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Abstract Experiment: Discrete Poiseuille Flow
Aim: Recovery of images and estimation of the flow Numerical evaluation of sensor A vs. At for the Poiseuille flow scenario (see above) in a
Starting point: Particle Image Velocimetry ("PIV?), I. e. standard tomographic recovery followed discrete setting, i. e.:

by cross correlation
Approach: Extend standard tomographic sensor by information of transformed image
Result: Extended sensors show significantly improved recovery performance

@ Rectangular Q2 covered by regular pixel grid.

@ Components of u, u; € R"” are indexed on the pixel grid.

@ Sensor A € R™" measures line integrals of both v and u; as in (1) and conforms to optical
tomography as used in optical PIV [8].

@ Discrete version of T;(-) = can be expressed with the help of a matrix T; so that

Standard Tomographic Recovery (existing)
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where entry a; in A is the length of the intersection of ray R, with pixel P;. TR0 etvesparsity &
Wanted: Original particle image u € R” . . . . ..
Task: Problem highly underdetermined @ When using 2m Gaussian measurements higher particle densities can be correctly recovered
But accurate recovery possible, if u sufficiently sparse [5] as complared to Ar. However, Ar has the advantage of being sparse, deterministic and based
Relaxed Solution: Solve Au = b via on a real Sensofr.
min ||Au — bl|? - , : :
i llAu — o] Experiment: Permutation as Transformation

Classic Particle |mage Velocimetry (P|V) (existing) Numerical evaluation of sensor A vs. Ay for T; chosen as a random permutation matrix:
@ Square grid and pixels.
@ Recover two images u, u; (sparsity desired) for two points in time via @ Components of u, u; € R” are indexed on the pixel grid.
min || Au — sz and min || Au; — thZ @ Sensor A € R™" measures line integrals of both v and u; as in (1).
=0 =l @ Sensor Ty(-) = T; is a random permutation matrix.
@ Use cross-correlation [4] to estimate transport (high particle density desired < u less sparse) @ Recovery by standard non-negative linear least squares algorithm
To(u) = us @ Repeated 100 times for each s and each number of cameras with a new random permutation
sensor each time
Compressed Motion Sensing (our approach) Results: .
2o (mean recovery error)
Recover u and use available information at time step t. Consider projections b; as additional @ Again, the compressed i [ |
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i i = O] <+ _H.w_bfu S <ATt(')) = (bt> sensing matrix A.
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Again, A7 recovers more ;
Key question: Assuming T; is known, how much improves the recovery performance of the partlclles, compared t.o e |
complemented sensor doubling the information
A available. 4 ]
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Remarks: AT4(-) @ A; performes better than o AT
@ We call compressed sensing in connection with the correspondence information u; = T:(u) the Poiseuille flow sensor. . l . .l Sensor %T _ [ el ]

compressed motion sensing. s oy 2
@ The problem of jointly estimating the images and the transformation parameters from the

available multi-view measurements is not addressed by this work, but is subject of our current Example: 2 Cameras and Permutation as Transformation
research and is a well studied topic outside the compressed sensing literature [7].

@ 2 orthogonal projections and T;(-) = T; is a random permutation matrix
Theoretical Case Study; Poiseuille Flow In a Pipe @ With just sensor A € R™" only one particle is guaranteed to be recovered.
@ For sensor A+ € R?™ " and a 10 x 10 image,
: : (Zm)red(s)
@ Compressed sensing scenario relevant to 1<
nred(s)

blood flow estimation [3]

@ At time-step 7 € |0, t] we consider the
particle function u, : Q C R? - R

: Ix — PP
u(X) = exp | — ,
k=1

for s <11 = 11 particles guaranteed to be reconstructed [5].

Conclusion

@ We empirically showed for a specific, but practically relevant, scenario that complementing the
standard tomographic PIV sensor with a motion sensor, based on projections taken at a
subsequent point of time, significantly improves recovery performance, provided motion can
be estimated.

@ Our current work on compressed motion sensing concerns generalizations of the Restricted
Isometry Property for nonlinear sensors [1] as well as the joint problem of tomographic image
reconstruction and motion estimation.
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where particles are
@ centered at

p7l‘( — (p7l-(,17p7/-(,2) € R X [_r7 r]
@ transported according to the Poiseuille law
Py =pg1+Tv(ps2) Pro =P,
with velocity profile

2 /,2
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