distance median has the bisecting property (3), i.e.
med(y) ⊂ bi(y), for all circle valued data y (Proposition 1).
Furthermore, the bisecting medians which are contained

Example 1 Example 2 Example 3a Example 3b

Example 4a Example 4b Example 5

Data

Bisecting median

Arc distance median

Fig. 1: Visualization of the toy examples 1 to 5 for comparison of
the bisecting median and the arc distance median. The variants
of example 3 and 4 correspond to exact data (a) and to slightly
perturbed data (b).

in the data and the local minimizers of the arc distance
median defining functional (5) coincide for data of odd size
(Proposition 3).

2.4 Uniqueness properties of the arc distance median

We here discuss the uniqueness properties of the arc dis-
tance median. We recall that the real-valued median is
unique for data of odd length and need not be unique for
data of even length. In contrast, the arc distance median may
be non-unique even for an odd number of elements as the
following example shows.

Example 4. We consider a “Mercedes-Benz” type configu-
ration z = (0, 2π/3,−2π/3). Here, all elements of z are arc
distance medians.

For an even number of data items, there are situations
where every point is a median: e.g. when only pairs of
antipodals are contained in the data. For example, for
z = (0, π/2, π,−π/2) every point on the circle is a median.
For data of even length also rather arbitrary unions of dis-
joint intervals may appear as the following example shows.

Example 5. We consider a “doubled Mercedes-Benz”
type configuration z = (0, π/6, 2π/3, 5π/6,−2π/3,−3π/6).
Here the circle intervals [0, π/6], [2π/3, 5π/6], and
[−3π/6,−2π/3] are the arc distance median sets.

As it is the case for real-valued data, for data of even
length, uniqueness is not given even in the almost every
setting. This can also be seen at the previous example.
Varying the data points slightly but arbitrarily, still at least
one interval remains a median interval which results in non-
uniqueness on a non-zero set.

On the positive side we have the following result which
includes uniqueness guarantees for data of odd size in an
almost everywhere setting.

Theorem 4. For data of odd size, the arc distance median is
contained in the data and it is unique for almost all input data y.

For showing that the median is contained in the data, we
need the following preparation.

Lemma 5. Let y be data with values on the unit circle. Then the
data y contains an arc distance median of y.
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Induced from ambient vector space Intrinsic definitions
Separable median Normalized L1 median Bisecting median Arc distance median

Preservation of values no no no yes
Uniqueness (a.e. sense, odd number of elements) yes yes no yes
Invariant to rotation no yes yes yes
Exact solver yes no yes yes

TABLE 1: Comparison of medians for circle-valued data. Only the arc distance median provides uniqueness (in the almost
everywhere sense for an odd number of elements), preservation of values, and invariance to rotations. Furthermore, it can be
computed using a non-iterative scheme.

This statement is formulated as [22, Lemma 4.1] and
proved there.

Lemma 6. For data of odd length, the set of arc distance medians
med(y) is contained in the data y. In particular, the median set
consists of a finite number of points.

Proof. An arc distance median is a global minimizer of (5),
and therefore also a local minimizer. Hence, by Proposi-
tion 3, it is contained in the data.

Proof of Theorem 4. The uniqueness part of the theorem is a
special case of Theorem 7 which we prove in Section 3. By
Lemma 6, arc distance medians are data points.

We note that a statement analogous to Theorem 4 is not
true for the bisecting median which may be non-unique for
larger ranges of data of odd size (cf. Example 3).

2.5 Quantities induced by medians of the ambient vec-
tor space
A simple way to define a median type filter using the
ambient vector space is as follows. We regard the unit circle
as a subset of R2, and we apply real-valued median filtering
to the components of the data viewed as living in R2; i.e.,
we compute vectors (b∗, c∗) of median type by

b∗ = medR(cos(y1), . . . , cos(yN )),

c∗ = medR(sin(y1), . . . , sin(yN )).
(6)

The vector (b∗, c∗) is typically not an element of the unit
circle, so it has to be renormalized by taking the angular
component a∗ = atan2(b∗, c∗). We refer to a∗ as separable
median.

Ducharme and Milasevic [9] have proposed to use nor-
malized L1 medians. Here, one considers the values on the
unit circle as points in R2 and computes the classical vector
median in R2,

(b∗, c∗) = arg min
(b,c)∈R2

∑
i

‖(b, c)− (cos(yi), sin(yi))‖2. (7)

For the vector median in two dimensions, no closed form is
available, and a standard method for its computation is the
iterative Weiszfeld algorithm [40]. The vector median (7) is
unique unless all points lie on a line, see [39]. As before, the
result (b∗, c∗) is usually not an element of the unit circle. So
it is projected to the unit circle by a∗ = atan2(b∗, c∗) as well.

For both ambient space definitions considered, it can
happen that (b∗, c∗) = 0. Then the closest point projection
on the unit circle is not unique, and we might choose an
arbitrary point on the circle. However this happens only for
data of measure zero. So we have uniqueness in an almost
everywhere sense, as for the arc distance median.

Data

Separable median

Normalized L1 median

Bisecting median

Arc distance median

Fig. 2: Illustration of different notions of a median on the unit
circle. If all points lie on one hemisphere, the bisecting median
coincides with the arc distance median (left). In general, there
are many possibilities for the bisecting median, and they are
not necessarily data points (center, right). In all configurations,
the medians induced by the ambient space R2 – separable and
normalized L1 median – do not coincide with a data point (or
its antipodal point). The arc distance median is unique (almost
surely) and it is contained in the data.

2.6 Comparison

We compare the properties of the different notions of me-
dians on the unit circle. It is the main advantage of the
definitions based on the ambient space – separable median
and normalized L1 median – that the algorithms for the
vector space setting can be reused. On the flipside, the char-
acteristic property that the median is contained in the data
gets lost. It is a further disadvantage of the normalized L1

median that its computation requires an iterative procedure.
As the separable median minimizes a Manhattan distance,
it is not rotation invariant. Compared with the normalized
L1 median of the ambient space, the bisecting median has
the advantage that it can be computed exactly as it can be
done for the separable median. Compared with the bisecting
median, the arc distance median has the advantage that it
preserves the values, i.e., there is always a median which is
a data point. Further, it has stronger uniqueness properties.

Summing up, as only concept, the arc distance median
satisfies the desirable properties of preservation of values, of
uniqueness in an almost everywhere sense and of allowing
for an exact solution. A summary relating the different
concepts of a median and the desired properties is given
in Table 1. Figure 2 illustrates the discussed quantities for
some typical data configurations.

3 ARC DISTANCE MEDIAN FILTERING

Now we deal with filtering based on the arc distance me-
dian. We consider a circle-valued image y ∈ TM×N , where
M,N ≥ 1. We always assume mirror boundary conditions,
that is, for n < 0

ymn =

{
y−m−1,−n−1, if m ≤ 0,

y2M−m−1,−n−1, if m ≥M,
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and analogously for n > N − 1 by ymn = y−m−1,2N−n−1, if
m ≤ 0, and by ymn = y2M−m−1,2N−n−1, if m ≥M.

At first, we prove a uniqueness statement for the filter
output.

Theorem 7. For almost all signals or images, the output of the
arc distance median filter (1) with a mask of odd size is unique.

Proof. We first consider data y with the property that the
data item yij does not coincide with another data item
ykl, (k, l) 6= (i, j), or its antipodal point ỹkl, (k, l) 6= (i, j),
i.e., yij /∈ Vij , for all i, j, where

Vij = {z ∈ T : z = ykl or z = ỹkl,

(0, 0) ≤ (k, l) ≤ (N − 1,M − 1), (k, l) 6= (i, j)}.
We gather the data with this property in the set P, i.e.,

P = {y ∈ TN×M : yij /∈ Vij for all (i, j)},
and start out to show that it is enough to prove the assertion
for data in an arbitrary neighborhood of y ∈ P.

To this end, we consider, for δ > 0, the sets Pδ defined
by

Pδ := {y ∈ TN×M : d(yij , Vij) ≥ δ for all (i, j)}.
We note that the elements of the sets Pδ are well separated.
We further notice the important fact that Pδ is compact.
Hence it allows for a finite subcovering for every initial
covering. We have that P =

⋃
n∈N P1/n. We note that the

complement of P is a Lebesgue zero set. Hence it is enough
to show the assertion of the theorem for P. Since P is the
countable union of the sets P1/n, n ∈ N, it is sufficient
to show the assertion of the theorem for Pδ, δ > 0. Let
us assume that, for every y ∈ P, the statement holds in
a neighborhood Uy of y. Then we can cover Pδ with the
sets Uy, y ∈ Pδ, for every δ > 0. By the compactness of
Pδ, there are finitely many neighborhoods Uy covering Pδ,
and in each such neighborhood the minimizer is a.e. unique.
Therefore, the minimizer is a.e. unique in Pδ. Summing
up, it is enough to show the assertion of the theorem in
a neighborhood of Uy for y ∈ P.

As a next step, we see that it is enough to show the state-
ment pointwise, i.e., the response of the circle median filter
is a.e. unique at the pixel (k, l) for data in a neighborhood
of y ∈ P . If we assume to the contrary that the filter output
is non-unique on a Lebesgue nonzero set in a neighborhood
of y ∈ P , then there is a pixel (k, l) such that the filter
output at (k, l) is non-unique on a Lebesgue nonzero set
in a neighborhood of y ∈ P. Hence, almost everywhere-
uniqueness of the filter at a pixel (k, l) implies the corre-
sponding statement for the whole filter response. Hence, for
notational convenience, we consider the (2r+1)(2t+1) data
items of y which contribute to the values of the median filter
at pixel (k, l), and rearrange them as the vector (y1, . . . , yN ).
Summing up, we have data (y1, . . . , yN ), and we have to
show that the circle median is a.e. unique for y ∈ P.

To this end, we have to unwrap the circle w.r.t. a base
point b on the circle, i.e., we consider the mapping πb : T→
(−π, π]) which maps b to 0, x to d(x, b) if x is on the counter-
clockwise hemisphere w.r.t. b and x to−d(x, b) else. We need
the function

f(a, y1, . . . , yN ) =
N∑
i=1

d(a, yi). (8)

By our definition of P , for every b ∈ V, there are sufficiently
small neighborhoods Uy of the data y and of b, such that

f(a, y′1, . . . , y
′
N ) =

N∑
i=1

|πb(a)− πb(y′i)| (9)

for all y′ in the neighborhood Uy of y, and all a in the
neighborhood of b.

By Lemma 6, there is an arc distance median contained
in the data y. Let v be such an arc distance median and
consider v as a basepoint for unwrapping. For data y,
πv(v) is a minimizer of the right-hand side of (9) w.r.t.
data πb(yi). Since the minimizer of the right-hand side
of (9) (w.r.t. the first variable for fixed data πb(y

′
i)) is

unique, we get a uniquely defined element v(y′) such that
f(v(y′), y′1, . . . , y

′
N ) > f(a, y′1, . . . , y

′
N ) for all a 6= v(y′) in a

neighborhood Nv of v, and all y′ ∈ Uy. We note that v(y) =
v and that, in particular, v is locally a unique minimizer.
Also v(y′) is locally a unique minimizer. Furthermore, since
f is continuous and T is compact there is a neighborhood
U ′y of y such that, for all y′ ∈ U ′y , the minimizers of
f( · , y′1, . . . , y′N ) are located in the above neighborhoodsNv,
where v is a minimizer w.r.t. data y. Then, for every y′ in U ′y,
we consider the number n(y′) of different minimizers for
data y′. We have to show that n(·) = 1 besides a Lebesgue
zero-set in U ′y. We assume to the contrary that n(y′) > 1 on
a set B ⊂ U ′y of positive Lebesgue measure. Then there is
an open set W ⊂ B and circle medians v′(y′) and v′′(y′)
for data y′ ∈ B such that v′, v′′ are continuous functions of
y′, such that v′(y′) 6= v′′(y′) for all y′ ∈ B, and such that
f(v′(y′), y′1, . . . , y

′
N ) = f(v′′(y′), y′1, . . . , y

′
N ) for all y′ ∈ W.

Now we use the right hand side of (9) to conclude the differ-
entiability of the mappings h(y′) := f(v′′(y′), y′1, . . . , y

′
N ) :

in fact, since we may assume that all data items πb(y′j) are
different (because y is assumed to be in P ), the right hand
side of (9) with πb(v′(y′)) and πb(v′′(y′)) as functions of y′ as
first argument is differentiable w.r.t. the variable y′. Its par-
tial derivative with respect to an arbitrary variable is given
by either 1,−1, or 0. Here 0 appears precisely once: we ob-
tain zero when taking the derivative w.r.t. the variable which
represents the median. Further, the number pi of +1’s and
the number ni of −1’s on the interval Ii are equal. For the
real valued right hand side of (9), a partial derivative of +1
is equivalent to the corresponding data item being greater or
equal to the median; a partial derivative of −1 is equivalent
to the corresponding data item being smaller or equal to the
median. Now we consider fixed data y′′ ∈W, and the corre-
sponding different medians v′(y′′) 6= v′′(y′′). Since they are
different, there is a data item y′′i such that πv′(y′′)(y′′i ) > 0
and πv′′(y′′)(y

′′
i ) < 0, or reversed, i.e., πv′(y′′)(y′′i ) < 0

and πv′′(y′′)(y
′′
i ) > 0. (Note that the median equals 0 since

πz(z) = 0, for all z.) In any case, the derivative of the
right-hand side of (9) w.r.t πv′′(y′′)(y′′i ) does not equal the
derivative of the right-hand side of (9) w.r.t πv′(y′′)(y′′i ). This
contradicts f(v′(y′), y′1, . . . , y

′
N ) = f(v′′(y′), y′1, . . . , y

′
N ) for

all y′ ∈ W. Hence, the number of different arc distance
medians n(·) = 1 almost everywhere in a neighborhood
of data y, which we saw in the beginning, is enough to
conclude the assertion of the theorem.

Next we turn to algorithms for computing the arc dis-
tance median filter (1). For simplicity, we focus on filter
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Fig. 3: Graphical illustration of the two-stage recurrence scheme
at pixel (m,n) for a 5× 5 filter mask.

masks of odd side lengths R = 2r + 1 and T = 2t + 1.
(The modifications for even filter sizes are straightforward,
but note that uniqueness gets lost.) We start with the fol-
lowing simple observation: Since an arc distance median
is contained in the data (cf. Lemma 5), it is enough to
search a minimizer among the data points in the mask;
that is, we have to determine the sums in (1) for a being
data points only. Note that a simple “brute-force” approach,
i.e. evaluating (1) directly for all items in the mask, would
lead to an O(R2T 2) algorithm. An algorithm of complexity
O(RT (logR + log T )) can be devised by utilizing dynam-
ically updated sorting of the elements in the filter mask.
On the flipside, that approach requires a self-balancing
binary search tree (e.g., a red-black tree) as underlying data
structure which makes implementation more involved and
leads to computational overhead. The algorithm we propose
here has lower complexity and does not require dynamic
data structures. The crucial point of the proposed approach
is the observation that there are several recurrence relations
between adjacent rows and columns which we may exploit
to compute the sums in (1) efficiently. More specifically, if we
perform rowwise filtering, we can compute the deviations
for all elements in the filter mask as follows. The deviations
with respect to the values in the first R − 1 rows of the
mask obey a recurrence relation which depends on the last
processed row and on a type of accumulator. The accumu-
lator in turn satisfies another recurrence in row-direction.
Then, for the first T − 1 elements in the last row of the
mask, we use yet another recurrence in horizontal direction.
The remaining element in the mask (Rth row, T th column)
is computed directly using the sum in (1). The detailed
procedure is provided as pseudo-code in Algorithm 1. Next
we prove its correctness along with the derivation of the
recurrence relations. A graphical illustration of the compu-
tational scheme is given in Figure 3.

Theorem 8. Algorithm 1 computes the arc distance median
filter (1) of mask sizeR×T for non-quantized circle-valued data y
in O(RT ) time per element.

Proof. For integers k, l,m, n with −r ≤ k ≤ r, −t ≤ l ≤ t,
0 ≤ m ≤ M − 1, and 0 ≤ n ≤ N − 1, we consider the
quantities

Gmnkl =
r∑

i=−r

t∑
j=−t

d(ym+k,n+l; ym+i,n+j). (10)

We recall that we are looking for minimizing arguments
k∗, l∗ of Gmnkl , since these minimizing arguments define the

Algorithm 1: Arc distance median filter for non-quantized
data

Input: Data y ∈ TM×N ; filter mask side lengths R = 2r + 1
and T = 2t+ 1, with r, t ∈ N0

Output: Arc distance median filtered data u ∈ TM×N

/* Process first row */
for k ← −r to r do // process first element (n = 0,m = 0)

for l← −t to t do
G00

kl ←
∑r

i=−r

∑t
j=−t d(yk,l; yi,j);

end
end
for n← 1 to N − 1 do // process rest of first row (m = 0)

for k ← −r to r do
for l← −t to t− 1 do

G0n
kl ← G0,n−1

k,l+1 +
∑r

i=−r d(yk,n+l; yi,n+t)

− d(yk,n+l; yi,n−t−1);
end
G0n

kt =
∑r

i=−r

∑t
j=−t d(yk,n+t; yi,n+j);

end
end

Fill u0n for n = 0, ..., N − 1 using equation (11);

/* Process rows m = 1, . . . ,M − 1 */
for m← 1 to M − 1 do

for k ← −r to r do // init auxiliary array Z
for l← −t to t do

Zmn
kl ←

∑t
j=−t d(ym+k,n+l; ym+r,n+j)

− d(ym+k,n+l; ym−r−1,n+j);
end

end
for l← −t to t do // compute first element Gm0

for k ← −r to r − 1 do
Gm0

kl ← Gm−1,0
k+1,l + Zm0

kl ;
end
Gm0

rl ←
∑r

i=−r

∑t
j=−t d(ym+r,l; ym+i,j);

end
for n← 1 to N − 1 do

for k ← −r to r do // update Z
for l← −t to t− 1 do

Zmn
kl ← −d(ym+k,n+l; ym+r,n−t−1)

+ d(ym+k,n+l; ym−r−1,n−t−1)
+ d(ym+k,n+l; ym+r,n+t)
− d(ym+k,n+l; ym−r−1,n+t) + Zm,n−1

k,l+1 ;
end
Zmn

kt ←
∑t

j=−t d(ym+k,n+t; ym+r,n+j)
− d(ym+k,n+t; ym−r−1,n+j);

end
for l← −t to t do // compute first 2r rows of Gmn

for k ← −r to r − 1 do
Gmn

kl ← Gm−1,n
k+1,l + Zmn

kl ;
end

end
for l← −t to t− 1 do // compute last row of Gmn

Gmn
rl ←

∑r
i=−r d(ym+k,n+l; ym+i,n+t)

− d(ym+k,n+l; ym+i,n−t−1) +Gm,n−1
r,l+1 ;

end
Gmn

rt ←
∑r

i=r

∑t
j=−t d(ym+k,n+l; ym+i,n+j);

end

Fill umn for n = 0, ..., N − 1 using equation (11);

end
return u;
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arc distance median filter by

umn = ym+k∗,n+l∗ . (11)

We first show the correctness of Algorithm 1 by showing the
following recurrence formulae. We start out letting m = 0.
For n = 1, ..., N − 1, k = −r, ..., r, and l = −t, ..., t− 1, we
get that the values G0n

kl fulfill the recurrence relation

G0n
kl =

r∑
i=−r

{
d(yk,n+l; yi,n+t)− d(yk,n+l; yi,n−t−1)

+
t−1∑

j=−t−1
d(yk,n+l; yi,n+j)

}
=

r∑
i=−r

d(yk,n+l; yi,n+t)− d(yk,n+l; yi,n−t−1)

+
r∑

i=−r

t∑
j=−t

d(yk,n−1+l+1; yi,n+j−1)

=
r∑

i=−r
d(yk,n+l; yi,n+t)− d(yk,n+l; yi,n−t−1) +G0,n−1

k,l+1 .

For l = t, we compute G0n
kt simply by G0n

kt =∑r
i=−r

∑t
j=−t d(yk,n+t; yi,n+j), for k = −r, ..., r.

Next, we consider general row indices m = 1, ...,M − 1.
For k = −r, . . . , r − 1, l = −t, . . . , t and n = 1, ..., N − 1,
we may express Gmnkl by

Gmnkl =
∑r−1

i=−r−1

∑t

j=−t
d(ym+k,n+l; ym+i,n+j)

+
∑t

j=−t
d(ym+k,n+l; ym+r,n+j)

−
∑t

j=−t
d(ym+k,n+l; ym−r−1,n+j)

=
r∑

i=−r

t∑
j=−t

d(ym−1+k+1,n+l; ym+i−1,n+j) + Zmnkl

=Gm−1,nk+1,l + Zmnkl ,

where the auxiliary array Zmnkl is defined by

Zmnkl =
∑t

j=−t
d(ym+k,n+l; ym+r,n+j)

− d(ym+k,n+l; ym−r−1,n+j).

Also, the auxiliary array Z fulfills a recurrence relation: for
k = −r, . . . , r and l = −t, . . . , t − 1, n = 1, ...N − 1, and
m = 1, ...,M − 1, we get that

Zmnkl =− d(ym+k,n+l; ym+r,n−t−1)

+ d(ym+k,n+l; ym−r−1,n−t−1)

+ d(ym+k,n+l; ym+r,n+t)

− d(ym+k,n+l; ym−r−1,n+t)

+
∑t−1

j=−t−1
d(ym+k,n+l; ym+r,n+j)

− d(ym+k,n+l; ym−r−1,n+j)

=− d(ym+k,n+l; ym+r,n−t−1)

+ d(ym+k,n+l; ym−r−1,n−t−1)

+ d(ym+k,n+l; ym+r,n+t)

− d(ym+k,n+l; ym−r−1,n+t) + Zm,n−1k,l+1 .

Using a similar argument, we get for k = r and l =
−t, . . . , t− 1, that the Gmnkl are related via

Gmnkl =Gm,n−1k,l+1 +
∑r

i=−r
d(ym+k,n+l; ym+i,n+t)

− d(ym+k,n+l; ym+i,n−t−1).

We further observe that we can discard the tables Gm−1,n

for n = 0, . . . , N −1 when processing Gmn, and the same is
true for Zmn. This shows the correctness of the algorithm.
Furthermore, we see that the extra memory consumption is
in the order of N arrays of size R× T.

It remains to prove the assertion on the time complexity.
We first note that (11) has linear complexity in the size of
the filter mask RT. For the computation of Gmn we need
at most four nested for-loops, which are – since R ≤ M
and T ≤ N – all in O(RTMN). We obtain the overall
complexity O(RTMN), or O(RT ) per element.

4 A CONSTANT TIME ARC DISTANCE MEDIAN FIL-
TER FOR QUANTIZED DATA

Next we derive a fast method for arc distance median
filtering for quantized data. That is, the values of y are
contained in a finite set Q = {q1, . . . , qS} ⊂ T, where
S ∈ N. In contrast to Algorithm 1, where we computed
the deviations Gmnkl for the data items in the mask, we now
consider the set of possible data values Q as a candidate
set. We derive recurrence relations for the corresponding
deviations Fmn given by

Fmn(q) =
r∑

i=−r

t∑
j=−t

d(q; ym+i,n+j), (12)

for 0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1, and q ∈ T, which
are key for a fast computation. The algorithm is given as
pseudo-code in Algorithm 2. We next state a theorem on the
correctness and the complexity of the algorithm.

Theorem 9. Let Q ⊂ T be a finite set. Algorithm 2 computes
the arc distance median filter of size R× T for data y with values
in Q in O(1) time per element.

Proof. By Lemma 5, the search space for an arc distance
median can be reduced to the set of values which, in the
quantized situation, is contained in the set Q. Hence, we
have

umn = argmin
q∈Q

Fmn(q). (13)

We compute the tabulations Fmn(q) for all q ∈ Q. We start
out with m = 0 and obtain the recurrence relation

F 0n(q) =
r∑

i=−r

{ t−1∑
j=−t−1

d(q; ym+i,n+j)

+ d(q; ym+i,n+t)− d(q; ym+i,n−t−1)
}

=
r∑

i=−r

{ t∑
j=−t

d(q; ym+i,n+j−1)

+ d(q; ym+i,n+t)− d(q; ym+i,n−t−1)
}

=
r∑

i=−r
d(q; ym+i,n+t)− d(q; ym+i,n−t−1)

+ F 0,n−1(q).
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Next we consider the remaining rows m = 1, . . . ,M − 1,
and define the auxiliary quantity Z by

Zmn(q) =
∑t

j=−t
d(q; ym+r,n+j)− d(q; ym−r−1,n+j).

For n = 1, . . . , N − 1, we have that the Zmn fulfill the
relation

Zmn(q) =Zm,n−1(q) + d(q; ym+r,n+t)− d(q; ym−r−1,n+t)
− d(q; ym+r,n−t−1) + d(q; ym−r−1,n−t−1).

It follows that, for all m = 1, ...,M−1 and n = 0, . . . , N−1,
the Fmn are related via the Zmn by the recurrence relation

Fmn(q) =
t∑

j=−t

{ r−1∑
i=−r−1

d(q; ym+i,n+j)

+ d(q; ym+r,n+j)− d(q; ym−r−1,n+j)
}

=
t∑

j=−t

{ r∑
i=−r

d(q; ym+i−1,n+j)

+ d(q; ym+r,n+j)− d(q; ym−r−1,n+j)
}

=Zmn(q) + Fm−1,n(q).

Next we observe that we may overwrite the values of
Fm−1,n and Zm−1,n when processing the mth row. Fur-
thermore, only the value of Zm,n−1 is required when pro-
cessing the element at m,n. This proves the correctness of
Algorithm 2.

Regarding the computational costs, we first note that
computing (13) has constant complexity in the size of the
filter mask. As Q is fixed, the computational effort for the
first elements of Z is O(MT ), and for the other elements
of Z is O(MN). Likewise, computations for F 00, F 0n, and
Fmn are in O(RT ), O(RN), and O(MN), respectively. As
R ≤ M and T ≤ N, the overall complexity is O(MN), or
O(1) per element.

5 NUMERICAL RESULTS

We have implemented the proposed algorithms in C++ with
Matlab interface using Mex files.1 We compare our method
with filters based on the separable median and on the
normalized L1 median. For the first one we use the function
medfilt2 shipped with Matlab 2016b. For the latter, we
have implemented the Weiszfeld algorithm in C++; see [40].
We use the starting value (0, 0) and the stopping criterion
‖µk − µk+1‖1 ≤ τ‖µk+1‖1 with τ = 10−9 as proposed
in [41]. We also limit the maximum number of iterations
to 100. All experiments were conducted on a laptop with
2.2 GHz Intel Core i7 and 16 GB RAM. We first compare
the denoising performance and the runtimes of the different
circle median filters on synthetic data. Then we apply the
filters for smoothing real data.

1. Reference implementation provided at
https://github.com/mstorath/CircleMedianFilter

Algorithm 2: Arc distance median filter for quantized data

Input: Data y ∈ QM×N with Q ⊂ T; filter mask side lengths
R = 2r + 1 and T = 2t+ 1 with r, t ∈ N

Output: Arc distance median filtered image u ∈ QM×N

/* Process first row */
for q ∈ Q do

F 0(q)←
∑r

i=−r

∑t
j=−t d(q; ym+i,n+j);

for n← 1 to N − 1 do
Fn(q)← Fn−1(q)+

∑r
i=−r d(q; yi,n+t)−d(q; yi,n−t−1);

end
end
for n← 0 to N − 1 do

u0n ← argminq F
n(q);

end

/* Process rows m = 1, . . . ,M − 1 */
for m← 1 to M − 1 do

for q ∈ Q do
Z(q)←

∑t
j=−t d(q; ym+r,j)− d(q; ym−r−1,j) ;

F 0(q)← Z(q) + F 0(q);
for n← 1 to N − 1 do

Z(q)← d(q; ym+r,n+t)− d(q; ym−r−1,n+t)
− d(q; ym+r,n−t−1) + d(q; ym−r−1,n−t−1) + Z(q);
Fn(q)← Z(q) + Fn(q);

end
end
for n← 0 to N − 1 do

umn ← argminq F
n(q);

end
end

5.1 Experimental results on synthetic data
First, we compare the denoising performance of the filters
on synthetic data. To our knowledge, there is no established
denoising benchmark for circle-valued images. To create
a benchmark data set with diversified content, we utilize
the hue values of the 200 training images of the Berke-
ley Segmentation Dataset BSDS500 [42, 43]. We corrupted
these circle-valued images with impulsive type noise: we
randomly chose a set of pixels (according to a given per-
centage), and then let those pixels be i.i.d. with respect to
the uniform distribution on the unit circle. As in [11], we
use the circular noise reduction index

NRIc = 10 log10

(∑
ij d(gij , yij)∑
ij d(gij , uij)

)
db

for the quantitative evaluation. Here g denotes the
groundtruth, y the data, and u the filtering result. A high
value of NRIc is desirable. The results for different noise
levels (i.e., fractions of corrupted pixels) and different filter
sizes are given in Table 2. The reported values are averages
over all processed images. We observe that the normalized
L1 median filter and the arc distance median filter give
consistently better results than the separable median filter.
The normalized L1 median filter gives slightly better results
than the arc distance median filter for low noise levels
in combination with small filter sizes only. In all other
cases, including in particular higher noise levels, the arc
distance median filter performs slightly better. In Figure 4,
we illustrate the qualitative effects of the different median
filters on a synthetic image with impulsive noise. There, we
see that the separable median filter can lead to distortions
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Fig. 5: Runtime of our methods for a randomly generated
image of size 500 × 500 and filter masks of size R × R with
R = 3, 5, . . . , 31. Our method for non-quantized data (Al-
gorithm 1) is slightly faster than the separable median filter,
which mainly consists of applying a real-valued median filter
twice. Furthermore it is around 60 times faster than the normal-
ized L1 median filter, which is computed using the Weiszfeld
algorithm. The runtime of our algorithm for quantized data
(Algorithm 2) is constant with respect to the filter size.

at the sharp edges. The normalized L1 median filter and the
arc distance median filter give comparably good results in
terms of reconstruction quality.

5.2 Runtimes and potential for parallelization

We first compare the runtimes of the proposed arc distance
median filter with those of the separable median filter and
the normalized L1 median filter for unquantized data. Fig-
ure 5 shows the CPU times for the image size 500×500 with
different filter sizes. The reported runtimes are averages
over ten images which were generated randomly using the
uniform distribution on the unit circle. (See also Figures 4,
7, 8, and Tables 2, 3 for runtimes for other types of images.)
We observe that Algorithm 1 needs less than twice the time
of the real-valued median filter implemented in Matlab.
Hence, Algorithm 1 is slightly faster than the separable
median filtering, which essentially consists of executing the
real-valued median filter twice. On the other hand, Algo-
rithm 1 is around 60 times faster than the normalized L1 me-
dian filter. The limit for real-time processing, i.e., processing
25 frames per second, is currently around 450×450 pixel for
a 3×3 filter mask for the non-quantized algorithm. We note
that the computational efforts of the proposed algorithms
only depend on the filter size and the image size, but not on
the image content.

Figure 5 also shows that the runtime of Algorithm 2 is
constant with respect to the filter size. For data quantized to
S = 360 values, Algorithm 2 is faster for filter masks larger
than 7× 7, whereas Algorithm 1 is faster for smaller filters.
At quantization level S = 1800, the critical size is 19× 19.

A simple yet effective way to parallelize the proposed al-
gorithms is to process the filtering on disjoint image patches.
This only requires adjustment of the boundary conditions
according to the continuation at the patch boundaries. To
explore the potential of this patchwise filtering, we parti-
tioned an image of size 10002 into quadratic patches of side
lengths between 1000 and 10 pixels, so that we obtain from
one up to 104 patches. In Figure 6 we report the runtimes of
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Fig. 6: Total runtime of the arc distance median filter (Algo-
rithm 1) for patchwise processing of a 1000× 1000 image. If the
filter masks are small relative to the patch size, there is almost
no loss of efficiency.

the patchwise processing. We observe that there is almost no
loss in efficiency if the filter mask is small in relation to the
patch size. If the filter size is close to the patch size the total
runtime gets around twice as high. Thus, the workload can
be distributed efficiently to a large number of processors so
that parallelization on the GPU seems feasible.

5.3 Experimental results on real data
5.3.1 Smoothing of phase data – InSAR images
Synthetic aperture radar (SAR) is a radar technique for
sensing the earth’s surface from measurements taken by air-
crafts or satellites. Interferometric synthetic aperture radar
(InSAR) images consist of the phase difference between
two SAR images, recording a region of interest either from
two different angles of view or at two different points in
times. Important applications of InSAR are the creation
of accurate digital elevation models and the detection of
terrain changes; cf. [5, 44]. As InSAR data consists of phase
values that are defined modulo 2π, their natural data space
is the unit circle. In Figure 7, we illustrate circle-median
filtering to an InSAR image taken from [45]. We observe
that the results of the separable median is less smooth than
those of the normalized L1 median and the arc distance
median. The results of the normalized L1 median and the
arc distance median are comparable with respect to quality,
but the latter requires significantly less computation time.

5.3.2 Smoothing the angular component in polar coordi-
nates – Optical flow images
In planar flow fields each pixel contains a two-dimensional
displacement vector, i.e., yij = (z1, z2) ∈ R2. Such images
appear for example in optical flow [6] or wind fields [7].
One way of smoothing flow fields consists of applying
a classical real-valued median filter on both components
separately [46]. A drawback of that approach is that it is
not invariant with respect to rotations. Rotation-invariant
filtering can be achieved by filtering based on the vector
median or by median filtering in polar coordinates. The
latter means that we write the displacement vector in polar
coordinates (z1, z2) = (r cosω, r sinω), and apply the arc
distance median filter to the angular component ω and the
classical real-valued median filter to the radial component r.
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Separable median filter Normalized L1 median filter Arc distance median filter
Filter size 32 52 72 92 112 32 52 72 92 112 32 52 72 92 112

NRIc ∅ 0.1 9.6 7.3 5.9 4.9 4.3 9.7 7.3 5 .9 4 .9 4 .3 9 .7 7 .3 5.9 4.9 4.3
(different 0.2 10.6 9.9 8.7 7.8 7.2 11.2 10.1 8.8 7.9 7.2 11 .0 10 .0 8 .8 7 .9 7 .2
noise levels) 0.3 9.3 11.2 10.2 9.4 8.8 10.3 11.5 10.4 9.5 8 .9 10 .1 11 .4 10 .3 9 .5 8.9

0.4 7.3 11.2 11.1 10.4 9.9 8.3 12 .0 11.4 10 .6 10 .1 8 .2 12.0 11 .4 10.6 10.1
0.5 5.3 9.7 10.9 10.8 10.5 6.2 11 .1 11 .8 11 .3 10 .8 6 .1 11.5 12.0 11.4 10.9
0.6 3.7 7.3 9.2 9.8 10.0 4 .3 8 .8 10 .8 11 .2 11 .0 4.3 9.5 11.9 11.9 11.5
0.7 2.3 4.9 6.7 7.6 8.0 2 .8 6 .0 8 .3 9 .5 10 .0 2.8 6.6 9.9 11.5 11.7
0.8 1.3 2.8 4.2 5.2 5.9 1 .5 3 .4 5 .2 6 .6 7 .6 1.6 3.8 6.1 8.3 9.9
0.9 0.6 1.2 1.9 2.5 3.2 0 .6 1 .4 2 .2 3 .0 3 .8 0.7 1.5 2.4 3.4 4.4

Runtime ∅ [s] 0 .04 0 .09 0 .17 0 .27 0 .39 2.40 6.39 12.35 20.30 30.28 0.03 0.07 0.14 0.22 0.33

TABLE 2: Quantitative comparison of circle-median filters on a synthetic data set. The numbers represent the noise reduction index
NRIc. The normalized L1 median filter yields the best results for lower noise levels combined with smaller filter sizes whereas the
arc distance median filter provides the best results at higher noise levels as well as for larger filter sizes. The proposed algorithm
is much faster than the normalized L1 median filter.

(a) Noisy data (Size 300×300, 50%
impulsive noise)

(b) Separable median filter
CPU time: 0.097 s, NRIc: 8.6

(c) Normalized L1 median filter
CPU time: 8.097 s, NRIc: 9.4

(d) Arc distance median filter
CPU time: 0.090 s, NRIc: 9.7

Fig. 4: Qualitative comparison of circle-median filters for a synthetic image using a filter of size 7 × 7. We observe that the
separable median filter creates erroneous values at some edges. The normalized L1 median filter and the arc distance median
filter produce comparable results with respect to smoothness; the arc distance median filter has slightly sharper edge localization.
(The circle-valued data are visualized as hue component in the HSV color space.)

This is particularly interesting when the focus is on smooth-
ing the angular component. Regularization of optical flow
images in polar representations has been used for example
in [47]. To compare these approaches for smoothing flow
fields, we have computed optical flow images using seven
different methods discussed and implemented in [46]. In
Table 3, we report the average angular error on the Middle-
bury training dataset [48] for these methods and the three
mentioned filtering approaches. We observe that the polar
filtering (using the arc distance median) gives consistently
better results than the separable median at only moderately
higher runtime. The vector median yields the best results
in average. Filtering in polar coordinates almost attains the
quality of the vector median, and it is more than 60 times
faster. Considering the ratio of the average improvement
and the average runtime, the filtering in polar coordinates
turns out to be the most efficient of the three discussed
approaches. We remark that, when considering the endpoint
error as a measure of quality, filtering in polar coordinates
only yields a slight improvement and, in that case, the

vector median clearly gives the best results. We further point
out that passing to weighted and bilateral filters typically
improves upon the results of the present unweighted filters
[16, 17, 46]. We briefly discuss the challenges of weighted
median filters for circular data at the end of this paper.
To summarize, median filtering in polar coordinates can
be an efficient, rotation-invariant alternative to the classical
median filtering approaches.

5.3.3 Smoothing of orientation data – Time series of wind
directions

Eventually, we illustrate the utility of the proposed method
for smoothing time series of orientations. The present data
set consists of wind directions at station SAUF1 (St. Augus-
tine, Florida) recorded every 10 minutes in the year 2014.2

The data is given quantized to integer angles in degrees,
thus K = 360. We smooth the data over around one day,

2. Wind direction data available at
http://www.ndbc.noaa.gov/historical_data.shtml.
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(a) Data (376× 400) (b) Separable median filtering
CPU time: 0.040 s

(c) Normalized L1 median filtering
CPU time: 2.576 s

(d) Arc distance median filtering
CPU time: 0.032 s (Algorithm 1)

Fig. 7: Median filtering of an InSAR image from [45] using a 3× 3 filter mask. The results of the separable median is less smooth
than the others which can be observed in particular in the right zoomed image. The results of the normalized L1 median and the
arc distance median are comparable, but the latter requires significantly less computation time.

Original Compo- Vector Polar
(from [46]) nentwise median coord.

HS 4.688 4.620 4.605 4 .611
BA 3.847 3.828 3.805 3 .806
Classic-C 3.501 3.501 3.481 3 .484
Classic++ 3.301 3.299 3.275 3 .279
Classic+NL-Full 2.660 2.657 2.644 2 .649
Classic+NL 2.655 2.655 2.637 2 .641
Classic+NL-Fastp 2.645 2.649 2.634 2 .639

Improvement ∅ 0.002 0.026 0 .022
Runtime ∅ [s] 0.106 11.391 0 .183
Improv./Runtime ∅ 0 .020 0.002 0.121

TABLE 3: Top: Average angular error for various methods of
optical flow estimation on the Middlebury training set, and the
results of subsequent median-type smoothing using a 5 × 5
filter mask. Bottom: Average improvement in quality, average
runtime, and ratio between improvement and runtime.

that is, we use the filter size R = 24 ·6+1 = 145 and T = 1.
The smoothed signal facilitates to identify the trends of the
wind directions; see Figure 8.

6 DISCUSSION AND CONCLUSION

We start this section by discussing a conjecture on the com-
plexity of arc distance median filtering for non-quantized
circle-valued data. Then we conclude with summarizing our
contributions and discussing future research.

6.1 Conjecture on the complexity of arc distance me-
dian filtering for non-quantized circle-valued data
As mentioned in the introduction, the best known algo-
rithm for median filtering for (non-quantized) real-valued
data, the Gil-Werman algorithm [1], has squared logarithmic
complexity in the size of the filter mask, and it almost
reaches the theoretical lower bound for median filtering for
real-valued data. For circle-valued data, approaches similar
to the Gil-Werman algorithm seem unfeasible, since that
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Fig. 8: Top: Wind directions at station SAUF1 (St. Augustine,
Florida) recorded every 10 minutes in the year 2014. Bottom:
Arc distance median filter with filter size 145. The data is given
quantized to K = 360 angles. Therefore, we use Algorithm 2.
The computation time amounts to only 0.09 seconds for the
signal of length N = 52549.

algorithm takes advantage of the fact that a real-valued
median is characterized by the bisecting property on the real
line. We have seen that the analogous bisecting property
is only necessary but not sufficient for the arc distance
median; see Example 2. We conjecture that the linear com-
plexity of the first proposed algorithm (Algorithm 1) cannot
be improved further which is motivated as follows. The
defining functional in (1) is non-convex, and it can have
as many (isolated) local minima as data items in the mask.
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Data y

Arc distance median of y (a)

Real-valued median of y (a)
Arc distance median of y

Real-valued median of y

Fig. 9: Medians of the data y′(a) = (y2, . . . , y11, a) in depen-
dance of the element a using data y as in Figure 2, right. The
real-valued median, i.e., when considering the angles of y′ as
real-valued data, only has three possible candidates. In contrast,
the arc distance median has as many candidates as data points
(corresponding to the steps and a itself as the diagonal).

This happens, for example, when the data in the mask
are approximately equally distributed on the unit circle. To
determine the global solution, one has to keep track of the
functional values of all those local minima. In particular, if
the number of local minima is in the order of the filter size,
the number of required updates per processed element is
proportional to the size of the filter mask. In contrast, the
defining functional of the real-valued median has either one
data point or an interval connecting exactly two data items
as local minimizers which are automatically global minimiz-
ers by convexity. This can be exploited, e.g., when inserting
a new data item and updating the median by descending
from the old median to the nearby local minimizer. For circle
data, the situation is different; the global minimizer might
change drastically. Let us, for example, consider data y as
in Figure 2, right. Assume that we have computed the arc
distance median for y and that we want to compute the
median of data y′(a) = (y2, . . . , y11, a). Figure 9 shows the
arc distance median of y′ in dependance of the valued a ∈ T.
We observe that the introduction of only one new element
a leads to 11 different possibilities for the arc distance
medians – as many possibilities as data points (in contrast
to the three possibilities for real-valued data).

6.2 Conclusion and future research
In this work, we have first discussed different means of
defining a median filter on the unit circle. We have identified
the arc distance median filter as a robust edge preserving
filter which preserves the values of the data and gives an
almost everywhere unique filter output for odd filter size.
As such, it shares the desired properties of the real valued
median filter. Then, we have derived efficient algorithms
for arc distance median filtering for quantized as well as for
non-quantized data. For fast computations, both algorithms
employ an efficient scheme based on suitable recurrence
relations. The proposed algorithm for quantized data scales
constantly with the size of the filter mask which is opti-
mal. For non-quantized data, we have developed a linearly
scaling algorithm. We have observed that, for small filter
masks, the runtime of the proposed algorithm for non-
quantized data applied to quantized data is even lower
than the runtime of the proposed algorithm for quantized

data. Further we have seen that the proposed methods
provide higher quality than separable median filtering in
even slightly less time. On the other hand, they achieve
comparable quality to the results of normalized L1 median
filtering in a significantly shorter time. Due to their practical
performance and their efficiency, we believe that the pro-
posed algorithms have the potential to become a standard
tool for processing circle-valued data.

The extension of the algorithms to 3D images and other
shapes of the filter masks seems straightforward. A partic-
ularly interesting direction of future research is a weighted
variant of the arc distance median filter, because appropriate
weighting can improve the result even further; see [16, 17].
The weighted arc distance median is given by multiplying
each summand in (1) by a non-negative weight wij . The
challenge is that the elements change their weights when the
filter mask is shifted. Here histogram based schemes similar
to those in [16, 17] seem to be appropriate to efficiently
compute the required functional values. Another direction
is the investigation of iterated circle-median filters as it has
been done in [49] for the real-valued case.
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