
Neural-Guided RANSAC: Learning Where to Sample Model Hypotheses

Eric Brachmann and Carsten Rother
Visual Learning Lab

Heidelberg University (HCI/IWR)
http://vislearn.de

Abstract
We present Neural-Guided RANSAC (NG-RANSAC), an

extension to the classic RANSAC algorithm from robust op-
timization. NG-RANSAC uses prior information to improve
model hypothesis search, increasing the chance of finding
outlier-free minimal sets. Previous works use heuristic side
information like hand-crafted descriptor distance to guide
hypothesis search. In contrast, we learn hypothesis search
in a principled fashion that lets us optimize an arbitrary
task loss during training, leading to large improvements on
classic computer vision tasks. We present two further ex-
tensions to NG-RANSAC. Firstly, using the inlier count it-
self as training signal allows us to train neural guidance
in a self-supervised fashion. Secondly, we combine neural
guidance with differentiable RANSAC to build neural net-
works which focus on certain parts of the input data and
make the output predictions as good as possible. We evalu-
ate NG-RANSAC on a wide array of computer vision tasks,
namely estimation of epipolar geometry, horizon line esti-
mation and camera re-localization. We achieve superior or
competitive results compared to state-of-the-art robust esti-
mators, including very recent, learned ones.

1. Introduction
Despite its simplicity and time of invention, Random

Sample Consensus (RANSAC) [12] remains an important
method for robust optimization, and is a vital component
of many state-of-the-art vision pipelines [39, 40, 29, 6].
RANSAC allows accurate estimation of model parameters
from a set of observations of which some are outliers. To
this end, RANSAC iteratively chooses random sub-sets of
observations, so called minimal sets, to create model hy-
potheses. Hypotheses are ranked according to their consen-
sus with all observations, and the top-ranked hypothesis is
returned as the final estimate.

The main limitation of RANSAC is its poor performance
in domains with many outliers. As the ratio of outliers in-
creases, RANSAC requires exponentially many iterations
to find an outlier-free minimal set. Implementations of
RANSAC therefore often restrict the maximum number of
iterations, and return the best model found so far [7].

SI
FT

 C
o

rr
es

p
o

n
d

en
ce

s
R

A
N

SA
C

 R
e

su
lt

N
eu

ra
l G

u
id

an
ce

N
G

-R
A

N
SA

C
 R

es
u

lt

P
ro

b
ab

ili
ty

Figure 1. RANSAC vs. NG-RANSAC. We extract 2000 SIFT cor-
respondences between two images. With an outlier rate of 88%,
RANSAC fails to find the correct relative transformation (green
correct and red wrong matches). We use a neural network to pre-
dict a probability distribution over correspondences. Over 90% of
the probability mass falls onto 239 correspondences with an out-
lier rate of 33%. NG-RANSAC samples minimal sets according
to this distribution, and finds the correct transformation up to an
angular error of less than 1◦.

In this work, we combine RANSAC with a neural net-
work that predicts a weight for each observation. The
weights ultimately guide the sampling of minimal sets.
We call the resulting algorithm Neural-Guided RANSAC
(NG-RANSAC). A comparison of our method with vanilla
RANSAC can be seen in Fig. 1.

1

ar
X

iv
:1

90
5.

04
13

2v
2

 [
cs

.C
V

]
 3

1
Ju

l 2
01

9

When developing NG-RANSAC, we took inspiration
from recent work on learned robust estimators [56, 36].
In particular, Yi et al. [56] train a neural network to clas-
sify observations as outliers or inliers, fitting final model
parameters only to the latter. Although designed to re-
place RANSAC, their method achieves best results when
combined with RANSAC during test time, where it would
remove any outliers that the neural network might have
missed. This motivates us to train the neural network in
conjunction with RANSAC in a principled fashion, rather
than imposing it afterwards.

Instead of interpreting the neural network output as soft
inlier labels for a robust model fit, we let the output weights
guide RANSAC hypothesis sampling. Intuitively, the neural
network should learn to decrease weights for outliers, and
increase them for inliers. This paradigm yields substantial
flexibility for the neural network in allowing a certain mis-
classification rate without negative effects on the final fitting
accuracy due to the robustness of RANSAC. The distinc-
tion between inliers and outliers, as well as which misclas-
sifications are tolerable, is solely guided by the minimiza-
tion of the task loss function during training. Furthermore,
our formulation of NG-RANSAC facilitates training with
any (non-differentiable) task loss function, and any (non-
differentiable) model parameter solver, making it broadly
applicable. For example, when fitting essential matrices,
we may use the 5-point algorithm rather than the (differ-
entiable) 8-point algorithm which other learned robust esti-
mators rely on [56, 36]. The flexibility in choosing the task
loss also allows us to train NG-RANSAC self-supervised by
using maximization of the inlier count as training objective.

The idea of using guided sampling in RANSAC is not
new. Tordoff and Murray first proposed to guide the hy-
pothesis search of MLESAC [48], using side information
[47]. They formulated a prior probability of sparse feature
matches being valid based on matching scores. While this
has a positive affect on RANSAC performance in some ap-
plications, feature matching scores, or other hand-crafted
heuristics, were clearly not designed to guide hypothesis
search. In particular, calibration of such ad-hoc measures
can be difficult as the reliance on over-confident but wrong
prior probabilities can yield situations where the same few
observations are sampled repeatedly. This fact was rec-
ognized by Chum and Matas who proposed PROSAC [9],
a variant of RANSAC that uses side information only to
change the order in which RANSAC draws minimal sets.
In the worst case, if the side information was not useful
at all, their method would degenerate to vanilla RANSAC.
NG-RANSAC takes a different approach in (i) learning the
weights to guide hypothesis search rather than using hand-
crafted heuristics, and (ii) integrating RANSAC itself in the
training process which leads to self-calibration of the pre-
dicted weights.

Recently, Brachmann et al. proposed differentiable
RANSAC (DSAC) to learn a camera re-localization
pipeline [4]. Unfortunately, we can not directly use DSAC
to learn hypothesis sampling since DSAC is only differen-
tiable w.r.t. to observations, not sampling weights. How-
ever, NG-RANSAC applies a similar trick also used to make
DSAC differentiable, namely the optimization of the ex-
pected task loss during training. While we do not rely on
DSAC, neural guidance can be used in conjunction with
DSAC (NG-DSAC) to train neural networks that predict ob-
servations and observation confidences at the same time.
We summarize our main contributions:
• We present NG-RANSAC, a formulation of RANSAC

with learned guidance of hypothesis sampling. We can
use any (non-differentiable) task loss, and any (non-
differentiable) minimal solver for training.
• Choosing the inlier count itself as training objective

facilitates self-supervised learning of NG-RANSAC.
• We use NG-RANSAC to estimate epipolar geometry

of image pairs from sparse correspondences, where it
surpasses competing robust estimators.
• We combine neural guidance with differentiable

RANSAC (NG-DSAC) to train neural networks that
make accurate predictions for parts of the input, while
neglecting other parts. These models achieve compet-
itive results for horizontal line estimation, and state-
for-the-art for camera re-localization.

2. Related Work
RANSAC was introduced in 1981 by Fischler and Bolles

[12]. Since then it was extended in various ways, see e.g. the
survey by Raguram et al. [35]. Combining some of the most
promising improvements, Raguram et al. created the Uni-
versal RANSAC (USAC) framework [34] which represents
the state-of-the-art of classic RANSAC variants. USAC in-
cludes guided hypothesis sampling according to PROSAC
[9], more accurate model fitting according to Locally Op-
timized RANSAC [11], and more efficient hypothesis veri-
fication according to Optimal Randomized RANSAC [10].
Many of the improvements proposed for RANSAC could
also be applied to NG-RANSAC since we do not require
any differentiability of such add-ons. We only impose re-
strictions on how to generate hypotheses, namely according
to a learned probability distribution.

RANSAC is not often used in recent machine learning-
heavy vision pipelines. Notable exceptions include geo-
metric problems like object instance pose estimation [3, 5,
21], and camera re-localization [41, 51, 28, 8, 46] where
RANSAC is coupled with decision forests or neural net-
works that predict image-to-object correspondences. How-
ever, in most of these works, RANSAC is not part of the
training process because of its non-differentiability. DSAC
[4, 6] overcomes this limitation by making the hypothesis

2

selection a probabilistic action which facilitates optimiza-
tion of the expected task loss during training. However,
DSAC is limited in which derivatives can be calculated.
DSAC allows differentiation w.r.t. to observations. For ex-
ample, we can use it to calculate the gradient of image coor-
dinates for a sparse correspondence. However, DSAC does
not model observation selection, and hence we cannot use
it to optimize a matching probability. By showing how to
learn neural guidance, we close this gap. The combination
with DSAC enables the full flexibility of learning both, ob-
servations and their selection probability.

Besides DSAC, a differentiable robust estimator, there
has recently been some work on learning robust estima-
tors. We discussed the work of Yi et al. [56] in the intro-
duction. Ranftl and Koltun [36] take a similar but itera-
tive approach reminiscent of Iteratively Reweighted Least
Squares (IRLS) for fundamental matrix estimation. In each
iteration, a neural network predicts observation weights for
a weighted model fit, taking into account the residuals of
the last iteration. Both, [56] and [36], have shown consid-
erable improvements w.r.t. to vanilla RANSAC but require
differentiable minimal solvers, and task loss functions. NG-
RANSAC outperforms both approaches, and is more flexi-
ble when it comes to defining the training objective. This
flexibility also enables us to train NG-RANSAC in a self-
supervised fashion, possible with neither [56] nor [36].

3. Method
Preliminaries. We address the problem of fitting model
parameters h to a set of observations y ∈ Y that are con-
taminated by noise and outliers. For example, h could be
a fundamental matrix that describes the epipolar geometry
of an image pair [16], and Y could be the set of SIFT cor-
respondences [27] we extract for the image pair. To calcu-
late model parameters from the observations, we utilize a
solver f , for example the 8-point algorithm [15]. However,
calculating h from all observations will result in a poor es-
timate due to outliers. Instead, we can calculate h from a
small subset (minimal set) of observations with cardinality
N : h = f(y1, . . . ,yN). For example, for a fundamental
matrix N = 8 when using the 8-point algorithm. RANSAC
[12] is an algorithm to chose an outlier-free minimal set
from Y such that the resulting estimate h is accurate. To
this end, RANSAC randomly chooses M minimal sets to
create a pool of model hypothesesH = (h1, . . . ,hM).

RANSAC includes a strategy to adaptively choose M ,
based on an online estimate of the outlier ratio [12]. The
strategy guarantees that an outlier-free set will be sampled
with a user-defined probability. For tasks with large outlier
ratios,M calculated like this can be exponentially large, and
is usually clamped to a maximum value [7]. For notational
simplicity, we take the perspective of a fixed M but do not
restrict the use of an early-stopping strategy in practice.

RANSAC chooses a model hypothesis as the final esti-
mate ĥ according to a scoring function s:

ĥ = argmax
h∈H

s(h,Y). (1)

The scoring function measures the consensus of an hypoth-
esis w.r.t. all observations, and is traditionally implemented
as inlier counting [12].
Neural Guidance. RANSAC chooses observations uni-
formly random to create the hypothesis pool H. We aim
at sampling observations according to a learned distribu-
tion instead that is parametrized by a neural network with
parameters w. That is, we select observations according to
y ∼ p(y;w). Note that p(y;w) is a categorical distribution
over the discrete set of observations Y , not a continuous dis-
tribution in observation space. We wish to learn parameters
w in a way that increases the chance of selecting outlier-
free minimal sets, which will result in accurate estimates ĥ.
We sample a hypothesis pool H according to p(H;w) by
sampling observations and minimal sets independently, i.e.

p(H;w) =

M∏
j=1

p(hj ;w), with p(h;w) =

N∏
i=1

p(yi;w).

(2)

From a pool H, we estimate model parameters ĥ with
RANSAC according to Eq. 1. For training, we assume
that we can measure the quality of the estimate with a task
loss function `(ĥ). The task loss can be calculated w.r.t.
a ground truth model h∗, or self-supervised, e.g. by using
the inlier count of the final estimate: `(ĥ) = −s(ĥ,Y).
We wish to learn the distribution p(H;w) in a way that we
receive a small task loss with high probability. Inspired by
DSAC [4], we define our training objective as the minimiza-
tion of the expected task loss:

L(w) = EH∼p(H;w)

[
`(ĥ)

]
. (3)

We compute the gradients of the expected task loss w.r.t. the
network parameters as

∂

∂w
L(w) = EH

[
`(ĥ)

∂

∂w
log p(H;w)

]
. (4)

Integrating over all possible hypothesis pools to calculate
the expectation is infeasible. Therefore, we approximate
the gradients by drawing K samplesHk ∼ p(H;w):

∂

∂w
L(w) ≈ 1

K

K∑
k=1

[
`(ĥ)

∂

∂w
log p(Hk;w)

]
. (5)

Note that gradients of the task loss function ` do not appear
in the expression above. Therefore, differentiability of the

3

task loss `, the robust solver ĥ (i.e. RANSAC) or the min-
imal solver f is not required. These components merely
generate a training signal for steering the sampling proba-
bility p(H;w) in a good direction. Due to the approxima-
tion by sampling, the gradient variance of Eq. 5 can be high.
We apply a standard variance reduction technique from re-
inforcement learning by subtracting a baseline b [45]:

∂

∂w
L(w) ≈ 1

K

K∑
k=1

[
[`(ĥ)− b] ∂

∂w
log p(Hk;w)

]
. (6)

We found a simple baseline in the form of the average loss
per image sufficient, i.e. b = ¯̀. Subtracting the baseline will
move the probability distribution towards hypothesis pools
with lower-than-average loss for each training example.
Combination with DSAC. Brachmann et al. [4] proposed
a RANSAC-based pipeline where a neural network with pa-
rameters w predicts observations y(w) ∈ Y(w). End-to-
end training of the pipeline, and therefore learning the ob-
servations y(w), is possible by turning the argmax hypoth-
esis selection of RANSAC (cf. Eq. 1) into a probabilistic
action:

ĥDSAC = hj ∼ p(j|H) =
exp s(hj ,Y(w))∑M
k=1 exp s(hk,Y(w))

. (7)

This differentiable variant of RANSAC (DSAC) chooses
a hypothesis randomly according to a distribution calcu-
lated from hypothesis scores. The training objective aims
at learning network parameters such that hypotheses with
low task loss are chosen with high probability:

LDSAC(w) = Ej∼p(j) [`(hj)] . (8)

In the following, we extend the formulation of DSAC with
neural guidance (NG-DSAC). We let the neural network
predict observations y(w) and, additionally, a probability
associated with each observation p(y;w). Intuitively, the
neural network can express a confidence in its own predic-
tions through this probability. This can be useful if a certain
input for the neural network contains no information about
the desired model h. In this case, the observation prediction
y(w) is necessarily an outlier, and the best the neural net-
work can do is to label it as such by assigning a low proba-
bility. We combine the training objectives of NG-RANSAC
(Eq. 3) and DSAC (Eq. 8) which yields:

LNG-DSAC(w) = EH∼p(H;w)Ej∼p(j|H) [`(hj)] , (9)

where we again construct p(H;w) from individual
p(y;w)’s according to Eq. 2. The training objective of NG-
DSAC consists of two expectations. Firstly, the expectation
w.r.t. sampling a hypothesis pool according to the probabili-
ties predicted by the neural network. Secondly, the expecta-
tion w.r.t. sampling a final estimate from the pool according

to the scoring function. As in NG-RANSAC, we approxi-
mate the first expectation via sampling, as integrating over
all possible hypothesis pools is infeasible. For the second
expectation, we can calculate it analytically, as in DSAC,
since it integrates over the discrete set of hypotheses hj in
a given pool H. Similar to Eq. 6, we give the approximate
gradients ∂

∂wL(w) of NG-DSAC as:

1

K

K∑
k=1

[
[Ej [`]− b] ∂

∂w
log p(Hk;w) +

∂

∂w
Ej [`]

]
,

(10)

where we use Ej [`] as a stand-in for Ej∼p(j|Hk) [`(hj)].
The calculation of gradients for NG-DSAC requires the
derivative of the task loss (note the last part of Eq. 10)
because Ej [`] depends on parameters w via observations
y(w). Therefore, training NG-DSAC requires a differen-
tiable task loss function `, a differentiable scoring function
s, and a differentiable minimal solver f . Note that we in-
herit these restrictions from DSAC. In return, NG-DSAC al-
lows for learning observations and observation confidences,
at the same time.

4. Experiments
We evaluate neural guidance on multiple, classic com-

puter vision tasks. Firstly, we apply NG-RANSAC to es-
timating epipolar geometry of image pairs in the form of
essential matrices and fundamental matrices. Secondly, we
apply NG-DSAC to horizon line estimation and camera re-
localization. We present the main experimental results here,
and refer to the appendix for details about network architec-
tures, hyper-parameters and more qualitative results. Our
implementation is based on PyTorch [32], and we will make
the code publicly available for all tasks discussed below1.

4.1. Essential Matrix Estimation

Epipolar geometry describes the geometry of two images
that observe the same scene [16]. In particular, two image
points x and x′ in the left and right image corresponding to
the same 3D point satisfy x′>Fx = 0, where the 3× 3 ma-
trix F denotes the fundamental matrix. We can estimate F
uniquely (but only up to scale) from 8 correspondences, or
from 7 correspondences with multiple solutions [16]. The
essential matrix E is a special case of the fundamental ma-
trix when the calibration parametersK andK ′ of both cam-
eras are known: E = K ′>FK. The essential matrix can be
estimated from 5 correspondences [31]. Decomposing the
essential matrix allows to recover the relative pose between
the observing cameras, and is a central step in image-based
3D reconstruction [40]. As such, estimating the fundamen-
tal or essential matrices of image pairs is a classic and well-
researched problem in computer vision.

1vislearn.de/research/neural-guided-ransac/

4

vislearn.de/research/neural-guided-ransac/

0
.1

1 0
.1

6 0
.2

3

0
.0

6 0
.1

3

0
.2

4

0
.1

0 0
.1

7

0
.2

9

0
.0

7 0
.1

3

0
.2

20
.2

7 0
.3

5

0
.4

5

0
.0

8 0
.1

4

0
.2

40
.3

2

0
.4

1

0
.5

3

0
.0

7 0
.1

3

0
.2

2

0
.1

3 0
.1

8 0
.2

4

0
.0

2

0
.0

5 0
.1

0

0
.1

9

0
.2

2 0
.2

7

0
.0

2

0
.0

3

0
.0

6

0
.4

9 0
.5

4 0
.5

9

0
.1

4 0
.2

0

0
.2

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5° 10° 20° 5° 10° 20°

Outdoor Indoor

A
U

C

a) without side information

SIFT + RANSAC

SIFT + USAC [34]

SIFT + NG-RANSAC

0
.4

8 0
.5

4 0
.6

1

0
.1

2 0
.1

8

0
.2

7

0
.5

4 0
.6

0 0
.6

6

0
.1

5 0
.2

2

0
.3

1

0
.4

3 0
.4

8 0
.5

4

0
.1

0 0
.1

6 0
.2

4

0
.5

1 0
.5

7 0
.6

3

0
.1

4 0
.2

1

0
.3

0

0
.5

8

0
.6

1 0
.6

8

0
.1

6 0
.2

4

0
.3

4

0
.5

3 0
.5

8 0
.6

4

0
.1

4 0
.2

1

0
.3

1

0
.5

4 0
.6

0 0
.6

6

0
.1

5 0
.2

2

0
.3

2

0
.5

9 0
.6

4 0
.7

0

0
.1

6 0
.2

4

0
.3

4

5° 10° 20° 5° 10° 20°

Outdoor Indoor

b) with side information

0
.5

1 0
.5

6 0
.6

2

0
.1

4 0
.2

0 0
.2

9

0
.5

6 0
.6

1 0
.6

8

0
.1

6 0
.2

3

0
.3

4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5° 10° 20° 5° 10° 20°

Outdoor Indoor

c) self-supervisedDeMoN [50]

GMS [2] + RANSAC

SIFT + InClass [56] + RANSAC

LIFT [55] + InClass [56] + RANSAC SIFT+NG-RANSAC (+SI)

SIFT+Ratio+NG-RANSAC (+SI)

SIFT+Ratio+RANSAC

RootSIFT+Ratio+RANSAC

SIFT+USAC [34]

SIFT+Ratio+USAC [34]

RootSIFT+Ratio+USAC

RootSIFT+Ratio+NG-RANSAC (+SI)

SIFT+NG-RANSAC (+SI)

RootSIFT+Ratio+NG-RANSAC (+SI)

Figure 2. Essential Matrix Estimation. We calculate the relative pose between outdoor and indoor image pairs via the essential matrix.
We measure the AUC of the cumulative angular error up to a threshold of 5◦, 10◦ or 20◦. a) We use no side information about the sparse
correspondences. b) We use side information in the form of descriptor distance ratios between the best and second best match. We use it to
filter correspondences with a threshold of 0.8 (+Ratio), as an additional input for our network (+SI), and as additional input for USAC [34].
c) We train NG-RANSAC in a self-supervised fashion by using the inlier count as training objective.

In the following, we firstly evaluate NG-RANSAC for
the calibrated case and estimate essential matrices from
SIFT correspondences [27]. For the sake of comparabil-
ity with the recent, learned robust estimator of Yi et al. [56]
we adhere closely to their evaluation setup, and compare to
their results.
Datasets. Yi et al. [56] evaluate their approach in outdoor
as well as indoor settings. For the outdoor datasets, they
select five scenes from the structure-from-motion (SfM)
dataset of [19]: Buckingham, Notredame, Sacre Coeur, St.
Peter’s and Reichstag. They pick two additional scenes
from [44]: Fountain and Herzjesu. They reconstruct each
scene using a SfM tool [53] to obtain ‘ground truth’ cam-
era poses, and co-visibility constraints for selecting image
pairs. For indoor scenes Yi et al. choose 16 sequences from
the SUN3D dataset [54] which readily comes with ground
truth poses captured by KinectFusion [30]. See Appendix A
for a listing of all scenes. Indoor scenarios are typically very
challenging for sparse feature-based approaches because of
texture-less surfaces and repetitive elements (see Fig. 1 for
an example). Yi et al. train their best model using one out-
door scene (St. Peter’s) and one indoor scene (Brown 1),
and test on all remaining sequences (6 outdoor, 15 indoor).
Yi et al. kindly provided us with their exact data splits, and
we will use their setup. Note that training and test is per-
formed on completely separate scenes, i.e. the neural net-
work has to generalize to unknown environments.
Evaluation Metric. Via the essential matrix, we recover
the relative camera pose up to scale, and compare to the
ground truth pose as follows. We measure the angular error
between the pose rotations, as well as the angular error be-
tween the pose translation vectors in degrees. We take the
maximum of the two values as the final angular error. We
calculate the cumulative error curve for each test sequence,
and compute the area under the curve (AUC) up to a thresh-
old of 5◦, 10◦ or 20◦. Finally, we report the average AUC
over all test sequences (but separately for the indoor and
outdoor setting).

Implementation. Yi et al. train a neural network to clas-
sify a set of sparse correspondences in inliers and outliers.
They represent each correspondence as a 4D vector com-
bining the 2D coordinate in the left and right image. Their
network is inspired by PointNet [33], and processes each
correspondence independently by a series of multilayer per-
ceptrons (MLPs). Global context is infused by using in-
stance normalization [49] in-between layers. We re-build
this architecture in PyTorch, and train it according to NG-
RANSAC (Eq. 3). That is, the network predicts weights to
guide RANSAC sampling instead of inlier class labels. We
use the angular error between the estimated relative pose,
and the ground truth pose as task loss `. As minimal solver
f , we use the 5-point algorithm [31]. To speed up training,
we initialize the network by learning to predict the distance
of each correspondence to the ground truth epipolar line,
see Appendix A for details. We initialize for 75k iterations,
and train according to Eq. 3 for 25k iterations. We optimize
using Adam [23] with a learning rate of 10−5. For each
training image, we extract 2000 SIFT correspondences, and
sample K = 4 hypothesis pools with M = 16 hypothe-
ses. We use a low number of hypotheses during training to
obtain variation when sampling pools. For testing, we in-
crease the number of hypotheses to M = 103. We use an
inlier threshold of 10−3 assuming normalized image coor-
dinates using camera calibration parameters.
Results. We compare NG-RANSAC to the inlier classifi-
cation (InClass) of Yi et al. [56]. They use their approach
with SIFT as well as LIFT [55] features. We include results
for DeMoN [50], a learned SfM pipeline, and GMS [2], a
semi-dense approach using ORB features [38]. As classi-
cal baselines, we compare to vanilla RANSAC [12] and
USAC [34]. See Fig. 2 a) for results. RANSAC achieves
poor results for indoor and outdoor scenes across all thresh-
olds, scoring as the weakest method. In this experiment, we
assume no side information is available about the quality
of correspondences. Therefore, USAC performs similar to
RANSAC, since it cannot use guided sampling. Coupling

5

RANSAC Result.

N
eu

ra
l G

u
id

an
ce

NG-RANSAC Result.

Indoor Outdoor Kitti

Δ𝑡: 122.8°, Δ𝑅: 1.2°

Δ𝑡: 5.5°, Δ𝑅: 0.6°

Δ𝑡: 131.0°, Δ𝑅: 49.1°

Δ𝑡: 1.8°, Δ𝑅: 0.8°

% Inliers: 25.1, F-score: 38.8, Mean: 0.16

% Inliers: 31.7, F-score: 62.6, Mean: 0.10

R
A

N
SA

C
N

G
-R

A
N

SA
C

Figure 3. Qualitative Results. We compare fitted models for RANSAC and NG-RANSAC. For the indoor and outdoor image pairs, we fit
essential matrices, and for the Kitti image pair we fit the fundamental matrix. We draw final model inliers in green if they adhere to the
ground truth model, and red otherwise. We also measure the quality of each estimate, see the main text for details on the metrics.

RANSAC with neural guidance (NG-RANSAC) elevates it
to the leading position with a comfortable margin. Different
from USAC, NG-RANSAC deduces useful guiding weights
solely from the spatial distribution of correspondences. See
also Fig. 3 for qualitative results.

NG-RANSAC outperforms InClass of Yi et al. [56] de-
spite some similarities. Both use the same network archi-
tecture, are based on SIFT correspondences, and both use
RANSAC at test time. Yi et al. [56] train using a hy-
brid classification-regression loss based on the 8-point al-
gorithm, and ultimately compare essential matrices using
squared error. Therefore, their training objective is very dif-
ferent from the evaluation procedure. During evaluation,
they use RANSAC with the 5-point algorithm on top of
their inlier predictions, and measure the angular error. NG-
RANSAC incorporates all these components in its training
procedure, and therefore optimizes the correct objective.

Using Side Information. The evaluation procedure of Yi
et al. [56] is designed to test a robust estimator in high-
outlier domains. However, it underestimates what classical
approaches can achieve on these datasets. The distance ratio
of the best and second-best SIFT match is often an indica-
tor of correspondence quality. This side information can be
used by USAC [34] to guide hypothesis sampling according
to the PROSAC strategy [9]. Furthermore, Lowe’s ratio cri-
terion [27] removes ambiguous matches with a distance ra-
tio above a threshold (we use 0.8) before running RANSAC.
We denote the ratio filter as +Ratio in Fig. 2 b), and ob-
serve a drastic improvement for all methods. Both classic
approaches, RANSAC and USAC, outperform all learned
methods of Fig. 2 a). RootSIFT normalization of SIFT
descriptors [1] improves accuracy further. NG-RANSAC
easily incorporates side information. For best accuracy,
we train it on ratio-filtered RootSIFT correspondences, us-
ing distance ratios as additional network input (denoted by
+SI).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
U

C

Outdoor

0

0.1

0.2

0.3

0.4
Indoor

101 103 105 101 103 105

Hypothesis Count 𝑀USAC [34] NG-RANSAC 5°10°20°

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Outdoor

0

0.1

0.2

0.3

0.4
Indoor

101 103 105 101 103 105

a) SIFT, w/o Side Information, w/o Ratio Filter b) RootSIFT, w/ Side Information, w/ Ratio Filter

Figure 4. Accuracy vs. Hypothesis Budget. We compare the
AUC of NG-RANSAC and USAC [34] for increasing number of
hypotheses M . a) with and b) without side information.

The accuracy of USAC [34] and NG-RANSAC depend
on the hypothesis budgetM , see Fig. 4. NG-RANSAC finds
good hypotheses much earlier than USAC, and achieves
a reasonable accuracy by drawing as few as 10 hypothe-
ses. Fig. 5 shows a visualization of progressive hypotheses
search. USAC is designed to draw the same hypotheses as
RANSAC but in a different order. Therefore, USAC sam-
ples degenerate hypotheses (poor accuracy but high inlier
count) eventually, even if it gives them a low priority at
first, see Fig. 5 bottom. NG-RANSAC learns to suppress
such hypotheses more effectively.

Interestingly, passing our learned weights to USAC
achieves significantly lower accuracy than passing match-
ing ratios to USAC. For example, for the outdoor set-
ting, w/o ratio filter and M = 103, USAC achieves
-0.27/-0.24/-0.34 AUC for 5◦/10◦/20◦ when using our
weights. The USAC/PROSAC sampling scheme assumes
that the probability of correspondences being inliers in-
creases monotonically with the sampling weight [9]. In
contrast, our training objective optimizes over entire pools
of hypotheses where correspondences are sampled indepen-
dently. Individual outlier correspondences might be ranked
high by the neural network, without affecting accuracy neg-
atively, thus violating the assumption of PROSAC.

6

Best after 10 Best after 100 Best after 1000

R
A

N
SA

C
U

SA
C

N
G

-R
A

N
SA

C
R

A
N

SA
C

U
SA

C
N

G
-R

A
N

SA
C

Figure 5. Hypothesis Search. We visualize the best hypothesis found after M ∈ {10, 100, 1000} iterations for RANSAC [12], USAC [34]
and NG-RANSAC. For each result, we give the number of correspondences which are also inliers for the ground truth model (GT Inliers,
drawn in green). We perform this experiment in the Indoor scenario, using side information and RootSIFT but without Lowe’s ratio filter.

Self-supervised Learning. We train NG-RANSAC self-
supervised by defining a task loss ` to assess the quality
of an estimate independent of a ground truth model h∗. A
natural choice is the inlier count of the final estimate. We
found the inlier count to be a very stable training signal,
even in the beginning of training such that we require no
special initialization of the network. We report results of
self-supervised NG-RANSAC in Fig. 2 c). It outperforms
all competitors except USAC [34] which it matches in accu-
racy. Unsupervised NG-RANSAC achieves slightly worse
accuracy than supervised NG-RANSAC. A supervised task
loss allows NG-RANSAC to adapt more precisely to the
evaluation measure used at test time. For the datasets used
so far, the process of image pairing uses co-visibility infor-
mation, and therefore a form of supervision. In the next sec-
tion, we learn NG-RANSAC fully self-supervised by using
the ordering of sequential data to assemble image pairs.

Runtime. A forward pass of the network takes 3ms on
CPU (similar for GPU). The total runtime (and accuracy)
depends on the hypothesis count M . For M = 103, our im-
plementation of NG-RANSAC takes 90ms per image pair.
For M = 10, it takes 21ms.

4.2. Fundamental Matrix Estimation

We apply NG-RANSAC to fundamental matrix estima-
tion, comparing it to the learned robust estimator of Ranftl
and Koltun [36], denoted Deep F-Mat. They propose an
iterative procedure where a neural network estimates obser-
vation weights for a robust model fit. The residuals of the
last iteration are an additional input to the network in the
next iteration. The network architecture is similar to the
one used in [56]. Correspondences are represented as 4D
vectors, and they use the descriptor matching ratio as an
additional input. Each observation is processed by a series

7

Training
Objective

% Inliers F-score Mean Median

RANSAC - 21.85 13.84 0.35 0.32

USAC [34] - 21.43 13.90 0.35 0.32

Deep F-Mat [36] Mean 24.61 14.65 0.32 0.29

NG-RANSAC Mean 25.05 14.76 0.32 0.29

NG-RANSAC F-score 24.13 14.72 0.33 0.31

NG-RANSAC %Inliers 25.12 14.74 0.32 0.29

Figure 6. Fundamental Matrix Estimation. We measure the
average percentage of inliers of the estimated model, the align-
ment of estimated inliers and ground truth inliers (F-score), and
the mean and median distance of estimated inliers to ground truth
epilines. For NG-RANSAC, we compare the performance after
training with different objectives. Note that %Inliers is a self-
supervised training objective.

of MLPs with instance normalization interleaved. Deep F-
Mat was published very recently, and the code is not yet
available. We therefore follow the evaluation procedure de-
scribed in [36] and compare to their results.
Datasets. Ranftl and Koltun [36] evaluate their method
on various datasets that involve custom reconstructions not
publicly available. Therefore, we compare to their method
on the Kitti dataset [14], which is online. Ranftl and Koltun
[36] train their method on sequences 00-05 of the Kitti
odometry benchmark, and test on sequences 06-10. They
form image pairs by taking subsequent images within a se-
quence. For each pair, they extract SIFT correspondences
and apply Lowe’s ratio filter [27] with a threshold of 0.8.
Evaluation Metric. Ranftl and Koltun [36] evaluate us-
ing multiple metrics. They measure the percentage of in-
lier correspondences of the final model relative to all cor-
respondences. They calculate the F-score over correspon-
dences where true positives are inliers of both the ground
truth model and the estimated model. The F-score measures
the alignment of estimated and true fundamental matrix in
image space. Both metrics use an inlier threshold of 0.1px.
Finally, they calculate the mean and median epipolar error
of inlier correspondences w.r.t. the ground truth model, us-
ing an inlier threshold of 1px.
Implementation. We cannot use the architecture of Deep
F-Mat which is designed for iterative application. There-
fore, we re-use the architecture of Yi et al. [56] from the
previous section for NG-RANSAC (also see Appendix B
for details). We adhere to the training setup described in
Sec. 4.1 with the following changes. We observed faster
training convergence on Kitti, so we omit the initialization
stage, and directly optimize the expected task loss (Eq. 3)
for 300k iterations. Since Ranftl and Koltun [36] evaluate
using multiple metrics, the choice of the task loss function
` is not clear. Hence, we train multiple variants with dif-
ferent objectives (%Inliers, F-score and Mean error) and
report the corresponding results. As minimal solver f , we
use the 7-point algorithm, a RANSAC threshold of 0.1px,
and we draw K = 8 hypothesis pools per training image
with M = 16 hypotheses each.

AUC (%)

Simon et al. [42] 54.4

Kluger et al. [24] 57.3

Zhai et al. [57] 58.2

Workman et al. [52] 71.2

DSAC 74.1

NG-DSAC 75.2

SLNet [25] 82.3

Figure 7. Horizon Line Estimation. Left: AUC on the HLW
dataset. Right: Qualitative results. We draw the ground truth hori-
zon in green and the estimate in blue. Dots mark the observations
predicted by NG-DSAC, and the dot colors mark their confidence
(dark = low). Note that the horizon can be outside the image.

Results. We report results in Fig. 6 where we compare
NG-RANSAC with RANSAC, USAC [34] and Deep F-
Mat. NG-RANSAC outperforms the classical approaches
RANSAC and USAC. NG-RANSAC also performs slightly
superior to Deep F-Mat. We observe that the choice of the
training objective has small but significant influence on the
evaluation. All metrics are highly correlated, and optimiz-
ing a metric in training generally also achieves good (but not
necessarily best) accuracy using this metric at test time. In-
terestingly, optimizing the inlier count during training per-
forms competitively, although being a self-supervised ob-
jective. Fig. 3 shows a qualitative result on Kitti.

4.3. Horizon Lines

We fit a parametric model, the horizon line, to a single
image. The horizon can serve as a cue in image understand-
ing [52] or for image editing [25]. Traditionally, this task
is solved via vanishing point detection and geometric rea-
soning [37, 24, 57, 42], often assuming a Manhattan or At-
lanta world. We take a simpler approach and use a general
purpose CNN that predicts a set of 64 2D points based on
the image to which we fit a line with RANSAC, see Fig. 7.
The network has two output branches predicting (i) the 2D
points y(w) ∈ Y(w), and (ii) probabilities p(y;w) for
guided sampling (see Appendix C for details).
Dataset. We evaluate on the HLW dataset [52] which is a
collection of SfM datasets with annotated horizon line. Test
and training images partly show the same scenes, and the
horizon line can be outside the image area.
Evaluation Metric. As is common practice on HLW, we
measure the maximum distance between the estimated hori-
zon and ground truth within the image, normalized by im-
age height. We calculate the AUC of the cumulative error
curve up to a threshold of 0.25.
Implementation. We train using the NG-DSAC objective
(Eq. 9) from scratch for 250k iterations. As task loss `, we
use the normalized maximum distance between estimated
and true horizon. For hypothesis scoring s, we use a soft
inlier count [6]. We train using Adam [23] with a learning
rate of 10−4. For each training image, we draw K = 2

8

G
re

at
 C

o
u

rt
O

ld
 H

o
sp

it
al

St
 M

. C
h

u
rc

h

a) Development of Neural Guidance Throughout Training
RGB Iteration: 0 Iteration: 100k Iteration: 200k

Sam
p

lin
g W

eigh
t

0
1

b) Learned Representation (Great Court)
DSAC++ NG-DSAC++

Figure 8. Neural Guidance for Camera Re-localization. a) Predicted sampling probabilities of NG-DSAC++ throughout training. b)
Internal representation of the neural network. We predict scene coordinates for each training image, plotting them with their RGB color.
For DSAC++ we choose training pixels randomly, for NG-DSAC++ we choose randomly according to the predicted distribution.

DSAC++ [6]
(VGGNet)

DSAC++
(ResNet)

NG-DSAC++
(ResNet)

Great Court 40.3cm 40.3cm 35.0cm

Kings College 17.7cm 13.0cm 12.6cm

Old Hospital 19.6cm 22.4cm 21.9cm

Shop Facade 5.7cm 5.7cm 5.6cm

St M. Church 12.5cm 9.9cm 9.8cm

Figure 9. Camera Re-Localization. We report median position
error for Cambridge Landmarks [22]. DSAC++ (ResNet) is our
re-implementation of [6] with an improved network architecture.

hypothesis pools with M = 16 hypotheses. We also draw
16 hypotheses at test time. We compare to DSAC which we
train similarly but disable the probability branch.
Results. We report results in Fig. 7. DSAC and NG-
DSAC achieve competitive accuracy on this dataset, rank-
ing among the top methods. NG-DSAC has a small but sig-
nificant advantage over DSAC alone. Our method is only
surpassed by SLNet [25], an architecture designed to find
semantic lines in images. SLNet generates a large number
of random candidate lines, selects a candidate via classifica-
tion, and refines it with a predicted offset. We could couple
SLNet with neural guidance for informed candidate sam-
pling. Unfortunately, the code of SLNet is not online and
the authors did not respond to inquiries.

4.4. Camera Re-Localization

We estimate the absolute 6D camera pose (position and
orientation) w.r.t. a known scene from a single RGB image.
Dataset. We evaluate on the Cambridge Landmarks [22]
dataset. It is comprised of RGB images depicting five land-
mark buildings2 in Cambridge, UK. Ground truth poses
were generated by running a SfM pipeline.
Evaluation Metric. We measure the median translational
error of estimated poses for each scene3.

2We omitted the Street scene. Like DSAC++ [6] we failed to achieve
sensible results, here. By visual inspection, the corresponding SfM recon-
struction seems to be of poor quality, which potentially harms training.

3The median rotational accuracies are between 0.2◦ to 0.3◦ for all
scenes, and do hardly vary between methods.

Implementation. We build on the publicly available
DSAC++ pipeline [6] which is a scene coordinate regres-
sion method [41]. A neural network predicts for each im-
age pixel a 3D coordinate in scene space. We recover the
pose from the 2D-3D correspondences using a perspective-
n-point solver [13] within a RANSAC loop. The DSAC++
pipeline implements geometric pose optimization in a fully
differentiable way which facilitates end-to-end training. We
re-implement the neural network integration of DSAC++
with PyTorch (the original uses LUA/Torch). We also
update the network architecture of DSAC++ by using a
ResNet [18] instead of a VGGNet [43]. As with horizon
line estimation, we add a second output branch to the net-
work for estimating a probability distribution over scene co-
ordinate predictions for guided RANSAC sampling. We de-
note this extended architecture NG-DSAC++. We adhere
to the training procedure and hyperparamters of DSAC++
(see Appendix D) but optimize the NG-DSAC objective
(Eq. 9) during end-to-end training. As task loss `, we use
the average of the rotational and translational error w.r.t. the
ground truth pose. We sample K = 2 hypothesis pools
with M = 16 hypotheses per training image, and increase
the number of hypotheses to M = 256 for testing.
Results. We report our quantitative results in Fig. 9. Firstly,
we observe a significant improvement for most scenes when
using DSAC++ with a ResNet architecture. Secondly, com-
paring DSAC++ with NG-DSAC++, we notice a small to
moderate, but consistent, improvement in accuracy. The ad-
vantage of using neural guidance is largest for the Great
Court scene, which features large ambiguous grass ar-
eas, and large areas of sky visible in many images. NG-
DSAC++ learns to ignore such areas, see the visualization
in Fig. 8 a). The network learns to mask these areas solely
guided by the task loss during training, as the network fails
to predict accurate scene coordinates for them. In Fig. 8 b),
we visualize the internal representation learned by DSAC++
and NG-DSAC++ for one scene. The representation of
DSAC++ is very noisy, as it tries to optimize geometric
constrains for sky and grass pixels. NG-DSAC++ learns
a cleaner representation by focusing entirely on buildings.

9

5. Conclusion
We have presented NG-RANSAC, a robust estimator us-

ing guided hypothesis sampling according to learned prob-
abilities. For training we can incorporate non-differentiable
task loss functions and non-differentiable minimal solvers.
Using the inlier count as training objective allows us to
also train NG-RANSAC self-supervised. We applied NG-
RANSAC to multiple classic computer vision tasks and ob-
serve a consistent improvement w.r.t. RANSAC alone.

Acknowledgements: This project has received funding
from the European Research Council (ERC) under the Eu-
ropean Unions Horizon 2020 research and innovation pro-
gramme (grant agreement No 647769). The computations
were performed on an HPC Cluster at the Center for Infor-
mation Services and High Performance Computing (ZIH) at
TU Dresden.

A. Essential Matrix Estimation
List of Scenes Used for Training and Testing.

Training:

• Staint Peter’s (Outdoor)
• brown bm 3 - brown bm 3 (Indoor)

Testing (Outdoor):

• Buckingham
• Notre Dame
• Sacre Coeur
• Reichstag
• Fountain
• HerzJesu

Testing (Indoor):

• brown cogsci 2 - brown cogsci 2
• brown cogsci 6 - brown cogsci 6
• brown cogsci 8 - brown cogsci 8
• brown cs 3 - brown cs3
• brown cs 7 - brown cs7
• harvard c4 - hv c4 1
• harvard c10 - hv c10 2
• harvard corridor lounge - hv lounge1 2
• harvard robotics lab - hv s1 2
• hotel florence jx - florence hotel stair room all
• mit 32 g725 - g725 1
• mit 46 6conf - bcs floor6 conf 1
• mit 46 6lounge - bcs floor6 long
• mit w85g - g 0
• mit w85h - h2 1

Network Architecture. As mentioned in the main paper,
we replicated the architecture of Yi et al. [56] for our exper-
iments on epipolar geometry (estimating essential and fun-

damental matrices). For a schematic overview see Fig. 10.
The network takes a set of feature correspondences as in-
put, and predicts as output a weight for each correspon-
dence which we use to guide RANSAC hypothesis sam-
pling. The network consists of a series of multilayer percep-
trons (MLPs) that process each correspondence indepen-
dently. We implement the MLPs with 1 × 1 convolutions.
The network infuses global context via instance normaliza-
tion layers [49], and it accelerate training via batch normal-
ization [20]. The main body of the network is comprised
of 12 blocks with skip connections [18]. Each block con-
sists of two linear layers followed by instance normaliza-
tion, batch normalization and a ReLU activation [17] each.
We apply a Sigmoid activation to the last layer, and normal-
ize by dividing by the sum of outputs.4

Initialization Procedure. We initialize our network in the
following way. We define a target sampling distribution
g(y;E∗) using the ground truth essential matrix E∗ given
for each training pair. Intuitively, the target distribution
should return a high probability when a correspondence y is
aligned with the ground truth essential matrixE∗, and a low
probability otherwise. We assume that correspondence y is
a 4D vector containing two 2D image coordinates x and x′

(3D in homogeneous coordinates). We define the epipolar
error of a correspondence w.r.t. essential matrix E:

d(y, E) =
(x′
>
Ex)2

[Ex]20 + [Ex]21 + [E>x′]20 + [E>x′]21
, (11)

where [·]i returns the ith entry of a vector. Using the epipo-
lar error, we define the target sampling distribution:

g(y;E∗) =
1

2πσ2
exp

(
−d(y, E∗)

2σ2

)
. (12)

Parameter σ controls the softness of the target distribution,
and we use σ = 10−3 which corresponds to the inlier
threshold we use for RANSAC. To initialize our network,
we minimize the KL divergence between the network pre-
diction p(y;w) and the target distribution g(y;E∗). We
initialize for 75k iterations using Adam [23] with a learning
rate of 10−3 and a batch size of 32.
Implementation Details. For the following components
we rely on the implementations provided by OpenCV [7]:
the 5-point algorithm [31], epipolar error, SIFT features
[27], feature matching, and essential matrix decomposition.
We extract 2000 features per input image which yields 2000
correspondences for image pairs after matching. When ap-
plying Lowe’s ratio criterion [27] for filtering and hence re-
ducing the number of correspondences, we randomly du-
plicate correspondences to restore the number of 2000. We

4The original architecture of Yi et al. [56] uses a slightly different out-
put processing due to using the output as weights for a robust model fit.
They use a ReLU activation followed by a tanh activation.

10

1
x1

 –
C

1
2

8
 –

S1

1
x1

 –
C

1
2

8
 –

S1

1
x1

 –
C

1
2

8
 –

S1

1x1 – C128 – S1

Filter Size – Channels – Stride

Legend:

BatchNorm

Output: Sampling Weights 𝑝(𝐲;𝐰)

(1 × 2000 × 1)

(5 × 2000 × 1)

Input: Feature Correspondences
12x

InstanceNorm

1
x1

 –
C

1
 –

S1

Si
gm

o
id

N
o

rm
al

iz
at

io
n

2 × 2D Coordinates + 1D Side Information (optional)

2000 Correspondences

Dummy Spatial Dimension

Figure 10. NG-RANSAC Network Architecture for F/E-matrix Estimation. The network takes a set of feature correspondences as input
and predicts as output a weight for each correspondence. The network consists of linear layers interleaved by instance normalization [49],
batch normalization [20] and ReLUs [17]. The arc with a plus marks a skip connection for each of the twelve blocks [18]. This architecture
was proposed by Yi et al. [56].

minimize the expected task loss using Adam [23] with a
learning rate of 10−5 and a batch size of 32. We choose
hyperparameters based on validation error of the Reichstag
scene. We observe that the magnitude of the validation er-
ror corresponds well to the magnitude of the training error,
i.e. a validation set would not be strictly required.

When calculating the AUC for evaluation, we adhere to
the protocol of Yi et al. [56] to ensure comparability. Yi et
al. approximate the AUC via the area under the cumulative
histogram with a bin width of 5◦.
Qualitative Results. We present additional qualitative re-
sults for indoor and outdoor scenarios in Fig. 11. We com-
pare results of RANSAC and NG-RANSAC, also visualiz-
ing neural guidance as predicted by our network. We ob-
tain these results in the high-outlier setup, i.e. without using
Lowe’s ratio criterion and without using side information as
additional network input.

B. Fundamental Matrix Estimation
Implementation Details. We reuse the architecture of
Fig. 10. To normalize image coordinates of feature matches,
we subtract the mean coordinate and divide by the coordi-
nate standard deviation, where we calculate mean and stan-
dard deviation over the training set. Ranftl and Koltun [36]
fit the final fundamental matrix to the top 20 weighted cor-
respondences as predicted by their network. Similarly, we
re-fit the final fundamental matrix to the largest inlier set
found by NG-RANSAC. This refinement step results in a
small but noticeable increase in accuracy. For the follow-
ing components we rely on the implementations provided
by OpenCV [7]: the 7-point algorithm, epipolar error, SIFT
features [27] and feature matching.

Qualitative Results. We present additional qualitative re-
sults for the Kitti dataset [14] in Fig. 12. We compare re-
sults of RANSAC and NG-RANSAC, also visualizing neu-
ral guidance as predicted by our network.

C. Horizon Lines
Network Architecture. We provide a schematic of our net-
work architecture for horizon line estimation in Fig. 13. The
network takes a 256 × 256px image as input. We re-scale
images of arbitrary aspect ratio such that the long side is
256px. We symmetrically zero-pad the short side to 256px.
The network has two output branches. The first branch pre-
dicts a set of 8× 8 = 64 2D points, our observations y(w),
to which we fit the horizon line. We apply a Sigmoid and
re-scale output points to [-1.5,1.5] in relative image coordi-
nates to support horizon lines outside the image area. We
implement the network in a fully convolutional way [26],
i.e. each output point is predicted for a patch, or restricted
receptive field, of the input image. Therefore, we shift the
coordinate of each output point to the center of its associ-
ated patch.

The second branch predicts sampling probabilities
p(y;w) for each output point. We apply a Sigmoid to the
output of the second branch, and normalize by dividing by
the sum of outputs. During training, we block the gradients
of the second output branch when back propagating to the
base network. The sampling gradients have larger variance
and magnitude than the observation gradients of the first
branch, especially in the beginning of training with a nega-
tive effect on convergence of the network as a whole. Intu-
itively, we want to give priority to the observation prediction
because they determine the accuracy of the final model pa-

11

Δ𝑡: 63.1°, Δ𝑅: 0.5°

Δ𝑡: 1.1°, Δ𝑅: 0.6°

Δ𝑡: 80.1°, Δ𝑅: 17.8°

Δ𝑡: 5.2°, Δ𝑅: 3.0°

Δ𝑡: 97.5°, Δ𝑅: 5.6°

Δ𝑡: 1.9°, Δ𝑅: 2.0°

Δ𝑡: 83.1°, Δ𝑅: 9.5°

Δ𝑡: 3.3°, Δ𝑅: 0.2°

Indoor Outdoor

R
A

N
SA

C
N

e
u

ra
l G

u
id

an
ce

N
G

-R
A

N
SA

C
R

A
N

SA
C

N
e

u
ra

l G
u

id
an

ce
N

G
-R

A
N

SA
C

Figure 11. Qualitative Results for Essential Matrix Estimation. We compare results of RANSAC and NG-RANSAC. Below each
result, we give the angular error between estimated and true translation vectors, and estimated and true rotation matrices. We draw
correspondences in green if they adhere to the ground truth essential matrix with an inlier threshold of 10−3, and red otherwise.

rameters. The sampling prediction should address deficien-
cies in the observation predictions without influencing them
too much. The gradient blockade ensures these properties.
Implementation Details. We use a differentiable soft inlier
count [6] as scoring function, i.e.:

s(h,Y) = α
∑
y∈Y

1− sig[βd(y,h)− βτ], (13)

where d(y,h) denotes the point-line distance between ob-
servation y and line hypothesis h. Hyperparameter α deter-
mines the softness of the scoring distribution in DSAC, β
determines the softness of the Sigmoid, and τ is the inlier
threshold. We use α = 0.1, β = 100 and τ = 0.05.

We convert input images to grayscale, and apply the fol-
lowing data augmentation strategy during training: We ran-
domly adjust brightness and contrast in the range of ±10%.

12

R
A

N
SA

C
N

eu
ra

l G
u

id
an

ce
N

G
-R

A
N

SA
C

% Inliers: 19.9, F-score: 26.4, Mean Error: 0.16

% Inliers: 22.4, F-score: 61.3, Mean Error: 0.08

R
A

N
SA

C
N

eu
ra

l G
u

id
an

ce
N

G
-R

A
N

SA
C

% Inliers: 22.9, F-score: 33.8, Mean Error: 0.16

% Inliers: 24.2, F-score: 64.3, Mean Error: 0.12

R
A

N
SA

C
N

eu
ra

l G
u

id
an

ce
N

G
-R

A
N

SA
C

% Inliers: 28.7, F-score: 25.3, Mean Error: 0.19

% Inliers: 31.0, F-score: 59.8, Mean Error: 0.10

Figure 12. Qualitative Results for Fundamental Matrix Estimation. We compare results of RANSAC and NG-RANSAC. Below each
result, we give the percentage of inliers of the final model, the F-score which measures the alignment of estimated and true fundamental ma-
trix, and the mean epipolar error of estimated inlier correspondences w.r.t. the ground truth fundamental matrix. We draw correspondences
in green if they adhere to the ground truth fundamental matrix with an inlier threshold of 0.1px, and red otherwise.

13

3
x3

 –
C

3
2

 –
S1

3
x3

 –
C

6
4

 –
S1

3
x3

 –
C

1
2

8
 –

S2

3
x3

 –
C

2
5

6
 –

S2

3
x3

 –
C

2
5

6
 –

S2

3
x3

 –
C

2
5

6
 –

S2

3
x3

 –
C

2
5

6
 –

S2

3
x3

 –
C

2
5

6
 –

S1

3
x3

 –
C

2
5

6
 –

S1

3
x3

 –
C

2
5

6
 –

S1

1
x1

 –
C

5
1

2
 –

S1

1
x1

 –
C

5
1

2
 –

S1

1
x1

 –
C

2
 –

S1

1
x1

 –
C

5
1

2
 –

S1

1
x1

 –
C

5
1

2
 –

S1

1
x1

 –
C

1
 –

S1

3x3 – C32 – S1

Filter Size – Channels – Stride Gradient Blockade

Legend:

BatchNorm

Output 1: 2D Points 𝐲(𝐰)
(2 × 8 × 8)

Output 2: Sampling Weights 𝑝(𝐲;𝐰)
(1 × 8 × 8)

(256 × 256px, zero-padded)

Input: Image

Si
gm

o
id

N
o

rm
al

iz
at

io
n

Si
gm

o
id

N
o

rm
al

iz
at

io
n

Figure 13. NG-DSAC Network Architecture for Horizon Line Estimation. The network takes a grayscale image as input and predicts
as output a set of 2D points and corresponding sampling weights. The network consists of convolution layers interleaved by batch normal-
ization [20] and ReLUs [17]. The arc with a plus marks a skip connection [18]. We use the gradient blockage during training to prevent
direct influence of the sampling prediction (second branch) to learning the observations (first branch).

We randomly rotate/scale/shift images (and ground truth
horizon lines) in the range of ±5◦/20%/8px.

As discussed in the main paper, we use the normal-
ized maximum distance between a line hypothesis and the
ground truth horizon in the image as task loss `. This can
lead to stability issues when we sample line hypotheses with
very steep slope. Therefore, we clamp the task loss to a
maximum of 1, i.e. the normalized image height.

As mentioned before, some images in the HLW dataset
[52] have their horizon outside the image. Some of these
images contain virtually no visual cue where the horizon
exactly lies. Therefore, we find it beneficial to use a robust
variant of the task loss `′ that limits the influence of such
outliers. We use:

`′ =

{
` ` < 0.25

0.25
√
` otherwise

, (14)

i.e. we use the square root of the task loss after a magnitude
of 0.25, which is the magnitude up to which the AUC is
calculated when evaluating on HLW [52].
Qualitative Results. We present additional qualitative re-
sults for the HLW dataset [52] in Fig. 14.

D. Camera Re-Localization

Network Architecture. We provide a schematic of our net-
work architecture for camera re-localization in Fig. 15. The
network is a FCN [26] that takes an RGB image as input,
and predicts dense outputs, sub-sampled by a factor of 8.

The network has two output branches. The first branch pre-
dicts 3D scene coordinates [41], our observations y(w), to
which we fit the 6D camera pose. The second output branch
predicts sampling probabilities p(y;w) for the scene coor-
dinates. We apply a Sigmoid to the output of the second
branch, and normalize by dividing by the sum of outputs.
During training, we block the gradients of the second out-
put branch when back propagating to the base network. The
sampling gradients have larger variance and magnitude than
the observation gradients of the first branch, especially in
the beginning of training. This has a negative effect on con-
vergence of the network as a whole. Intuitively, we want to
give priority to the scene coordinate prediction because they
determine the accuracy of the pose estimate. The sampling
prediction should address deficiencies in the scene coordi-
nate predictions without influencing them too much. The
gradient blockade ensures these properties.
Implementation details. We follow the three-stage train-
ing procedure proposed by Brachmann and Rother for
DSAC++ [6].

Firstly, we optimize the distance between predicted and
ground truth scene coordinates. We obtain ground truth
scene coordinates by rendering the sparse reconstructions
given in the Cambridge Landmarks dataset [22]. We ignore
pixels with no corresponding 3D point in the reconstruction.
Since the reconstructions contain outlier 3D points, we use
the following robust distance:

(.y,y
∗) =

{
||y − y∗||2 ||y − y∗||2 < 10

10
√
||y − y∗||2 otherwise

, (15)

14

Figure 14. Qualitative Results for Horizon Line Estimation. Next to each input image, we show the estimated horizon line in blue and
the true horizon line in green. We also show the observation points predicted by our network, colored by their sampling weight (dark =
low).

3
x3

 –
C

3
2

 –
S1

3
x3

 –
C

6
4

 –
S2

3
x3

 –
C

1
2

8
 –

S2

3
x3

 –
C

2
5

6
 –

S2

3
x3

 –
C

2
5

6
 –

S1

1
x1

 –
C

2
5

6
 –

S1

3
x3

 –
C

2
5

6
 –

S1

3
x3

 –
C

5
1

2
 –

S1

1
x1

 –
C

5
1

2
 –

S1

3
x3

 –
C

5
1

2
 –

S1

3
x3

 –
C

5
1

2
 –

S1

1
x1

 –
C

5
1

2
 –

S1

3
x3

 –
C

5
1

2
 –

S1

1
x1

 –
C

5
1

2
 –

S1

1
x1

 –
C

5
1

2
 –

S1

1
x1

 –
C

1
 –

S1

1
x1

 –
C

5
1

2
 –

S1

1
x1

 –
C

5
1

2
 –

S1

1
x1

 –
C

3
 –

S1

(480 × 852px)

Input: RGB Image

Output 1: Scene Coordinates 𝐲(𝐰)
(3 × 60 × 107)

Output 2: Sampling Weights 𝑝(𝐲;𝐰)
(1 × 60 × 107)

3x3 – C32 – S1

Filter Size – Channels – Stride Gradient Blockade

Legend: Si
gm

o
id

N
o

rm
al

iz
at

io
n

Figure 15. NG-DSAC++ Network Architecture for Camera Re-Localization. The network takes an RGB image as input and predicts as
output dense scene coordinates and corresponding sampling weights. The network consists of convolution layers followed by ReLUs [17].
Am arc with a plus marks a skip connection [18]. We use the gradient blockage during training to prevent direct influence of the sampling
prediction (second branch) to learning the scene coordinates (first branch).

i.e. we use the Euclidean distance up to a threshold of 10m
after which we use the square root of the Euclidean distance.
We train the first stage for 500k iterations using Adam [23]
with a learning rate of 10−4 and a batch size of 1 image.

Secondly, we optimize the reprojection error of the scene
coordinate predictions w.r.t. to the ground truth camera
pose. Similar to the first stage, we use a robust distance
function with a threshold of 10px after which we use the
square root of the reprojection error. We train the second
stage for 300k iterations using Adam [23] with a learning
rate of 10−4 and a batch size of 1 image.

Thirdly, we optimize the expected task loss according to
the NG-DSAC objective as explained in the main paper. As

task loss we use ` = ∠(θ,θ∗)+ ||t−t∗||2. We measure the
angle between estimated camera rotation θ and ground truth
rotation θ∗ in degree. We measure the distance between the
estimated camera position t and ground truth position t∗

in meters. As with horizon line estimation (see previous
section), we use a soft inlier count as hypothesis scoring
function with hyperparameters α = 10, β = 0.5 and τ =
10. We train the third stage for 200k iterations using Adam
[23] with a learning rate of 10−6 and a batch size of 1 image.

Learned 3D Representations. We visualize the internal
3D scene representations learned by DSAC++ and NG-
DSAC++ in Fig. 16 for two more scenes.

15

DSAC++ NG-DSAC++ DSAC++

St. Marys Church Kings College

Figure 16. Learned 3D Representations. We visualize the internal representation of the neural network. We predict scene coordinates for
each training image, plotting them with their RGB color. For DSAC++ we choose training pixels randomly, for NG-DSAC++ we choose
randomly among the top 1000 pixels per training image according to the predicted distribution.

References
[1] R. Arandjelovic. Three things everyone should know to im-

prove object retrieval. In CVPR, 2012. 6
[2] J. Bian, W.-Y. Lin, Y. Matsushita, S.-K. Yeung, T. D.

Nguyen, and M.-M. Cheng. GMS: Grid-based motion statis-
tics for fast, ultra-robust feature correspondence. In CVPR,
2017. 5

[3] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton,
and C. Rother. Learning 6D object pose estimation using 3D
object coordinates. In ECCV, 2014. 2

[4] E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel,
S. Gumhold, and C. Rother. DSAC-Differentiable RANSAC
for camera localization. In CVPR, 2017. 2, 3, 4

[5] E. Brachmann, F. Michel, A. Krull, M. Y. Yang, S. Gumhold,
and C. Rother. Uncertainty-driven 6D pose estimation of ob-
jects and scenes from a single RGB image. In CVPR, 2016.
2

[6] E. Brachmann and C. Rother. Learning less is more-6D cam-
era localization via 3D surface regression. In CVPR, 2018.
1, 2, 8, 9, 12, 14

[7] G. Bradski. OpenCV. Dr. Dobb’s Journal of Software Tools,
2000. 1, 3, 10, 11

[8] T. Cavallari, S. Golodetz, N. A. Lord, J. Valentin, L. Di Ste-
fano, and P. H. Torr. On-the-fly adaptation of regression
forests for online camera relocalisation. In CVPR, 2017. 2

[9] O. Chum and J. Matas. Matching with PROSAC - Progres-
sive sample consensus. In CVPR, 2005. 2, 6

[10] O. Chum and J. Matas. Optimal randomized RANSAC.
TPAMI, 2008. 2

[11] O. Chum, J. Matas, and J. Kittler. Locally optimized
RANSAC. In DAGM, 2003. 2

[12] M. A. Fischler and R. C. Bolles. Random Sample Consen-
sus: A paradigm for model fitting with applications to image
analysis and automated cartography. Commun. ACM, 1981.
1, 2, 3, 5, 7

[13] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng. Complete
solution classification for the perspective-three-point prob-
lem. TPAMI, 2003. 9

[14] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? The KITTI vision benchmark suite. In
CVPR, 2012. 8, 11

[15] R. I. Hartley. In defense of the eight-point algorithm. TPAMI,
1997. 3

[16] R. I. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2004. 3, 4

[17] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rec-
tifiers: Surpassing human-level performance on ImageNet
classification. In ICCV, 2015. 10, 11, 14, 15

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 9, 10, 11, 14, 15

[19] J. Heinly, J. L. Schönberger, E. Dunn, and J.-M. Frahm. Re-
constructing the World* in Six Days *(As Captured by the
Yahoo 100 Million Image Dataset). In CVPR, 2015. 5

[20] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015. 10, 11, 14

[21] O. H. Jafari, S. K. Mustikovela, K. Pertsch, E. Brachmann,
and C. Rother. iPose: Instance-aware 6D pose estimation of
partly occluded objects. 2018. 2

[22] A. Kendall, M. Grimes, and R. Cipolla. PoseNet: A convo-
lutional network for real-time 6-DoF camera relocalization.
In ICCV, 2015. 9, 14

[23] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. In ICLR, 2015. 5, 8, 10, 11, 15

[24] F. Kluger, H. Ackermann, M. Y. Yang, and B. Rosenhahn.
Deep learning for vanishing point detection using an inverse
gnomonic projection. In GCPR, 2017. 8

[25] J.-T. Lee, H.-U. Kim, C. Lee, and C.-S. Kim. Semantic line
detection and its applications. In ICCV, 2017. 8, 9

[26] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015. 11, 14

[27] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 2004. 3, 5, 6, 8, 10, 11

[28] D. Massiceti, A. Krull, E. Brachmann, C. Rother, and P. H. S.
Torr. Random forests versus neural networks - what’s best for
camera localization? In ICRA, 2017. 2

16

[29] R. Mur-Artal and J. D. Tardós. ORB-SLAM2: an open-
source SLAM system for monocular, stereo, and RGB-D
cameras. T-RO, 2017. 1

[30] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgib-
bon. KinectFusion: Real-time dense surface mapping and
tracking. In Proc. ISMAR, 2011. 5

[31] D. Nistér. An efficient solution to the five-point relative pose
problem. TPAMI, 2004. 4, 5, 10

[32] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-
matic differentiation in PyTorch. In NIPS-W, 2017. 4

[33] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep
learning on point sets for 3D classification and segmentation.
In CVPR, 2017. 5

[34] R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J.-M.
Frahm. USAC: A universal framework for random sample
consensus. TPAMI, 2013. 2, 5, 6, 7, 8

[35] R. Raguram, J.-M. Frahm, and M. Pollefeys. A comparative
analysis of RANSAC techniques leading to adaptive real-
time random sample consensus. In ECCV, 2008. 2

[36] R. Ranftl and V. Koltun. Deep fundamental matrix estima-
tion. In ECCV, 2018. 2, 3, 7, 8, 11

[37] C. Rother. A new approach for vanishing point detection in
architectural environments. In BMVC, 2002. 8

[38] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB:
An efficient alternative to SIFT or SURF. In ICCV, 2011. 5

[39] T. Sattler, B. Leibe, and L. Kobbelt. Efficient & effective pri-
oritized matching for large-scale image-based localization.
TPAMI, 2016. 1

[40] J. L. Schönberger and J.-M. Frahm. Structure-from-Motion
Revisited. In CVPR, 2016. 1, 4

[41] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and
A. Fitzgibbon. Scene coordinate regression forests for cam-
era relocalization in RGB-D images. In CVPR, 2013. 2, 9,
14

[42] G. Simon, A. Fond, and M.-O. Berger. A-contrario horizon-
first vanishing point detection using second-order grouping
laws. In ECCV, 2018. 8

[43] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. CoRR, 2014. 9

[44] C. Strecha, W. von Hansen, L. J. V. Gool, P. Fua, and
U. Thoennessen. On benchmarking camera calibration and
multi-view stereo for high resolution imagery. In CVPR,
2008. 5

[45] R. S. Sutton and A. G. Barto. Introduction to Reinforcement
Learning. MIT Press, 1998. 4

[46] H. Taira, M. Okutomi, T. Sattler, M. Cimpoi, M. Pollefeys,
J. Sivic, T. Pajdla, and A. Torii. InLoc: Indoor visual local-
ization with dense matching and view synthesis. In CVPR,
2018. 2

[47] B. Tordoff and D. W. Murray. Guided sampling and consen-
sus for motion estimation. In ECCV, 2002. 2

[48] P. H. S. Torr and A. Zisserman. MLESAC: A new robust esti-
mator with application to estimating image geometry. CVIU,
2000. 2

[49] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. Instance
normalization: The missing ingredient for fast stylization.
CoRR, 2016. 5, 10, 11

[50] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg,
A. Dosovitskiy, and T. Brox. DeMoN: Depth and motion
network for learning monocular stereo. In CVPR, 2017. 5

[51] J. Valentin, M. Nießner, J. Shotton, A. Fitzgibbon, S. Izadi,
and P. H. S. Torr. Exploiting uncertainty in regression forests
for accurate camera relocalization. In CVPR, 2015. 2

[52] S. Workman, M. Zhai, and N. Jacobs. Horizon lines in the
wild. In BMVC, 2016. 8, 14

[53] C. Wu. Towards linear-time incremental structure from mo-
tion. In 3DV, 2013. 5

[54] J. Xiao, A. Owens, and A. Torralba. SUN3D: A database
of big spaces reconstructed using SfM and object labels. In
ICCV, 2013. 5

[55] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua. LIFT: Learned
invariant feature transform. In ECCV, 2016. 5

[56] K. M. Yi, E. Trulls, Y. Ono, V. Lepetit, M. Salzmann, and
P. Fua. Learning to find good correspondences. In CVPR,
2018. 2, 3, 5, 6, 7, 8, 10, 11

[57] M. Zhai, S. Workman, and N. Jacobs. Detecting vanishing
points using global image context in a non-manhattan world.
In CVPR, 2016. 8

17

