
Reconstruction of High Dimensional Functions from 
Irregularly Spaced and Error Afflicted Samples by 

Kriging 
 

Robert Dalitz, Eric von Lieres 
e.von.lieres@fz-juelich.de 

Institute of Bio- and Geosciences 1, Research Center Jülich 
Wilhelm-Johnen-Str. 1, 52425 Jülich, Germany 

 
 

Abstract 
 
Interpolation is used for constructing new data points from known samples of an 

underlying unknown function. The majority of interpolation methods, in particular in 
higher dimensions, require the known data points to be placed on some equidistant grid. 
However, it is a common situation to have only certain measurements at irregularly 
spaced positions available that are additionally afflicted with measurement errors. 
Kriging, a class of linear least square estimators that is named after Daniel Gerhardus 
Krige and was first applied in geostatistics, is very well suited for such situations. The 
presented ordinary Kriging approach is the most popular and commonly used Kriging 
method because of its effectiveness and simplicity. 

 

1 Introduction 
 
A common interpolation situation is to have ݊ positions ݔଵ, … , ݔ ∈ ࣞ ⊂ Թ with 

corresponding function values or measurements ݂ሺݔଵሻ, … , ݂ሺݔሻ ∈ Թ of an unknown 
function ݂:ࣞ ⟶ Թ available. The aim is to estimate a value ݂∗ሺݔොሻ of the true but 
unknown value ݂ሺݔොሻ at a location ݔො. In the terminology of Kriging methods the function 
݂ is often called process. According to [1] it is treated as a random process of which 
expected values and variances exist. Moreover its domain ࣞ must be compact. 
 

The basic idea of all Kriging methods is that the underlying function ݂ሺݔሻ can be 
decomposed into several components. In the easiest case ݂ሺݔሻ consists of a trend 
component ݉ሺݔሻ and a residual component ݎሺݔሻ such that 

	 ݂ሺݔሻ ൌ ݉ሺݔሻ  ሻݔሺݎ ሺ1ሻ

in which ܧሾ݂ሺݔሻሿ ൌ ݉ሺݔሻ holds. Kriging methods assume that the residual component of 
the sought value is a weighted mean of the measurement residuals 

	 ොሻݔሺ∗ݎ ൌߣݎሺݔሻ


ୀଵ
ሺ2ሻ



with ߣଵ,… , ߣ ∈ Թ. Inserting (1) yields 

	 ݂∗ሺݔොሻ ൌ ݉ሺݔොሻ ߣ൫ ݂ሺݔሻ െ ݉ሺݔሻ൯.



ୀଵ
ሺ3ሻ

Because ݉ሺݔሻ is usually unknown further assumptions are necessary. At this point 
several options are possible (for further details see [3]). Ordinary Kriging assumes a 
constant but still unknown trend component ݉ሺݔሻ≔݉ so that the above equation can be 
written as 

	 ݂∗ሺݔොሻ ൌ ൭1 െߣ



ୀଵ

൱݉ ߣ݂ሺݔሻ.



ୀଵ
ሺ4ሻ

In order to eliminate ݉ the term within the brackets has to be zero. Therefore the 
assumption ∑ ߣ ൌ 1 must hold, which reduces equation (4) to a weighted sum of known 
values 

	 ݂∗ሺݔොሻ ൌߣ݂ሺݔሻ.



ୀଵ
ሺ5ሻ

For calculating the weights two more steps are required. At first the spatial variation 
behavior of ݂ሺݔሻ has to be modeled. Second the equation system for the weights can be 
set up and solved. 

 
 

2  Modeling Spatial Variation 
 
To capture the spatial variation behavior of the function ݂ሺݔሻ, nearby function values 

of the residual component ݎሺݔሻ are characterized. Therefore ݎሺݔሻ is assumed as a 
stationary process. According to [3] a stationary process can be defined in two ways: 

:ݎ ࣞ ⟶ Թ is called 

Intrinsic stationary (IS) if 
ሻሿݔሺݎሾܧ ൌ ݔ for all ߤ ∈ ࣞ and a fixed ߤ ∈ Թ and 
ଵ

ଶ
ݔሺݎሾݎܸܽ  ݄ሻ െ ሻሿݔሺݎ ൌ

ଵ

ଶ
ሺ݄ሻݎሾݎܸܽ െ ሺ0ሻሿݎ ൌ∶  .݄ ሺ݄ሻ for all shiftsߛ

Second-order stationary (SOS) if 

ሻሿݔሺݎሾܧ ൌ ݔ for all ߤ ∈ ࣞ and a fixed ߤ ∈ Թ and 
ݔሺݎሾݒܥ  ݄ሻ, ሻሿݔሺݎ ൌ ,ሺ݄ሻݎሾݒܥ ሺ0ሻሿݎ ൌ∶  .݄ ሺ݄ሻ for all shiftsܥ

 
γሺhሻ and Cሺhሻ are referred to as variogram and covariogram, respectively. The definition 
of IS means that the variance of the difference between two measurements does not 
depend on the absolute position of both points, but only on their spatial distance. The 
same applies to SOS and the covariance. The functions are closely connected to each 
other because 



ሺ݄ሻߛ  ൌ ሺ0ሻܥ െ ሺ݄ሻܥ  (6)

holds which can be derived with elementary calculations. Either ߛሺ݄ሻ or ܥሺ݄ሻ has to be 
determined through a fitting model ߛ∗ሺ݄ሻ or ܥ∗ሺ݄ሻ respectively. Since the definition of IS 
is more general than SOS (IS can still hold in situations where ܥሺ0ሻ might not exist, 
which is assumed in this paper; for more details see [3]) the following derivation is based 
on the variogram whereas the covariogram is still used for explanation purposes. 
 
2.1  Models 

 
To simplify the modeling task ordinary Kriging assumes that ߛሺ݄ሻ and ܥሺ݄ሻ only 

depend on the distance between two measurement locations, i.e. ߛሺ݄ሻ ൌ  ሺ‖݄‖ሻ andߛ
ሺ݄ሻܥ ൌ  .ሺ‖݄‖ሻ respectivelyܥ

 
The existing (co-)variogram models are based on several observations. If ݄ → 0 then 
ሺ݄ሻߛ → 0 and ܥሺ݄ሻ → ሻሿݔሺݎሾݎܸܽ ൌ: ݄ ଶ by definitions. And ifߪ → ∞ then ܥሺ݄ሻ → 0 
which means ߛሺ݄ሻ → ሺ0ሻܥ ൌ  .ଶ due to equation (6)ߪ
 
Moreover (co-)variogram models have to satisfy the following condition according to [4]. 
For the variance of ݎሺݔොሻ the calculation 

	

ොሻሿݔሺݎሾݎܸܽ ൎ ݎܸܽ ߬ݎሺݔሻ


ୀଵ

൩ ൌ߬ ߬ݎൣݒܥሺݔሻ, ൯൧ݔ൫ݎ



ୀଵ



ୀଵ

ൎ߬ ߬ܥ∗൫݄,൯



ୀଵ



ୀଵ

 0
ሺ7ሻ

holds for any numbers ߬. The last inequality can be fulfilled by the fact that every 
variance must be positive. This is the exact definition of positive definiteness of the 
function ܥ∗ሺ݄ሻ, so a valid covariogram model ܥ∗ሺ݄ሻ must be positive definite. 
Using (6) in this calculation yields 

	 ොሻሿݔሺݎሾݎܸܽ ൎ ሺ0ሻ߬∗ܥ



ୀଵ

 ߬



ୀଵ

െ߬ ߬ߛ∗൫݄,൯



ୀଵ



ୀଵ

 0. 	 ሺ8ሻ

As mentioned before there are situations where ܥ∗ሺ0ሻ does not exist. This term cancels 
out if ∑ ߬ ൌ 0 holds so that (8) reduces to 

	 ߬ ߬ߛ∗൫݄,൯



ୀଵ



ୀଵ

 0.  ሺ9ሻ

Thus ߛ∗ሺ݄ሻ must be conditionally negative definite. 
  



A widely-used variogram model is the powered exponential model 

	 ሺ݄ሻ∗ߛ ൌ ଶߪ ൭1 െ ݁
ି൬
‖‖
ఈ ൰

ഁ

൱ ሺ10ሻ

with ߪଶ  0, ߙ  0 and ߚ ∈	ሿ0,2ሿ. Several other models have been proposed for special 
interpolation situations which differ regarding the origins of given data. The application 
of the powered exponential model is recommendable because it is relatively simple and 
covers a wide range of different possible behaviors of the spatial variation to be modeled. 
Further details can be found in [5]. 
 
If the measurements ݂ሺݔଵሻ, … , ݂ሺݔሻ were exact, a variogram model that was constructed 
by the considerations made so far would be sufficient. However if the given data are 
noisy, a modification of the variogram model is necessary. 
It is assumed that the residual component ݎሺݔሻ that was considered so far is error 
afflicted, now called ݎሺݔሻ. It decomposes into a true part ݎሺݔሻ and an error component 
݁ሺݔሻ so that 

	 ሻݔሺݎ ൌ ሻݔሺݎ  ݁ሺݔሻ. ሺ11ሻ

The sum of two valid variogram models is also a valid model because (9) would still 
hold. So the chosen model, i.e. the powered exponential model can be used as variogram 
model for ݎሺݔሻ. Only an additional variogram model for the error component is needed. 
 
According to [3] the variance of ݁ሺݔሻ is assumed to be constant but still unknown so that 
ሻሿݔሾ݁ሺݎܸܽ ൌ ,ሻݔሾ݁ሺݒܥ ݁ሺݔሻሿ ൌ:  ଶ. This model parameter is called nugget. Furthermoreߪ
it should be a random error which means ݁ൣݒܥሺݔሻ, ݁൫ݔ൯൧ ൌ 0 should hold for ݔ ്  .ݔ
All in all this yields the covariogram model 

	 ∗ሺ݄ሻܥ ൌ ൜
,ଶߪ 	‖݄‖ ൌ 0
		0, 	‖݄‖  0 , ሺ12ሻ

and by inserting this into (6) the corresponding variogram model 

	 ∗ሺ݄ሻߛ ൌ ൜
0, 	‖݄‖ ൌ 0
,ଶߪ		 	‖݄‖  0

ሺ13ሻ

is obtained. Hence the so called powered exponential variogram with nugget is the sum 
of (10) and (13) which is 

	 ሺ݄ሻ∗ߛ ൌ ൞

																						0, 								 				‖݄‖ ൌ 0

ଶߪ  ଶߪ ൭1 െ ݁
ି൬
‖‖
ఈ ൰

ഁ

൱ , ‖݄‖  0 ሺ14ሻ

with parameters ߪଶ  0, ଶߪ  0, ߙ  0 and ߚ ∈ሿ0,2ሿ. These parameters have to be 
determined in the next step. 
  



Figure 1: A powered exponential variogram model obtained by an example 

variogram cloud. ߛ∗ሺ݄ሻ ൌ 0.0982  0.4026 ቆ1 െ ݁ିቀ
‖‖

భ.మమళర
ቁ
మ

ቇ for ݄  0 

 
2.2  Parameter Estimation 

 
The definition of a variogram can be transformed into a form with an expected value 

	 ሺ݄ሻߛ ൌ
1
2
ݔሺݎሾݎܸܽ  ݄ሻ െ ሻሿݔሺݎ ൌ

1
2
ܧ ቂ൫ݎሺݔ  ݄ሻ െ ሻ൯ݔሺݎ

ଶ
ቃ . 	 ሺ15ሻ

By solving (1) for ݎሺݔሻ and inserting the result into (15) the function ݎሺݔሻ can be 
eliminated. Because ݉ሺݔሻ is considered constant in ordinary Kriging this yields 

ሺ݄ሻߛ  ൌ
1
2
ܧ ቂ൫݂ሺݔ  ݄ሻ െ ݂ሺݔሻ൯

ଶ
ቃ .  (16)

Thus ݕ,≔
ଵ

ଶ
ቀ݂ሺݔሻ െ ݂൫ݔ൯ቁ

ଶ
 can be used as observed estimates for γሺ݄,ሻ with 

݄,≔ฮݔ െ  ฮଶ. These values form the variogram cloudݔ

	 ൫݄,, ,൯ൌݕ ൬ฮݔ െ ฮଶݔ ,
1
2
ቀ݂ሺݔሻ െ ݂൫ݔ൯ቁ

ଶ
൰ ∈ Թଶ, ݅ ൏ ݆. ሺ17ሻ

The variogram model parameters can now be obtained by performing a fitting algorithm, 
e.g. least squares, that fits the variogram model (14) to the variogram cloud (17). This is 
illustrated by figure 1. 
 



3 Equation System 
 
The weights ߣଵ,… ,   in (5) are determined such that the error variance is minimizedߣ

as described in [6]. Therefore the error variance can be rearranged to 

	

ොሻݔ݂ሺ	൫ݎܸܽ െ ݂∗ሺݔොሻ൯

ൌߣܧ ቂ൫݂ሺݔොሻ െ ݂ሺݔሻ൯
ଶ
ቃ



ୀଵ

െ
1
2
ߣߣܧ ቀ݂ሺݔሻ െ ݂൫ݔ൯ቁ

ଶ
൨



ୀଵ



ୀଵ

ൎ 2ߣߛ∗ሺݔො െ ሻݔ


ୀଵ

െߣߣߛ∗൫ݔ െ ൯ݔ



ୀଵ



ୀଵ

ൌ : ܸሺࣅሻ. 

ሺ18ሻ

To minimize ܸሺࣅሻ subject to the constraint ∑ ߣ ൌ 1, which the weights have to fulfill, 
the function 

	 ܹሺࣅ, ሻࣅሻ≔ܸሺߠ െ ߠ ൭ߣ



ୀଵ

െ 1൱ ሺ19ሻ

has to be minimized with a Langrange multiplier ߠ. Therefore the derivatives 

	
ܹ݀
ߣ݀

ൌ ොݔሺ∗ߛ2 െ ሻݔ െ 2ߣߛ∗൫ݔ െ ൯ݔ



ୀଵ

െ ,ߠ 	
ܹ݀
ߠ݀

ൌ െߣ



ୀଵ

 1					 ሺ20ሻ

have to be zero. That leads to 

	 ߣߛ∗൫ݔ െ ൯ݔ



ୀଵ


ߠ
2
ൌ ොݔሺ∗ߛ െ ,ሻݔ 	ߣ



ୀଵ

ൌ 1 ሺ21ሻ

which must hold for every ݔ with ݅ ൌ 1,… , ݊. These ݊  1 equations arranged in an 
equation system give 

	 ൦

ଵݔሺ∗ߛ െ ଵሻݔ ⋯ ଵݔሺ∗ߛ െ ሻݔ 1
⋮ ⋱ ⋮ ⋮

ݔሺ∗ߛ െ ଵሻݔ ⋯ ݔሺ∗ߛ െ ሻݔ 1
1 ⋯ 1 0

൪

ۏ
ێ
ێ
ۍ
ଵߣ
⋮
ߣ
ഇ
మ ے
ۑ
ۑ
ې
ൌ ൦

ොݔሺ∗ߛ െ ଵሻݔ
⋮

ොݔሺ∗ߛ െ ሻݔ
1

൪ 	 ሺ22ሻ

by which the weights are uniquely determined. Afterwards an approximate value of ݂ሺݔොሻ 
can be obtained by inserting λଵ, … , λ୬ into (5), which yields 

 ݂∗ሺݔොሻ ൌ ߣത்̅ݕ ൌ ොሻݔሺߛതିଵ̅߁ത்ݕ  (23)

with ݕതை≔ሾ݂ሺݔଵሻ, … , ݂ሺݔሻ, 0ሿ். This formula can be used for every location where a 
value should be estimated because Γത is independent of ݔො. Figure 2 shows an example of 
an approximating function computed by ordinary Kriging. 

ൌ∶ Γത ൌ∶ ∶ൌ ߣ̅ ߛ̅  



Figure 2: An example of an approximating function and its 95% confidence 
interval computed by Kriging. The measurements were generated by 
sinሺݔሻ and a random error within the interval ൣെభ

మ
, భ
మ
൧. The corresponding 

variogram model is shown in Figure 1. 
 
3.1  Error Estimation 
 
Kriging methods offer the possibility to estimate the error variance of the approximation. 
It can be easily obtained from ܸሺࣅሻ in equation (18) as follows: 

	

ܸሺݔොሻ ൌ 2ߣߛ∗ሺݔො െ ሻݔ


ୀଵ

െߣߣߛ∗൫ݔ െ ൯ݔ



ୀଵ



ୀଵ

ൌߣߛ∗ሺݔො െ ሻݔ


ୀଵ


ߠ
2
ൌ ߣ்̅ߛ̅ ൌ ොሻݔሺߛതିଵ̅߁ොሻ்ݔሺߛ̅ 	

ሺ24ሻ

This value is also called Kriging variance. When weights have already been computed, 
the effort for calculating this variance is computationally cheap because only one more 
matrix-vector multiplication is necessary. 
 
According to [3] the Kriging variance can be used to calculate a confidence interval as 

	 ቂ݂∗ሺݔොሻ െ ොሻݔඥܸሺݖ , ݂∗ሺݔොሻ  ොሻቃݔඥܸሺݖ . ሺ25ሻ

This means that the true but unknown value ݂ሺݔොሻ is within the confidence interval with a 
probability depending on ݖ. If a % confidence interval is desired ݖ has to be the 
൫భ
మ
 

మబబ
൯-quantile of the standard normal distribution. E.g. ݖ ൌ 1.96 yields a 95% 

confidence interval. A confidence interval is also shown in Figure 2. 
 



4 Conclusions 
 
Ordinary Kriging is a method that is suitable for a wide range of interpolation 

problems, in particular where derivatives are not available and further function 
evaluations are expensive and/or time-consuming. Moreover, the error variance that can 
be easily calculated, is often very important. Ordinary Kriging is the basis for many other 
Kriging variants that modify certain ideas to meet more specific requirements [7]. 
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