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Mathematical Imaging Group, Heidelberg University, Germany
e-mail: {robert.dalitz,ecaterina.bodnariuc}@iwr.uni-heidelberg.de, {petra,schnoerr}@math.uni-heidelberg.de

Abstract
Aim: Recovery of images and estimation of the flow

Starting point: Particle Image Velocimetry (”PIV”), i. e. standard tomographic recovery followed
by cross correlation

Approach: Extend standard tomographic sensor by information of transformed image
Result: Extended sensors show significantly improved recovery performance

Standard Tomographic Recovery (existing)

↗
image u

⇔

⇔

Au = b
Given: Sensor A ∈ Rm×n,

observations b ∈ Rm with

bi =

∫
Ri

u(x)dx ≈
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uj

∫
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Pj(x)dx︸ ︷︷ ︸
=:aij

(1)

where entry aij in A is the length of the intersection of ray Ri with pixel Pj.
Wanted: Original particle image u ∈ Rn

Task: Problem highly underdetermined
But accurate recovery possible, if u sufficiently sparse [5]

Relaxed Solution: Solve Au ≈ b via
min
u≥0
‖Au − b‖2

Classic Particle Image Velocimetry (PIV) (existing)
1 Recover two images u, ut (sparsity desired) for two points in time via

min
u≥0
‖Au − b‖2 and min

ut≥0
‖Aut − bt‖2

2 Use cross-correlation [4] to estimate transport (high particle density desired⇔ u less sparse)

Tt(u) = ut

Compressed Motion Sensing (our approach)
Recover u and use available information at time step t . Consider projections bt as additional
measurement together with b:

min
u≥0
‖Au − b‖2 + ‖ATt(u)︸ ︷︷ ︸

additional sensor
−bt‖2 ⇔ min

u≥0

∥∥∥∥( A
ATt(·)

)
︸ ︷︷ ︸

complemented sensor

u −
(

b
bt

)∥∥∥∥2

Key question: Assuming Tt is known, how much improves the recovery performance of the
complemented sensor

AT :=

(
A

ATt(·)

)
? (2)

Remarks:

We call compressed sensing in connection with the correspondence information ut = Tt(u)
compressed motion sensing.
The problem of jointly estimating the images and the transformation parameters from the
available multi-view measurements is not addressed by this work, but is subject of our current
research and is a well studied topic outside the compressed sensing literature [7].

Theoretical Case Study: Poiseuille Flow in a Pipe

Compressed sensing scenario relevant to
blood flow estimation [3]
At time-step τ ∈ [0, t ] we consider the
particle function uτ : Ω ⊂ R2→ R

uτ(x) =
s∑

k=1

exp

(
−‖x − pk

τ ‖2

2σ2

)
,

where particles are
centered at

pk
τ = (pk

τ,1,p
k
τ,2) ∈ R× [−r , r ]

transported according to the Poiseuille law

pk
τ,1 = pk

0,1 + τv(pk
0,2) , pk

τ,2 = pk
0,2,

with velocity profile

v(z) = vm
(
1− z2/r2) , z ∈ [−r , r ],

parametrised by the maximal velocity vm and the
tube’s radius r .

With u := u0 this defines a corresponding
transform Tt(u) = ut and the compressed
motion sensor AT by (2).
The compressed motion sensor AT is
known, if the parametrized motion field
can be estimated.

←− cameras −→

z

Figure: Imaging setup. For projection geometry used,
see [6].

The above definition of Tt allows us to
investigate whether its inverse exists for
the considered image class, and whether it
is bi-Lipschitz [1].

Experiment: Discrete Poiseuille Flow
Numerical evaluation of sensor A vs. AT for the Poiseuille flow scenario (see above) in a
discrete setting, i. e.:

Rectangular Ω covered by regular pixel grid.
Components of u,ut ∈ Rn are indexed on the pixel grid.
Sensor A ∈ Rm×n measures line integrals of both u and ut as in (1) and conforms to optical
tomography as used in optical PIV [8].
Discrete version of Tt(·)⇒ can be expressed with the help of a matrix Tt so that

Tt(u) = Ttu = ut ⇒ Sensor AT =

[
A

ATt

]
∈ R2m×n.

Recovery by standard non-negative linear least squares algorithm
Repeated 25 times for each s and each number of cameras
Standard Gaussian sensor A ∈ Rm×n, with aij ∼ N (0,1) for comparison. Tabulated values
provided by Jared Tanner [9], see also [2].

Results:

The compressed motion
sensor AT significantly
outperforms the
performance of the poor
TomoPIV sensing matrix A.

AT successfully recovers
more particles for 4 or more
cameras, compared to
doubling the number of line
integrals, or simply doubling
the number of cameras.

When using 2m Gaussian measurements higher particle densities can be correctly recovered
as compared to AT . However, AT has the advantage of being sparse, deterministic and based
on a real sensor.

Experiment: Permutation as Transformation
Numerical evaluation of sensor A vs. AT for Tt chosen as a random permutation matrix:

Square grid and pixels.
Components of u,ut ∈ Rn are indexed on the pixel grid.
Sensor A ∈ Rm×n measures line integrals of both u and ut as in (1).
Sensor Tt(·) = Tt is a random permutation matrix.
Recovery by standard non-negative linear least squares algorithm
Repeated 100 times for each s and each number of cameras with a new random permutation
sensor each time

Results:

Again, the compressed
motion sensor AT
outperforms the TomoPIV
sensing matrix A.

For 4 or more cameras:
Again, AT recovers more
particles, compared to
doubling the information
available.

AT performes better than
the Poiseuille flow sensor.

Example: 2 Cameras and Permutation as Transformation
2 orthogonal projections and Tt(·) = Tt is a random permutation matrix
With just sensor A ∈ Rm×n, only one particle is guaranteed to be recovered.
For sensor AT ∈ R2m×n and a 10× 10 image,

1 ≤ (2m)red(s)

nred(s)

for s ≤ 11 ⇒ 11 particles guaranteed to be reconstructed [5].

Conclusion
We empirically showed for a specific, but practically relevant, scenario that complementing the
standard tomographic PIV sensor with a motion sensor, based on projections taken at a
subsequent point of time, significantly improves recovery performance, provided motion can
be estimated.
Our current work on compressed motion sensing concerns generalizations of the Restricted
Isometry Property for nonlinear sensors [1] as well as the joint problem of tomographic image
reconstruction and motion estimation.
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Average case recovery analysis of tomographic compressive sensing.

Linear Algebra and its Applications, 441:168–198, 2014.
Special issue on Sparse Approximate Solution of Linear Systems.

[6] S. Petra, C. Schnörr, and A. Schröder.
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