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1 Ablation Studies7 7

We have presented a self-supervised approach for the prediction of drivable areas8 8

in images. Our strategy makes use of large collections of unlabeled dashcam9 9

videos to teach a FCN which areas are drivable by watching others drive. We10 10

now analyze the impact of our contributions on the overall performance of our11 11

method by means of ablations. We evaluate several ablation methods: (I) Self-12 12

supervision via a fixed drivable area. Instead of obtaining self-supervision by13 13

tracking patches we fix a drivable area in front of the car bumper and collect14 14

self-supervision (e.g. Fig. 2(a) vs. 2(c)). (II) Single patch-based training of a15 15

binary CNN classifier. As opposed to a spatial-pyramid approach [6], we train16 16

a CNN for binary classification of drivable patches obtained via our tracking17 17

approach. (III) Training of a binary CNN classifier on a spatial-pyramid encoding18 18

of drivable patches [6]. (IV) Utilizing a FCN with dense up-stream convolutions19 19

for predicting pixel-wise labels of drivability obtained by self-supervision. (V) Our20 20

approach. In Tab. 1 we show different evaluation measures for all the ablation21 21

methods. We can see that the biggest performance improvement is obtained22 22

when comparing our approach with the fixed area self-supervision strategy, which23 23

does not track patches the other cars have driven over. In addition, we show24 24

that simple binary classification of drivable patches, even with spatial-pyramid25 25

encoding is not as successful as a FCN. Finally, using dilated convolutions gives26 26

us a broader context, which further improves results.27 27

No tracking (I) Single patch (II) Context-pyramid (III) FCN dense upconv. (IV) Ours (V) Sect. 3
UM UMM UU UM UMM UU UM UMM UU UM UMM UU UM UMM UU

MaxF 62.4 57.5 68.2 78.4 78.8 72.4 85.3 81.1 84.6 83.4 86.0 80.2 90.9 87.5 88.2
AP 45.7 47.4 55.0 84.7 85.9 79.0 91.2 91.2 91.8 83.5 87.7 81.8 88.6 89.2 87.6
PRE 65.8 72.5 71.9 77.4 82.0 70.1 83.5 83.4 83.8 78.9 83.0 78.7 90.6 88.5 87.6
REC 59.3 47.7 64.8 79.4 75.8 74.8 87.2 78.9 85.4 88.5 89.3 81.8 91.3 86.6 88.7
FPR 6.9 5.5 4.0 4.5 5.1 5.0 3.3 4.8 2.6 4.6 5.6 3.5 1.8 3.4 2.0
FNR 40.7 52.3 35.2 20.6 24.2 25.2 12.8 21.1 14.6 11.5 10.7 18.2 8.7 13.4 11.3

Table 1: Ablation experiments performed on KITTI [3].
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2 Extended Quantitative Experimentation on KITTI28 28

In addition to the experiments reported in the main submission, we also tested our29 29

approach on the KITTI [3] benchmark suite. In order to do so, we disregard the30 30

training labels provided by the benchmark and only use the 60 unlabeled video31 31

sequences provided with KITTI, utilizing just monocular color images. We then32 32

play the sequences backwards in time and generate the self-supervised labeling33 33

of drivable surfaces, gathering 42000 frames labeled with our self-supervision34 34

strategy.35 35

2.1 Zero-shot Learning36 36

To assess the performance of our self-supervision method we tackle the problem of37 37

zero-shot learning of drivable areas on KITTI [3]. That is, methods are provided38 38

with 0 ground-truth labeled training images. We compare state-of-the-art fully39 39

convolutional architectures with and without our self-supervision method trained40 40

on the unlabeled sequences of KITTI. Tab. 1 summarizes the performance of41 41

two different architectures with and without our self-supervision method. We42 42

show results for our variant of FCN-8s [7] (with dilated upconvolutional layers),43 43

with and without Imagenet [2] pre-training. In addition, we also make use of44 44

the ResNet-101 model [4] pre-trained on Imagenet. In Tab. 1(a) we observe that45 45

our proposed approach for self-supervision drastically boosts the performance of46 46

zero-shot learning for all different architectures, with a performance improvement47 47

of at least 52%.48 48

In addition to the zero-shot learning analysis we also show how our approach49 49

behaves when presented with few labeled samples, taking FCN-8s [7] as a par-50 50

ticular instance. Fig. 1(b) shows how performance increases as a function of51 51

the number of labeled training samples. We see how our self-supervision train-52 52

ing greatly amplifies the generalization capabilities of the network, consistently53 53

outperforming the same network without using our self-supervised pre-training54 54

Model UM UMM UU
FCN-8s Random Init. 25.5 36.8 22.4

FCN-8s Random Init. + Ours 90.7 85.8 87.0
FCN-8s Imagenet Init. 27.9 37.9 23.9

FCN-8s Imagenet Init + Ours 90.1 85.8 86.4
ResNet-101 Imagenet Init. 29.4 38.7 20.6

ResNet-101 Imagenet Init. + Ours 91.0 85.9 87.6

(a)

(b)

Fig. 1: (a) Zero-shot MaxF results for KITTI benchmark, where our model was
trained on the unlabeled sequences of KITTI. (b) MaxF score as a function of
the number of labeled ground-truth training samples. FCN-8s is trained from
random weight initialization with and without our self-supervised pre-training.
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Fig. 2: Sample score maps of drivable areas for zero-shot learning on KITTI.

Method #gt labeled samples UM UMM UU ALL
MultiNet [10] 289 93.99 96.15 93.69 94.88

DDN [8] 289 93.65 94.17 91.76 93.43
Up-Conv-Poly [9] 289 92.20 95.52 92.65 93.83

FTP [5] 289 91.20 92.98 89.62 91.61
FCN-8s Random Init. + GT 289 89.50 92.81 84.50 89.83
FCN-8s Random Init. + Ours 0 87.39 86.14 84.96 85.74

Alvarez et. al [1] 1 73.69 86.21 72.25 79.02

Table 2: MaxF score for different method on the KITTI test server.

training. Finally, we show few score maps of drivable area yielded by our self-55 55

supervised approach on KITTI [3] in Fig. 2. Note that our method does not use56 56

any ground-truth labeled image during training.57 57

To put our approach into context with state-of-the-art methods we report58 58

the results obtained by our self-supervised strategy on the test server of KITTI59 59

[3]. Since source code for top performing methods of KITTI is not available we60 60

take the widely used FCN-8s architecture as a study case. We then see that61 61

training FCN-8s using the KITTI ground-truth yields 5% worse performance that62 62

the top method. This situation is understandable since [10] is a more complex63 63

model than FCN-8s. To asses the quality of our approach we now train FCN-8s64 64

using self-supervision on the unlabeled KITTI video sequences, and compare65 65

it to FCN-8s trained on ground truth. We then see that the performance gap66 66

between using the KITTI training set and our self-supervised approach is 4%,67 67

despite using no labeled samples at all. In addition, we compare our approach68 68

with the one-shot method of Alvarez et. al [1] (which requires similar quantities69 69

of supervision as our approach) obtaining a performance improvement of 14%70 70

over it.71 71

2.2 Transfer Learning72 72

Conversely to Sect. 4.3 of the main submission in which we evaluate the potential73 73

of transferring a model trained on KITTI to Cityscapes, we now evaluate how a74 74

model trained on CityScapes transfers to KITTI.75 75
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The underlying rationale is that if a model is performing well on CityScapes76 76

it should also perform equivalently on KITTI. Therefore, we utilize the unlabeled77 77

sequences of KITTI for pre-training the FCNs using our self-supervised strategy,78 78

before using the CityScapes ground-truth labels to perform supervised learning.79 79

We evaluate transfer learning based on two separate network architectures, FCN-80 80

8s [7] and ResNet-101 [4]. In Tab. 3 we show the MaxF and IoU scores of the81 81

different models with and without our self-supervised pre-training. We can see82 82

that our self-supervised pre-training is extremely useful when transferring models83 83

between datasets, boosting performance by at least 10%. This performance84 84

improvement is due to the regularization properties of our self-supervision, which85 85

prevents the model from over-fitting to CityScapes-like scenarios, thus improving86 86

the capability to generalize to previously unseen scenarios.87 87

3 Qualitative Results88 88

In addition to the previous quantitative evaluation we also report qualitative89 89

results in the form of video sequences for different tasks.90 90

3.1 Self-supervision91 91

We now show how our training data is collected. We therefore take the unlabelled92 92

video sequences from KITTI and Cityscapes and apply our self-supervision93 93

strategy. To clearly illustrate our self-supervision approach we include few video94 94

sequences showing qualitative results in the folder ./self_supervision. In95 95

these sequences, blue patches denote regions that have been driven over by the96 96

car equipped with the daschcam, while green patches are the ones driven over by97 97

other cars. Not drivable areas of the image are marked with red patches. Note98 98

how by playing videos back in time and tracking the patches that different cars99 99

have driven over, rich supervision can be obtained to learn which regions of an100 100

image are drivable.101 101

3.2 Zero-shot learning102 102

In addition, we also show how our FCN-8s performs when trained using our103 103

self-supervision strategy, without requiring tedious pixel-wise annotations of104 104

drivable areas. We collect few test sequences, which were not used for extracting105 105

Model MaxF IoU
FCN-8s Random Init. 43.4 27.7

FCN-8s Random Init. + Ours 55.1 38.0
FCN-8s Imagenet Init. 50.1 33.4

FCN-8s Imagenet Init. + Ours 74.2 59.0
ResNet-101 Imagenet Init. 72.5 56.8

ResNet-101 Imagenet Init. + Ours 82.0 69.5

Table 3: Transfer Learning results from KITTI to Cityscapes benchmark.
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self-supervision on neither KITTI or Cityscapes and let the network predict106 106

pixel-wise estimations of drivability. These zero-shot learning predictions can be107 107

found in ./zero_shot_pred.108 108

3.3 Difficult scenarios: Snow and Sand109 109

Finally, we include two sample sequences where our classifier was trained to110 110

predict drivable areas on both on a road completely covered in snow and on a111 111

dessert trail. In order to do this we had two different instances of our network112 112

trained on several YouTube dashcam sequences with roads covered in snow, and113 113

in different sandy desert videos. We then show our results in two video sequences114 114

which were not used during the training process. Our goal is to illustrate that115 115

our method is not bounded to predict drivability on asphalt regions, but can116 116

learn a general notion of drivability when trained with suitable data.117 117
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