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We present a combined report on the results of three editions 
of the Cell tracking Challenge, an ongoing initiative aimed at 
promoting the development and objective evaluation of cell 
segmentation and tracking algorithms. With 2� participating 
algorithms and a data repository consisting of �3 data sets 
from various microscopy modalities, the challenge displays 
today’s state-of-the-art methodology in the field. We 
analyzed the challenge results using performance measures 
for segmentation and tracking that rank all participating 
methods. We also analyzed the performance of all of the 
algorithms in terms of biological measures and practical 
usability. Although some methods scored high in all technical 
aspects, none obtained fully correct solutions. We found that 
methods that either take prior information into account using 
learning strategies or analyze cells in a global spatiotemporal 
video context performed better than other methods under the 
segmentation and tracking scenarios included in the challenge.

Cell migration and proliferation are two important processes in 
normal tissue development and disease1, and optical microscopy 
remains the most appropriate imaging modality2 for visualizing 

these processes. Imaging techniques, such as phase contrast (PhC) 
or differential interference contrast (DIC) microscopy, make cells 
visible without the need of exogenous markers. Fluorescence micro-
scopy, on the other hand, relies on fluorescent reporters to specifi-
cally label cell components such as nuclei, cytoplasm or membranes. 
These labeled structures are then imaged in two or three dimen-
sions by various imaging modalities, including widefield, confocal, 
multiphoton or light-sheet fluorescence microscopy.

To gain biological insights from time-lapse microscopy record-
ings of cell behavior, it is often necessary to identify individual 
cells and follow them over time. The bioimage-processing com-
munity has, since its inception, worked on extracting such quan-
titative information from microscopy images of cultured cells3,4. 
Recently, the advent of new imaging technologies has challenged 
this community with multi-dimensional, large image data sets 
following the development of tissues, organs or entire organisms. 
However, the tasks remain the same: accurately delineating (that 
is, segmenting) cell boundaries and tracking cell movements over 
time, providing information about their velocities and trajecto-
ries, and detecting cell-lineage changes as a result of cell divi-
sion or cell death (Fig. 1). The level of difficulty of automatically  
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segmenting and tracking cells depends on the quality of the 
recorded video sequences (Fig. 2 and Online Methods).

The image-processing community has addressed the above-
mentioned tasks using increasingly sophisticated segmentation 
and tracking algorithms5–7. We briefly summarize the most com-
monly used methods for segmentation and tracking (Fig. 3).

For cell segmentation, creating a ‘taxonomy of methods’ is not a 
straightforward process, as state-of-the-art methods usually com-
bine different strategies to achieve improved results. We classify 
existing algorithms by three criteria. First, the principle on which 
cells are detected, for example, by finding uniform areas, bounda-
ries or at very low resolution by simply finding bright spots and 
maxima8. Second, the image features that are computed to achieve 
the cell segmentation. These can be simple pixel or voxel intensi-
ties, their local averages, or more complex local image descrip-
tors of shapes or textures. Third, we distinguish the segmentation 
method itself that implements the principle using the features. The 
methods range from simple methods like thresholding9,10, hyster-
esis thresholding11, edge detection12 and shape matching13,14 to 
more sophisticated approaches like region growing15–17, machine 
learning18,19 and energy minimization20–26.

Cell-tracking methods can be broadly categorized into two 
groups. Tracking by contour evolution methods21,22,24,25 start by 
segmenting the cells in the first frame of a video and then evolve 
their contours in consecutive frames, thereby solving the segmen-
tation and tracking tasks simultaneously, one step at a time, under 
the essential assumption of unambiguous, spatiotemporal overlap 
between the corresponding cell regions. Tracking by detection 
methods14,19,26–29, in contrast, start by segmenting the cells in 
all frames of a video and later, using mostly probabilistic frame-
works, establish temporal associations between the segmented 

cells. This can be done by either using a two-frame or multiframe 
sliding window, or even for all frames at once.

The diversity of imaging modalities, cell-tracking tasks and 
available algorithms makes it difficult for biologists to decide 
which algorithm to use under certain conditions. Moreover, the 
developers of image-processing algorithms need to objectively 
evaluate new cell segmentation and tracking solutions by compar-
ing their performance on standardized data sets. We addressed 
these problems by organizing three Cell Tracking Challenges (CTC 
I–III) between 2013 and 2015. For these challenges, we created a 
diverse repository of annotated microscopy videos and defined 
quantitative evaluation measures to allow a fair comparison of the 
competing algorithms30. The participating algorithms were exam-
ined under the challenge conditions. Here we present an in-depth 
analysis of the CTC results, provide useful guidelines for users to 
identify appropriate algorithms for their own data sets and point 
developers to open challenges that we believe are insufficiently 
addressed by the algorithms tested. It is important to note that the 
CTC is an open-source initiative that remains open online, and 
most of the competing methods are publicly available through the 
challenge website (http://celltrackingchallenge.net/).

results
data sets and ground truth
The data set repository (Fig. 4, Supplementary Table 1 and 
Supplementary Videos 1–13) consists of 52 annotated videos from 
13 classes, occupying 92 GB of raw image data. Of the 13 data sets, 
11 consist of contrast enhancing (PhC, DIC) or fluorescence (wide-
field, confocal, light sheet) microscopy recordings of live cells and 
organisms in two (2D) or three dimensions (3D). The other two data 
sets are synthetic, generated using a cell simulator that produces 
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Figure � | Concept of cell segmentation and tracking. (a) Top, artificial sequence that simulates six consecutive frames of a time-lapse video. The gray 
circles represent cells moving on a flat surface. Middle, the goal of a segmentation algorithm is to accurately determine the regions of each individual 
cell in every frame, constructing a set of binary segmentation masks that correspond to the cells and locate them on a flat background. Bottom, a 
tracking algorithm finds correspondences between the masks, i.e., the cells, in consecutive frames. If properly designed, a tracking algorithm is able 
to detect a moving cell (e.g., C1 or C3) while it is in the field of view, determining when the cell enters and leaves the field of view. From the location 
of the cells in consecutive frames, it is possible to determine the trajectory of each cell and its velocity. A tracking algorithm should also be able to 
detect lineage changes as a result of, for instance, a cell division event (for example, cell C2 divides into two daughter cells, C21 and C22) or apoptosis. 
(b) Graph-based representation of the cell tracks found by a tracking algorithm in the sequence shown at the top of a. Such an acyclic-oriented graph 
contains, for each cell, the time when the cell enters and leaves the field of view, along with its division or apoptotic events. In a real case scenario, 
these graphs show the complete genealogy of the cells displayed in the frame of the video, for the entire length of the video. Please note that the 
orientation of the graph edges follows the temporal sequence starting at t = 0 and moving toward t = 5.

http://celltrackingchallenge.net/
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realistic 2D and 3D renderings of chromatin-stained live cells31. 
Supplementary Note 1 and supporting Supplementary Figures 
1–11 provide a detailed description of the data sets. Supplementary 
Note 2 and supporting Supplementary Figure 12 describe the sim-
ulator used to create the synthetic data sets, applying the parameter 

configuration provided in Supplementary Data 1. Table 1 provides a  
quantitative characterization of the quality of each data set, based 
on the measures described in the Online Methods. In all of the 
tables, figures and videos, we use a naming convention for data sets 
that identifies their microscopy modality (fluorescence (Fluo), DIC, 
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Figure 2 | Concept of the main factors that determine the quality of cell images and videos. (a–f). SNR and CR measure the relationship between the 
signal captured from the cells and the unwanted noise or signal captured at the same time. Decreasing SNR is shown using a cell with 250 intensity 
units (iu) and no background (0 iu) in three scenarios of increasing s.d. (in iu) of background Gaussian noise: 0 (a), 50 (b) and 200 (c). The effect of 
decreased CR is displayed using a simulated cell in high background (200 iu) with increasing noise s.d.: 0 (d), 50 (e) and 200 (f). The effect is shown  
for three increasing noise levels: 0 noise (a versus d), 50 noise s.d. (b versus e) and 200 noise s.d. (c versus f). (g,h) Intra-cellular signal heterogeneity 
that can lead to cell over-segmentation when the same cell yields several detections is simulated by a cell with nonuniform distribution of the labeling 
marker or nonlabel retaining structures (g). Signal texture can also be linked to the process of image formation, in this case shown using a simulated  
cell image imaged by PhC microscopy (h). (i) Signal heterogeneity between cells, shown by simulated cells with different average intensities can be 
a result of, for instance, different levels of protein transfection, non-uniform label uptake, or cell cycle stage or chromatin condensation, when using 
chromatin-labeling techniques. (j–l) Spatial resolution that can compromise the accurate detection of cell boundaries is displayed using a cell captured 
with increasing pixel size, i.e., with decreasing spatial resolution: full resolution (j), half resolution (k) and one fourth of the original full resolution  
(l). (m,n) Irregular shape that can cause over/under-segmentation, especially when the segmentation methods assume simpler, non-touching objects,  
is displayed using a simulated cell with highly irregular shape under two background noise s.d. situations: 0 (m) and 100 (n).This is especially a  
problem in high-noise situations (n). (o) High density of cells, which is also a frequent cause of incorrect segmentation, is shown by a cluster of 
simulated cells. (p–r) Fluorescence temporal decay that can bring the SNR or CR below detection levels, thereby complicating both segmentation and 
tracking, is simulated by a cell in a time series showing increasing fluorescence decay as a result of bleaching or quenching of the fluorochrome, and 
same noise conditions (s.d. of 50 iu): original cell at the beginning of the experiment (p), cell with 100 iu decay (q) and cell with 200 iu decay (r).  
(s–u) Cell overlap between consecutive frames is important for correctly tracking the cells, as many algorithms rely on this overlap. Here it is shown 
using three simulated cells at the beginning of a video (t = 0) (s) and two possible alternative scenarios for the following time point (t = 1): t = 1 in  
a scenario of high temporal resolution and/or low cell speed, allowing relatively simple identification of the correspondence between the cells (t); 
 t = 1 in a scenario of low temporal resolution and/or high cell speed, complicating the identification of the correspondence between the cells (u).  
(v–x) Number and synchronization of mitotic events also complicates cell tracking, as tracking a mitotic cell requires correctly assigning the mother  
to its daughter cells in consecutive frames. This is simulated by cells at the beginning of the video (t = 0) (v) and two possible alternative scenarios for 
the following time point (t = 1): t = 1 in a scenario where only one of the cell divides asynchronously allowing a simple lineage assignment of mother 
and daughter cells (w); t = 1 in a scenario of multiple, synchronized division events rendering a complicated lineage assignment of mothers  
and daughters (x).
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PhC), the staining (nuclear (N), cellular (C)), the dimensionality 
(2D, 3D), the resolution (low (L), high (H)), and the cell type or 
model organism used.

Each data set consists of two training and two competition vid-
eos. The training videos, along with their reference annotations, 
were provided at the time of registration for the CTC, allowing the 
participants to carry out performance-driven optimization of their 
algorithms. The competition videos, excluding the reference anno-
tations that were kept secret, were provided at a later time, which 
allowed the participants to visually fine tune their algorithms on 
the competition videos before submitting their results.

Three independent human experts created a segmentation 
solution and a tracking solution (annotation) for each nonsyn-
thetic video30. The final segmentation (SEG-GTs) and tracking 
(TRA-GTs) ground truths were created by combining the three 
annotations, following a majority-voting scheme30. SEG-GTs for 
the data sets of Caenorhabditis elegans (Fluo-N3DH-CE) and the 
Drosophila melanogaster (Fluo-N3DL-DRO) embryos were gen-
erated as described above, but in the case of Fluo-N3DL-DRO, 
only cells of the early nervous system were annotated and used 
as ground truth. TRA-GTs of both embryonic data sets were not 
created following the description above. Instead, they were cre-
ated using published protocols32,33 by the groups that provided 
the data sets. For the synthetic videos, SEG-GTs and TRA-GTs 
were inherently created by the cell simulator used31.

Participants, algorithms and handling of submissions
17 teams from 11 countries participated in the three CTC edi-
tions, all providing complete tracking results for at least one of 
the data sets. Two teams submitted more than one algorithm, 
leading to a total of 21 competing algorithms. Tables 2 and 3 list 
the algorithms and classify their segmentation and tracking strat-
egies. Supplementary Table 2 lists affiliations of the participating 
teams, and Supplementary Table 3 contains links to the execut-
able versions of most of the submitted algorithms. Their expanded 
description is presented in the Supplementary Note 3, and the 
parameter configurations used by each algorithm are listed in 
the Supplementary Data 2. All submissions were received by the 
CTC organizers as labeled segmentation masks and structured 
text files containing the cell-lineage graphs. The CTC organizers 
verified the submitted results by reproducing them on a single 
computer, using the executable version of each algorithm pro-
vided by the participants.

Quantitative performance criteria
To quantify the performance of all submitted algorithms, we 
developed three categories of measures that quantified the seg-
mentation and tracking accuracy from the computer science 
point of view, the biological relevance of the obtained tracking 
results, and the practical usability of the methods (see Online 
Methods). It is important to note that only the first set of meas-
ures was evaluated in the challenge, and the methods were there-
fore only fine tuned in this respect. The other two sets were used 
to analyze aspects that are relevant from the user point of view. 
Supplementary Table 3 contains a link to the evaluation software 
used in the challenge.

The first set of measures examined the segmentation and track-
ing accuracy of the methods from the developer’s point of view. 
The segmentation accuracy measure (SEG) evaluates the average 

amount of overlap between the reference segmentation ground 
truth (SEG-GT) and the segmentation masks computed by an 
evaluated algorithm. The tracking accuracy measure (TRA) is 
a normalized weighted distance between the tracking solution 
submitted by the participant and the reference tracking ground 
truth (TRA-GT), with weights chosen to reflect the effort it takes 
a human curator to carry out the edits manually. Both SEG and 
TRA take values in the interval [0, 1], with higher values cor-
responding to better performance. For ranking the algorithms, 
the overall performance (OP) is computed by averaging SEG 
and TRA values for each pair of competition videos, and then 
averaging these averages (i.e., OP = 0.5 . (SEGavg + TRAavg)). In 
summary, SEG and TRA evaluate results in terms of similarity 
to the ground truth and are particularly relevant for compar-
ing algorithms with one another. Method developers use such 
measures to show the superiority of new methods over current 
state-of-the-art methods.

Biologists, however, have specific questions when using track-
ing algorithms and are therefore usually more interested in spe-
cific aspects of the final segmentation and tracking analysis. For 
this reason, we evaluated four additional aspects of biological 
relevance. Complete tracks (CT) measures the fraction of ground 
truth cell tracks that a given method is able to reconstruct in their 
entirety, from the frame they appear in to the frame they disap-
pear from. CT is especially relevant when a perfect reconstruction 
of the cell lineages is required. Track fractions (TF) averages, for 
all detected tracks, the fraction of the longest continuously match-
ing algorithm-generated tracklet with respect to the reference 
track. Intuitively, this can be interpreted as the fraction of an aver-
age cell’s trajectory that an algorithm reconstructs correctly once 
the cell has been detected. Branching correctness (BC) measures 
how efficient a method is at detecting division events. Finally, the 
cell cycle accuracy (CCA) measures how accurate an algorithm 
is at correctly reconstructing the length of cell cycles (that is, 
the time between two consecutive divisions). Both BC and CCA 
are informative about the ability of the algorithm to detect cell 
population growth. All of the biologically inspired measures take 
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values in the interval [0,1], with higher values corresponding to 
better performance.

The third set of measurable quantities expresses the practical 
usability of the submitted algorithms. The first indication of an 
algorithm’s usability is the number of tunable parameters (NP) 
a user is required to manually set, excluding parameters visible 
only to developers. In general, a lower number of tunable param-
eters indicates a more usable algorithm. A very different, but 
important, attribute of an algorithm is its generalizability (GP). 
This measure quantifies how stable an algorithm is when being 
applied with the same parameter configuration to new videos 
acquired under otherwise unchanged imaging conditions. GP 
values are computed by comparing the results for a particular 
training and competition video obtained using the same param-
eter configuration. This measure takes values in the interval 
[0,1], with higher values corresponding to better generalizability. 

The last value we report for each algorithm is its execution time 
(TIM), in seconds.

Analysis of the performance of submitted algorithms
All of the measures described have been computed for every data 
set and competing algorithm. We first evaluated the SEG and 
TRA measures (Figs. 5 and 6 and Supplementary Data 3). To 
determine the significance of these values, we calculated SEG and 
TRA values with respect to the ground truth for the three manual 
annotations, as they are the best available proxies for evaluating 
the variability among human annotators. Thus, algorithms with 
SEG or TRA scores in the range of the average manual scores 
(SEGa and TRAa), ±1 s.d., can be considered to perform at the 
level of human annotators, and algorithms with scores above or 
below that range can be said to perform better or worse, respec-
tively, than the human annotators.

a

20 µm 20 µm 20 µm 20 µm 20 µm

20 µm 20 µm 20 µm

20 µm 20 µm 200 µm 20 µm

b c d e

f g h

li j k

Figure � | Sample images of the challenge data sets. (a) DIC-C2DH-HeLa. (b) Fluo-C2DL-MSC. (c) Fluo-C3DH-H157. (d) Fluo-C3DL-MDA231. (e) Fluo-
N2DH-GOWT1. (f) Fluo-N2DL-HeLa. (g) Fluo-N3DH-CE. (h) Fluo-N3DH-CHO. (i) Fluo-N3DL-DRO. (j) PhC-C2DH-U373. (k) PhC-C2DL-PSC. (l) Fluo-N2DH-
SIM+ and Fluo-N3DH-SIM+.

table 1 | Properties of the competition data sets used in the three editions of the Cell Tracking Challenge

The displayed values correspond to the image/video quality parameters mathematically described in the Online Methods. SNR, signal-to-noise ratio; CR, contrast ratio; Heti, internal signal 
heterogeneity of the cells; Hetb, heterogeneity of the signal between cells; Res, resolution, measured as the size of the cells in number of pixels (2D) or voxels (3D); Sha, regularity of the cell 
shape, normalized between 0 (completely irregular) and 1 (perfectly regular); Den, cell density measured as minimum pixel (2D) or voxel (3D) distance between cells; Cha, change of the aver-
age intensity of the cells with time; Ove, level of overlap of the cells in consecutive frames, normalized between 0 (no overlap) and 1 (complete overlap); Mit/Syn, number and synchronization 
of division events; Ent/Leav, cells entering or leaving the field of view; Apo, presence of apoptotic cells; Deb, presence of moving debris. Color code: for each category and data set, the average 
was computed excluding outlying values (*). The background color of the cell indicates whether the highlighted value is in the categories’ average ±1/2 s.d. (yellow) or the value is outside 
of that range (green or red). A red background indicates a poor value in a given category, and a green background indicates a high value for a given category. In Sha, the 2D and 3D data sets 
were treated separately because different shape descriptor was used for 2D and for 3D cases.

Name SNR CR Heti Hetb Res Sha Den Cha Ove Mit Syn Ent/Leav Apo Deb 

DIC-C2DH-HeLa 0.74 1.00 27.28* 1.35*  12,032 0.68 9.8 0.43 0.91 0.02 N Y Y Y 
Fluo-C2DL-MSC 2.81 1.50 1.19 0.74 11,787 0.32 32.8 104.78* 0.72 0.01 N Y N N 
Fluo-C3DH-H157 31.53 3.14 0.35 0.42 349,593* 0.60 46.6 11.52 0.86 0.00 N Y N N 
Fluo-C3DL-MDA231 9.36 4.24 1.26 0.20 1,696 0.60 18.5 8.86 0.71 0.17 N Y N N 
Fluo-N2DH-GOWT1 6.16 11.31 0.83 0.81 3,327 0.80 40.6 0.01 0.92 0.07 N Y N Y 
Fluo-N2DL-HeLa 57.72 1.02 0.28 0.62 561 0.80 15.8 2.58 0.88 1.45 N Y Y Y 
Fluo-N3DH-CE 6.74 3.46 0.66 0.27 6,001 0.69 4.8 0.19 0.75 1.86 Y N N N 
Fluo-N3DH-CHO 25.96 10.43 0.59 0.27 14,494 0.58 33.7 0.01 0.87 0.06 N Y Y N 
Fluo-N3DL-DRO 2.46 3.32 0.31 0.18 1,188 0.65 12.3 0.98 0.68 1.05 N N N N 
PhC-C2DH-U373 2.88 1.10 19.30* 0.87 4,287 0.58 48.8 0.04 0.91 0.00 N Y N Y 
PhC-C2DL-PSC 4.06 1.53 0.52 0.34 114 0.60 8.5 0.04 0.90 1.99 N  Y N Y 
Fluo-N2DH-SIM+ 6.30 1.23 0.95 0.48 1,181 0.72 18.2 0.14 0.89 0.49 N Y N N 
Fluo-N3DH-SIM+ 5.22 1.24 1.14 0.41 38,285 0.73 16.2 0.14 0.86 0.49 N Y N N 
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We first examine the results trying to pinpoint the features that 
underlie the good and not so good performance of the compet-
ing methods (Fig. 5). We observed that some algorithms reached 
very good values (OP > 0.9) for data sets Fluo-N2DH-GOWT1, 
PhC-C2DH-U373, Fluo-N2DL-HeLa, Fluo-C3DH-H157 and 
Fluo-N3DH-CHO. In all but one of these data sets (Fluo-C3DH-
H157), one or more algorithms reached human-quality results. 
Notably, all but one of these results were obtained on fluorescence 
data with high signal-to-noise ratio (SNR) or contrast ratio (CR) 
values. Some also showed high spatial (Fluo-C3DH-H157, Fluo-
N3DH-CHO) and/or temporal (Fluo-N2DH-GOWT1, Fluo-
N2DL-HeLa, Fluo-N3DH-CHO) resolution and displayed rather 
low cell densities (Fluo-C3DH-H157, Fluo-N2DH-GOWT1, 
PhC-C2DH-U373, Fluo-N3DH-CHO).

A second group of data sets was solvable with OP values 
between 0.75 and 0.9 (DIC-C2DH-HeLa, PhC-C2DL-PSC, Fluo-
C3DL-MDA231, Fluo-N2DH-SIM+ and Fluo-N3DH-SIM+). For 
these data sets, the SEG and TRA values are near, but below, the 

performance of the human annotators, meaning that after auto-
matic tracking some additional curation work is required to reach 
the level of the human-level solutions. The difficulty for DIC-
C2DH-HeLa and PhC-C2DL-PSC appeared to be the low SNR 
and CR values and high cell density, and for DIC-C2DH-HeLa 
also the rather complex image texture of the cells (Supplementary 
Figs. 1 and 11). For Fluo-C3DL-MDA231, the low SNR and CR 
values were paired with low spatial and temporal resolution and 
substantial photobleaching (Supplementary Fig. 4). The two syn-
thetic data sets (Fluo-N2DH-SIM+, Fluo-N3DH-SIM+) showed 
average SNR, low CR, average cell density and average-to-high 
heterogeneity in and between cells.

Three data sets (Fluo-C2DL-MSC, Fluo-N3DH-CE and Fluo-
N3DL-DRO) turned out to be the hardest to segment and track 
fully automatically (OP < 0.75). For these data sets, a substantial 
amount of manual work would be needed to curate the computed 
results to reach human-level annotations. Fluo-C2DL-MSC suf-
fered mostly from low SNR and CR values, low temporal resolution 

table 2 | Segmentation strategies used by the competing methods

Algorithm Preprocessing Principle Feature methodology Postprocessing

COM-US Noise suppression 
Intensity normalization

Homogeneity Intensity Thresholding Size filtering

CUL-UK Noise suppression 
Illumination correction

Homogeneity Intensity Thresholding Size filtering

CUNI-CZ Noise suppression Homogeneity Intensity Thresholding Size filtering Cluster separation
FR-Be-GE Intensity normalization 

Illumination correction
Homogeneity Boundary Intensity Energy minimization Size filtering Hole filling

FR-Ro-GE Intensity normalization 
Illumination correction

Homogeneity Texture descriptor Machine learning None

HD-Har-GE Noise suppression 
Intensity clipping

Homogeneity Intensity Thresholding Hole filling Cluster separation

HD-Hau-GE None Homogeneity Texture descriptor Machine learning Size filtering
IMCB-SG (1) Noise suppression 

Illumination correction
Homogeneity Intensity Thresholding Size filtering Cluster separation

IMCB-SG (2) Image resampling Noise 
suppression Illumination 

correction

Homogeneity Intensity Thresholding Size filtering Cluster separation

KIT-GE Noise suppression Homogeneity Local descriptor Thresholding None
KTH-SE (1) Intensity normalization 

Noise suppression 
Illumination correction

Homogeneity Intensity Thresholding Size filtering Hole filling Cluster 
separation

KTH-SE (2) Intensity normalization 
Noise suppression 

Illumination correction

Homogeneity Intensity Thresholding Size filtering Hole filling Cluster 
separation

KTH-SE (3) Intensity normalization 
Illumination correction

Homogeneity Local descriptor Thresholding Boundary refinement

KTH-SE (4) Intensity normalization 
Noise suppression

Boundary Intensity Thresholding Size filtering Region merging

LEID-NL Noise suppression Homogeneity Intensity Energy minimization Cluster separation
MU-CZ Noise suppression Homogeneity Intensity Energy minimization Cluster separation
NOTT-UK Intensity normalization Homogeneity Intensity Thresholding None
PAST-FR Intensity normalization 

Noise suppression
Homogeneity Boundary Intensity Energy minimization None

UP-PT Image subsampling Noise 
suppression

Homogeneity Peak Intensity Thresholding Boundary refinement

UPM-ES Noise suppression Homogeneity Intensity Thresholding Size filtering Hole filling 
Boundary refinement

UZH-CH Intensity normalization 
Noise suppression 

Illumination correction

Homogeneity Intensity Region growing Size filtering Hole filling

Principle, feature and methodology used in the segmentation phase of the competing algorithms (following the taxonomy shown in Fig. 3) along with the preprocessing and postprocessing 
strategies employed.
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and substantial photobleaching. This data set was also difficult 
to segment correctly as a result of its prominent cell protrusions 
(Supplementary Fig. 2). For Fluo-N3DH-CE and Fluo-N3DL-
DRO, the two whole-embryo data sets, the algorithms mostly 
struggled to segment and track the very noisy cell nuclei in 3D. 
In addition, these data sets showed very low spatial resolution, 
relatively low temporal resolution and increasingly dense frames 
toward the end of the videos, which strongly complicated tracking 
of the segmented cells (Supplementary Figs. 7 and 9).

Next, we examined the results from the viewpoint of the algo-
rithms, asking which ones showed the best overall performance 
(Fig. 6). The algorithms KTH-SE, FR-Ro-GE and HD-Hau-GE 
ranked first for one or more data sets. Looking more globally at 
the number of top-three occurrences, KTH-SE, FR-Ro-GE and 
HD-Har-GE outperformed the others. Their common denomina-
tor was reliance on the tracking by detection paradigm. In par-
ticular, KTH-SE algorithms performed extraordinarily well, and 
they were ranked among the top-three algorithms for all data sets. 
These methods rely on a simple thresholding for segmentation, 
the results of which are highly enriched by the use of global infor-
mation in the tracking process. In some data sets, however, the 
tracking by contour evolution methods (LEID-NL, MU-CZ and 
PAST-FR) reached the level of the tracking by detection methods. 
This can be attributed to their high segmentation performance 
on data sets with high temporal and spatial resolution (Fluo-
N3DH-CHO, Fluo-N2DH-GOWT1, Fluo-N2DH-SIM+ and 
Fluo-N3DH-SIM+). These results highlight how these methods 

rely on substantial cell-to-cell overlaps between successive frames 
to work properly. Finally, it is interesting to note the exceptional 
performance of the machine-learning methods (FR-Ro-GE, HD-
Hau-GE) on contrast enhancement microscopy (PhC and DIC) 
data sets. Indeed, these methods obtained performance values on 
DIC-C2DH-HeLa, PhC-C2DH-U373 and PhC-C2DL-PSC that 
did not match their predicted level of complexity. This can be 
explained by the fact that the internal texture of the cells in these 
data sets is not detrimental for the segmentation. On the contrary, 
it seems to improve the learning capacity of the algorithms.

Notably, the evolution of the average of the top-three OP 
values during the three CTC editions showed progress toward 
the objective of reaching the level of the human expert annota-
tors (Supplementary Fig. 13). Across all data sets, the average  
top-three OP values rose by 0.03 ± 0.03 (CTC II versus CTC I) 
and 0.05 ± 0.07 (CTC III versus CTC I).

We studied the robustness of the OP-based rankings (see Online 
Methods and Supplementary Fig. 14) and found that the rank-
ings were indeed robust for up to 45% of possible weight changes. 
Furthermore, we analyzed the correlation (i.e., interdependence) 
of SEG and TRA scores using the Kendall’s τ correlation coef-
ficient (Supplementary Table 4) and found moderate global  
correlation (0.55) with only a few cases of very high (DIC-C2DH-
HeLa and Fluo-N3DH-CE) or high (PhC-C2DL-PSC and Fluo-
C2DL-MSC) correlation.

Given that segmentation and tracking are meant to answer bio-
logical questions in the hands of practicing biologists, we next 

table 3 | Tracking strategies used by the competing methods

method Principle methodology temporal support Postprocessing division detection

COM-US Association Graph-based multiple hypothesis tracking All Distance-based track 
refinement

None

CUL-UK Association Motion prediction-based label propagation 3 Cell-collision-based track 
refinement

None

CUNI-CZ Association Distance-based nearest neighbor linking 2 None Specific
FR-Be-GE Association Maximum-overlap-based label propagation 2 None None
FR-Ro-GE Association Maximum-overlap-based label propagation 2 None None
HD-Har-GE Association Constrained distance-based nearest neighbor 

linking
3 Location- and length-

based track refinement
Specific

HD-Hau-GE Association Probability-graph-based global optimization All None Inherent
IMCB-SG (1) Association Overlap-based label propagation 2 None Inherent
IMCB-SG (2) Association Distance-based nearest neighbor linking 2 None Specific
KIT-GE Association Distance-based nearest neighbor linking 2 None Specific
KTH-SEM (1) Association Graph-based shortest path global optimization All Adjacency- and overlap-

based track refinement
Inherent

KTH-SEM (2) Association Graph-based shortest-path global optimization 
with detection preprocessing

All Adjacency based track 
refinement

Inherent

KTH-SEM (3) Association Graph-based shortest-path global optimization All Adjacency based track 
refinement

Inherent

KTH-SEM (4) Association Graph-based shortest-path global optimization All Adjacency based track 
refinement

Inherent

LEID-NL Contour evolution with motion compensation 2 None Specific
MU-CZ Contour evolution with bleaching compensation 2 Location-based track 

refinement
Inherent

NOTT-UK Association Distance-based nearest neighbor linking 2 None Inherent
PAST-FR Contour evolution 2 None Inherent
UP-PT Association Distance-based nearest neighbor linking 2 Location- and length-

based track refinement
Specific

UPM-ES Association Overlap-based label propagation 2 None None
UZH-CH Association Distance-based nearest neighbor linking 2 None Specific
Principle and methodology used in the tracking phase of all the competing algorithms (following the taxonomy shown in Fig. 3) along with postprocessing strategies employed, the temporal 
support given, and the scheme followed for the division detection.
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analyze the biologically inspired and usability measures. Figure 7  
shows the top-three biological scores: CT, TF, BC and CCA, and 
the average values obtained by the annotators (CTa, TFa, BCa and 
CCAa). When looking at CT across data sets, we observed very low 
values overall, but especially so for DIC-C2DH-HeLa, Fluo-C2DL-
MSC, PhC-C2DL-PSC and the two embryonic developmental data 
sets (Fluo-N3DH-CE and Fluo-N3DL-DRO). The low CT values 
are especially relevant for the embryonic data sets, as tracking 

completeness is critical for a correct genealogical reconstruction 
of embryo development. The TF values were at a higher level, 
meaning that the methods are reasonably competent at measur-
ing cell speeds and trajectories, but some work is still required to 
bring them to the level of the human annotators. Finally, Fluo-
N2DL-HeLa, Fluo-N2DH-SIM+ and Fluo-N3DH-SIM+ showed 
high BC and CCA values, which indicates that the methods are 
able to correctly detect cell divisions and cell-population growth; 
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whereas PhC-C2DL-PSC, Fluo-N3DH-CE and, presumably, Fluo-
N3DL-DRO would benefit from improved management of divi-
sion events as revealed by their low BC and CCA values.

When analyzing the performance of the individual algorithms 
in terms of CT and TF (Fig. 8 and Supplementary Data 4),  
we saw similar, but not completely matching, pictures com-
pared with the ranking compiled using SEG and TRA (Fig. 6). 
This is because TF and CT consider only tracking correctness,  
regardless of the accuracy of the segmentation, and have much 
stricter requirements on correctly reconstructed tracks. This means 
that solutions with a high TRA score and low TF and CT scores still 
contain errors that need to be fixed to enable sound biological con-
clusions. The KTH-SE algorithms remained the top-ranked ones 
in most data sets, which highlights the importance of the inclusion 
of global information in the linking process, as it yields longer, 
correctly reconstructed tracklets. However, similar to the above-
discussed SEG and TRA scores, the tracking by contour evolution 
method LEID-NL managed to break the dominance of tracking by 
detection approaches (it is top ranked twice for TF and four times 
for CT). This highlights the fact that tracking by contour evolution 
methods can be superior at following cells once a track has been 
initiated if the temporal resolution of the image data permits. As a 
final comment, methods that inherently (KTH-SE, HD-Hau-GE,  

IMCB-SG) or specifically (HD-Har-GE, LEID-NL) detect cell divi-
sion events showed higher BC and CCA values than those that do not 
use specific cell division detection routines. Especially relevant is the  
excellent behavior of HD-Har-GE, which was ranked first three 
out of five possible times in the CCA category, and can there-
fore safely be distinguished as the best method when it comes  
to detecting complete cell cycles and therefore measuring cell popu-
lation growth.

Finally, given that competing solutions need to be deployed 
by biologists who normally have little computer science experi-
ence, we analyzed the usability, speed and general applicability 
of all top-ranked algorithms. We found that the superior per-
formance of the KTH-SE algorithms came, unfortunately, with 
the disadvantage of an elevated number of parameters compared 
with most other methods (in particular with the close contender 
FR-Ro-GE; Table 4 and Supplementary Data 5). Conversely, the 
KTH-SE algorithms were faster than most other methods, includ-
ing FR-Ro-GE (for which, however, a much faster implementation 
using graphics cards exists). Finally, we found that the KTH-SE 
methods generalized very well to similar data (high GP values). 
This indicates that, given a well-chosen parameter configuration, 
this method is likely to obtain good results also when applied on 
previously unseen image data of the same kind.
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disCussion
Here we present the results of three editions of the CTC, a 
benchmarking effort aimed at improving cell tracking in multi-
dimensional microscopy. The prerequisite for our study was the 
compilation of a large corpus of exemplar video sequences of bio-
logical samples imaged with a variety of microscopy modalities and 
displaying a broad range of image qualities known to be challeng-
ing for automated segmentation and tracking of cells. Our work 
makes a number of important contributions. First, the compila-
tion of expert-driven annotations of cell regions and trajectories 
in these videos. We also include artificially generated image data at 
an intermediate level of complexity, for which an absolute ground 
truth inherently exists. Together, this represents a unique and rich 
resource of annotated, real and simulated image data that distin-
guishes our challenge from similar events that relied exclusively on 
simulated data34. Second, we developed a set of measures that quan-
titatively evaluate the performance of submitted solutions against 
the ground truth data in terms of accuracy, biological relevance of 
the results and usability for biologists. Third, over the course of 
three challenges, we assembled a diverse collection of competing 
solutions that represent all of the main algorithmic approaches to 
cell segmentation and tracking problems in biology. Fourth, we 
analyzed the accumulated results and provide useful guidelines for 
both users and developers of tracking software.

From the comparison of the competing algorithms, we found 
that in most practical scenarios tracking by detection methods 
outperformed tracking by contour evolution methods. A notable 
exception to this can be observed in data sets with high temporal 
resolutions that have substantial interframe cell overlaps. Indeed, 
in these situations tracking by contour evolution methods seem 
to be able to track cells for longer stretches of the videos than 

the tracking by detection methods. Paradoxically, this means that 
even if the results of tracking by contour evolution methods are 
less similar to the ground truth solution, their biologically rele-
vant performance might be sometimes higher. Another important 
result of this study is that the algorithms that make use of modern 
machine-learning approaches performed best in most segmen-
tation scenarios. For example, the methods that use machine-
learning strategies to classify pixels as being either part of a cell 
or the background tended to produce better segmentation results 
than other methods. Furthermore, tracking by detection methods 
that consider larger, possibly global, spatiotemporal contexts to 
reason about track linking tended to outperform algorithms that 
only look at the nearest neighbors in space and time. The conclu-
sion that algorithms that use prior and contextual information 
perform better than those that do not use it was also reached in 
the aforementioned Particle Tracking Challenge34. We found this 
conclusion to also be true in real data sets of moving cells with 
nonlinear lineages (i.e., with division events).

From the user perspective, complete and perfect unsupervised 
tracking remains a distant dream. When a certain level of remain-
ing errors or manual postprocessing is acceptable, the top-scoring 
algorithms offer good performance. However, as a result of a large 
number of tunable parameters, practical deployment of the soft-
ware on new data may prove to be cumbersome. Potentially, long 
runtimes of complex algorithmic solutions can be offset by running 
them on graphics hardware whenever such implementation is fea-
sible and/or available. The good news is that once parameters have 
been optimized manually or using automatic supervised or unsu-
pervised algorithms and the software runs on decent hardware, the 
best methods will perform well on all similar microscopy record-
ings. Finally, we acknowledge that, as a result of the complexity of 
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relevant factors (biological, imaging and algorithmic) that affect 
the results of segmentation and tracking, there is no simple way 
to point out the right algorithm for a given data set. This is sup-
ported by the fact that none of the presented problems were solved 
completely when judged from a biologist’s viewpoint.

For algorithm developers, the results of the challenge indicate 
that their job is far from being complete. Despite the very good 
results the submitted algorithms achieved on many data sets, 
additional development is crucially required for scenarios with 
low SNR or CR or for tracking cells with more complex shapes or 
textures. Large 3D data sets, such as those of developing embryos, 
present additional challenges. Not only do such videos show very 
high cell densities in later frames, the size of the image data itself 
causes very long runtimes. Tracking by detection approaches fail 
on these data sets because they crucially depend on high-quality  
segmentation results, something difficult to achieve in these chal-
lenging data sets. Tracking by contour evolution approaches often 
fails because of their low temporal resolution.

In most circumstances, tracking is contingent on segmenta-
tion, and the submitted algorithms mix and match different 
segmentation and tracking strategies. By equally weighting both 
segmentation and tracking accuracy when calculating the overall 
performance of the methods, we assign equal importance to both 
tasks; although, as we found, the resulting ranking is robust against 
changes in those weights. Furthermore, the overall correlation of 
both measures is moderate, with only a few exceptions in data sets 
in which the performance of a tracking solution seems to be heavily 
influenced by the performance of the segmentation approach.

Although the challenge was broadly taken on by the commu-
nity, and many algorithms competed, it is important to stress that 
the voluntary nature of participation necessarily resulted in sub-
stantial omissions. In particular, this affected the submissions 
attempting to meaningfully solve the 3D tracking problems in 
embryos that are the most challenging data sets and for which 
efficient methods are published and available32,33.

The CTC, which remains open for online submissions, is a power-
ful resource for algorithm developers and users alike. Along with the 
data sets, we offer an open-source Fiji plugin35 with the evaluation 
suite, which is capable of computing the technical and biologically 
oriented measures, as well as the data set quality parameters; and we 
provide executable versions of most of the participants’ algorithms. 
Furthermore, we encourage participants to make their submitted 
algorithms available to biologists via easy to install and intuitive 
graphical user interfaces. In the future, new data sets of existing 
and new microscopy modalities will be incorporated to the data set 
repository. It will be particularly important to collect and annotate 
complex tissue, organ and whole-embryo image data. Finally, we 
intend to add new synthetic data sets that closely mimic the variety 
of cell types and microscopy scenarios. These synthetic image data 
will model different cell labeling, cell shapes and cell behaviors and 
migration patterns in 2D and 3D. Given that artificially generated 
data sets implicitly bear absolute ground truth, they can be tuned 
to challenge algorithms to improve specific aspects of the problem 
(for example, how to deal with increasing noise or signal heteroge-
neity levels) or provide training data for segmentation and tracking 
approaches based on promising machine-learning methods.

methods
Methods, including statements of data availability and any associ-
ated accession codes and references, are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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17 0.893 79 4 0.893 2630 5 0.920 342 
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Fluo-N2DH-GOWT1 KTH-SEM (1) 0.951 LEID-NL 0.902 CUNI-CZ 0.902 
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online methods
Data set quality parameters. To assess the quantitative video 
parameters (see Table 1), we had to calculate those param-
eters, ideally, on a complete ground truth of the competition 
data sets, meaning having appropriate cell masks and tracking 
information for all the cells in the videos. The ground truth 
used to evaluate the performance of the algorithms (SEG-GT 
and TRA-GT) was obtained manually from three annotators. 
TRA-GT indeed contains the manually annotated tracks of all 
the cells in the videos. However, due to the monumental task that 
it would have required, SEG-GT includes a subset of complete 
segmentation masks per video, which constitutes a representa-
tive amount for the evaluation of segmentation performance. To 
extend the manual ground truth to cover as many as possible of 
the cells in the videos, we first combined the manual tracking 
ground truth (TRA-GT) with the segmentation masks provided 
by the participants. For any marker in TRA-GT, we automatically 
merged the top-performing participants’ segmentation masks 
that overlap the majority of this tracking marker. The number of 
masks used was determined manually for each video. On aver-
age, a majority of the total number of available masks were used. 
The process led occasionally to colliding situations, i.e., when 
obtained segmentation masks for two different tracking markers 
were overlapping. If the overlap was less than 10% of the mask 
area/volume, the intersecting pixels/voxels were removed from 
both colliding masks in an expectation that 10% loss will not 
significantly influence the measured quantities. Otherwise, both 
entire masks were discarded. In this way, a rich consensus-based 
segmentation with reliable linking was obtained for all real chal-
lenge videos. The synthetic data sets did not require this process, 
since they are accompanied with the absolute segmentation and 
tracking ground truth, inherently generated during the simula-
tion process.

Next, a mask for the background region of each video was 
established as the complement to the union of all objects’ con-
sensus segmentation masks taken over all frames of the given 
video. This results in a constant -stationary over the video- back-
ground mask that fits to all images of that video. A background 
mask for synthetic data sets was established also like this. For 
Fluo-N3DH-CE and Fluo-N3DL-DRO data sets, however, the 
background masks had to be established on per-frame basis, 
encompassing interior region of the embryos as well as the sur-
rounding medium.

From the consensus segmentation and tracking ground truth, 
we calculated quantitative parameters as follows. Let FGi,t and 
BGt represent the sets of image elements that form i-th cell and 
(single) background mask, respectively, in t-th image of the video. 
Furthermore, let avg(S) and s.d.(S) denote average and s.d. of 
intensities found at image elements in the set S, and let dist(a, 
b) be a chamfer distance36 between image elements a and b in 
their coordinate units (pixels/voxels in 2D/3D). The reported 
values of the signal-to-noise ratio (SNR), contrast ratio (CR), 
internal signal heterogeneity of the cells (Heti), resolution (Res), 
regularity of the cell shape (Sha), cell density (Den), and level 
of cell overlap in consecutive frames (Ove) were established as 
averages of SNRi,t, CRi,t, HETii,t, Resi,t, Shai,t, Deni,t,and Ovei,t 
values, respectively, calculated for every object in every image in 
both competition videos 
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where |S| is the size of the set S and I(t) is the set of indices of all 
cells or nuclei segmented in the t-th image. The heterogeneity of the 
signal between cells (Hetb) is calculated as the s.d. of HETbi,t values 
for every object in every image in both competition videos. Shai,t 
is the circularity37 for 2D objects, which is given as the normalized 
ratio of perimeter of a circle having the same area as the object to 
the actual area of the object, and sphericity37 for 3D objects, which 
is given as the normalized ratio of the surface area of a sphere hav-
ing the same volume as the object to the actual surface area of the 
object. Note that in the latter case the actual (anisotropic) voxel size 
was taken into account. The Deni,t was evaluated only up to the 
distance of 50 image elements away from i-th object. The distance 
tells how many (background) pixels/voxels there are between two 
nearby objects. Clearly, higher number expects separating nearby 
objects easier. To calculate Cha, the absolute difference between the 
average object intensity at the end and the beginning of a video was 
divided by the number of its frames minus one and averaged over 
both videos in a data set. The number of division events (Mit) is 
computed as average of Mitt taken over images from both videos, 
where Mitt is the number of objects whose tracks end in the t-th 
image because of subsequent division events (which are marked 
in the tracking ground truth TRA-GT). The remaining qualitative 
parameters, synchronization of division events (Syn), cells enter-
ing or leaving the field of view (Ent/Leav), apoptotic cells (Apo), 
and the presence of moving debris (Deb), were set after manual 
inspection of the data sets.

Performance criteria (technical measures). Segmentation 
Accuracy. We quantify the amount of overlap between the refer-
ence annotations and the computed segmentation results using 
the Jaccard similarity index, defined as 

J R S R S
R S

( , ) | |
| |

= ∩
∪

where R is the reference segmentation of a cell in SEG-GT and S 
is its corresponding cell segmentation. The Jaccard index always 
falls in the [0, 1] interval, where 1 means total overlap and 0 
means no overlap. The final SEG value for a particular video is 
calculated as the mean Jaccard index over all reference cells in 
the video.
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Tracking accuracy. To evaluate the ability of an algorithm to 
track cells in time, the tracking results are first represented as 
acyclic oriented graphs, as trees that capture the genealogy of the 
cells during the duration of the video. We then assess how difficult 
it is to transform a computed tracking graph into the correspond-
ing reference graph, TRA-GT, using a normalized version of the 
Acyclic Oriented Graph Matching (AOGM) measure38

TRA
AOGM AOGM

AOGM
= −1 0

0

min( , )

where AOGM0 is the AOGM value required for creating the ref-
erence graph from scratch (i.e., it is the AOGM value for empty 
tracking results). The minimum operator in the numerator pre-
vents from having a final negative value when it is cheaper to 
create the reference graph from scratch than to transform the 
computed graph into the reference graph. TRA always falls in 
the [0, 1] interval, with higher values corresponding to better 
tracking performance.

Overall performance. For each algorithm and data set, SEG and 
TRA are first averaged over the two competition videos. Then, 
the averaged values, SEGavg and TRAavg, are averaged again (i.e., 
OP = 0.5 · (SEGavg + TRAavg)), and the result is used to compile 
the final ranking.

Performance criteria (biologically inspired measures). 
Complete tracks. CT39 examines how good a method is at recon-
structing complete reference tracks (i.e., the tracks in TRA-GT). 
A reference track is considered completely reconstructed if and 
only if each of its track points has an assigned track point in the 
corresponding computed track, and both tracks have the same 
temporal support. The final CT value for a particular video is 
computed as the F1 score of completely reconstructed reference 
tracks, defined as: 

CT =
+

2T
T T

rc

c gt

where Trc is number of completely reconstructed reference tracks, 
Tgt is number of all reference tracks, and Tc is the number of all 
computed tracks.

Track fractions. TF targets the longest, correctly reconstructed, 
continuous fraction of a detected reference track. The final TF 
value for a particular video is computed by averaging these frac-
tions over all detected reference tracks.

Branching correctness. BC(i)28,29 examines how good a method 
is at reconstructing mother-daughter relationships. Division 
events often happen during several frames, thus complicating 
matching of the provided result and the ground truth. Therefore, 
for two division events to be considered matching29,30 (i.e., one 
provided by the method and one in the ground truth), they are 
allowed to be separated by no more than i frames. More spe-
cifically, we allowed the reconstruction of division events using a 
tolerance window of (2.i + 1) frames. The tolerance value i used 
for each data set was fixed by analyzing how the performance 
of the participating methods depends on i. Namely, the value 
i was selected as the minimum value that was large enough to 
ensure that the BC(i) values of all competitive methods remain 

constant. The actual i values used for individual data sets were: 
Fluo-N2DL-HeLa (i = 1, corresponding to a 30-min tolerance 
window), Fluo-N3DH-CE (i = 1, 1 min), PhC-C2DL-PSC (i = 
2, 20 min), Fluo-N2DH-SIM+ (i = 3, 87 min), and Fluo-N3DH-
SIM+ (i = 3, 87 min). The final BC(i) value for a particular video 
is computed as the F1 score of correctly reconstructed division 
events in the corresponding reference graph.

Cell cycle accuracy. CCA reflects the ability of an algorithm to 
discover true distribution of cell cycle lengths in a video, consider-
ing only those tracks that are both initiated and terminated by a 
branching event. Each such track witnesses the development of a 
cell from its birth until its next division, and its length, therefore, 
corresponds to the cell cycle length of that cell. The CCA measure 
is defined as:

 
CCA CDF CDF= − −1 max (| ( ) ( ) |)l r gtl l

where CDFr and CDFgt are cumulative distribution functions of 
cell cycle length occurrence probabilities in the reference annota-
tion and the computed result, respectively, adopting a common 
non-parametric approach to discovering dissimilarities between 
two sample distributions40.

It is important to note that CT, TF, BC(i) and CCA always fall 
into the [0, 1] interval, with higher values corresponding to bet-
ter performance.

Performance criteria (usability measures). Number of required 
tunable paramters. NP corresponds to the number of parameters 
that need to be provided, and possibly tuned, to obtain the evalu-
ated results. Although there are methodologies that allow for auto-
matic tuning of the parameters, having to do so adds a level of 
complexity to the task that might prevent a very efficient algorithm 
from being used by a user non-proficient in those methods.

Generalizability. GP examines how stable the algorithm is 
when being applied to similar image data using the set of param-
eters provided. Being evaluated for all 21 algorithms, we ran the 
algorithms on the training videos using the same parameters  
provided for the competition videos and evaluated how much 
the results for the training videos differ from those for the  
competition videos in terms of the technical measures: 

GP
SEG TRAavg

GP
avg
GP

=
− + −( ) ( )1 1

2

where SEGavg
GP  and TRAavg

GP  are average absolute differences in the 
SEG and TRA scores, respectively, between the results obtained 
for the competition and training videos. Note that GP always 
falls into the [0, 1] interval, with higher values corresponding to 
higher generalizability.

Execution time. For each data set, we accumulated the time (in 
seconds) that was required to analyze each competition video.

Ranking robustness. For each dataset, we ranked all methods 
based on their SEG and TRA scores using the formula 0.5 · (a ·  
SEG + b · TRA), a, b ∈ {0, 0.001, 0.002, …, 1}, and calculated 
the number of changes between each such ranking and the one 
compiled using OP (i.e., when a equals to b). Supplementary 
Figure 14 plots the number of changes for every combination of 
weights. As can be seen, 45% of the area (that is of possible weight 
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configurations) causes no more than two changes in the rankings 
across all data sets.

Code availability. All the code used to produce the results reported 
in this article, namely a Fiji plugin that implements the entire eval-
uation suite (used to produce the numbers listed in Tables 1 and 
4, Figs. 5–8, and Supplementary Figs. 13 and 14), is freely avail-
able through the link to the CTC website given in Supplementary 
Table 3, along with the links to the executable versions of indi-
vidual algorithms of those participants who agreed to share their 
tools. The parameters used by the participants to produce their 
submitted results are listed in Supplementary Data 2.

Data availability statement. All the data sets used in the challenge 
(referred to in Fig. 4, Supplementary Figs. 1–11, Supplementary 
Videos 1–13, and described in Table 1 and Supplementary Table 
1 and Supplementary Note 1), along with the annotations of the 
training data sets, are available through the challenge website: 
http://celltrackingchallenge.net/datasets.html. Access to the data 
sets is granted after free registration for the challenge.

The set of parameters used for the generation of the syn-
thetic data sets (referred to in Fig. 4, Supplementary Fig. 12, 
Supplementary Videos 12 and 13, and described in Table 1 and 
Supplementary Table 1) is given in Supplementary Data 1.

The entire set of evaluation measures obtained and used to 
compare the algorithms (used to produce Figs. 5–8, Table 4, 
Supplementary Figs. 13 and 14, and Supplementary Table 4) is 
provided with this article as Supplementary Data 3 (SEG, TRA 
and OP), 4 (CT, TF, BC and CCA), and 5 (NP, GP and TIM).

A Life Sciences Reporting Summary is provided.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Our manuscript does not report on experimental work. We evaluate and rank the 
performance of software -cell tracking algorithms on videos- based on a set of 
performace measures. Therefore, no descriptive statistics have been used and 
accordingly all the following questions have been answered (N/A). 
Regarding the sample size, as explained in the Results section, "Datasets and 
ground truth" subsection (page 6), we used 52 annotated videos, 4 videos of 13 
types, covering a wide range of microscopy and experimental conditions. From 
each type, two videos were used for training the algorithms and two videos were 
used to evaluate the performance of the algorithms. The number of videos per 
dataset (4) was considered appropriate taking into account the labor intense 
annotation required, the amount of work given to the participants, and the 
availability of good quality videos of each type.  

2.   Data exclusions

Describe any data exclusions. N/A

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

N/A

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

N/A

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

N/A

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

We have developed code to analyze the performance of the algorithms, and 
quantify the properties of the videos, to help with the interpretation of the results. 
A beta version of a Fiji plugin that contains the software in provided as a link in 
Supplementary Table 3, along with links to the executable versions of  the 
participant's algorithms.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

N/A

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

M/A

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. N/A

b.  Describe the method of cell line authentication used. N/A

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

N/A

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

N/A
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

N/A

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

N/A
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