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Abstract

We study the problem of segmenting multiple cell nucle-
i from GFP or Hoechst stained microscope images with a
shape prior. This problem is encountered ubiquitously in
cell biology and developmental biology. Our work is mo-
tivated by the observation that segmentations with loose
boundary or shrinking bias not only jeopardize feature ex-
traction for downstream tasks (e.g. cell tracking), but also
prevent robust statistical analysis (e.g. modeling of fluores-
cence distribution). We therefore propose a novel extension
to the graph cut framework that incorporates a “blob” -like
shape prior. The corresponding energy terms are param-
eterized via structured learning. Extensive evaluation and
comparison on 2D/3D datasets show substantial quantita-
tive improvement over other state-of-the-art methods. For
example, our method achieves an 8.2% Rand index increase
and a 4.3 Hausdorff distance decrease over the second best
method on a public hand-labeled 2D benchmark.

1. Introduction

The rapid progress of microscopic techniques creates
compelling challenges for biomedical image analysis. This
is particularly true for many in vivo imaging experiments
in cell or developmental biology. For example, the work
in [14] allows us to envision the automated extraction of
full lineage for advanced animals such as zebrafish. Such
digital embryo databases have a far reaching impact on the
field of developmental biology. But, even today, process-
ing such datasets remains a challenging problem in dense
populations, in the presence of staining/imaging artifacts,
or when the image quality is poor (Fig. 1).

In such experiments, the cell nuclei are usually stained
using GFP or Hoechst and accurately segmenting all of
them is crucial for any downstream tasks such as feature
extraction for cell tracking. Existing cell nuclei segmen-
tation methods can be broadly categorized by their under-
lying image processing technique. The popular watershed
algorithm is computationally efficient but is prone to pro-

Figure 1. Challenging cell nuclei images. A, B - dense population-
s; C - poor quality; D, E - staining/imaging artifacts.

ducing loose boundary and over-segmentation. It usual-
ly demands ad hoc post-processing such as merging [18].
Contour evolution [8, 29, 23] can well approximate the true
boundary but is subject to high computational cost and oth-
er issues like under-segmentation and numerical instability.
Adaptive intensity thresholding [14] rarely considers spa-
tial context and is sensitive to texture and noise. Failing to
reveal the true extent of nuclei, it usually amounts to de-
tection rather than segmentation. Gradient flow tracking
[17] relies on a gradient diffusion procedure that may fur-
ther weaken vague boundaries, which easily leads to under-
segmentation. Graph cut with a-expansion [1] is computa-
tionally expensive due to the excessive use of labels and it
loses the important global optimality of graph cut [16, 4].

Our work was inspired by studies on nuclear structure
which show that healthy nuclei usually exhibit ellipsoid,
“blob”-like shapes [30]. We therefore aim at developing
a robust nuclei segmentation method that exploits this pri-
or. In the context of graph cut segmentation on which our
method is based, many shape priors have been explored.
Similar to shape priors for level set, authors in [11, 28] pro-
pose to incorporate shape information by penalizing devi-
ations from a pre-defined mask. This method can handle
very complicated shapes but usually requires alignment or
registration to address geometric transformations. Another
direction of work is to efficiently incorporate simple shape



priors such as convex [27], compact [7] or "blob”-like [12],

and such priors are particularly useful for biomedical appli-

cations. Usually, these shape priors work for a single object.
The contributions of this work include:

e a novel extension to graph cut that encodes a shape
prior for all nuclei simultaneously;

e a supervised learning strategy to parameterize the cor-
responding energy terms;

e an extensive evaluation and comparison to state-of-the-
art methods on real world 2D/3D datasets with quali-
tative and quantitative performance statistics.

It is worth pointing out that not all nuclei match our prior
and some irregularity exists [30]. Note that the proposed
method is biased by the prior, but does not enforce it, when
the evidence to the contrary is unequivocal.

2. Shape Prior for Nuclei Segmentation

Given an image =, we model the segmentation problem
using a Markov Random Field (with nodes I and edges IN)
and use graph cut [4] to infer the best labeling I € {0, 1}1I
that minimizes the proposed energy

E(ZILI,W) = ’LUdataZEdata(lp) +
pel

Wsmooth Z Esmooth(lpa lq) +
{p.a}eN

Whux Z Eﬂux(lp) +
pel

wshape Z Eshape(lpa lq) (1)

{p.a}eN

The first term encourages labels that are compatible with
local appearance, while the second term favors smooth la-
belings. The third term is the flux maximizing term that
counteracts the well-known shrinking bias [15] induced by
the second contribution; and the last term, finally, encodes
our shape prior. Note that, unlike some early extensions to
graph cut [15, 12], the flux term and the shape term have
to affect all nuclei simultaneously in our problem. The pa-
rameters W = {Wdata, Wsmooth, Whuxs Wshape } associated
with each energy term weight the respective contribution.
The first, third and fourth term depend on the image in a
local (Eqata) and a non-local (Efqyuy, Eshape) fashion. Even
so, we drop the index x to make for an uncluttered notation.
We now set out to elaborate on each term, commencing with
the important shape term.

Figure 2. “Blob”-like shape prior by aligning cuts and some vector
field. A - preferred segmentation, well aligned; B - “crescent”-
shaped, orthogonal; C - a hole inside, opposite.

2.1. Alignment of Cuts and Vector Field

The graph cut framework models segmentation as a
graph partition problem. It attempts to find the cheapest
set of cuts on the edges, which separates the graph into t-
wo disjoint sets, i.e. foreground and background (see [4]
for more details). Now, consider the example in Fig. 2A.
It shows a preferred segmentation that matches our shape
prior (green boundary) and some vector field v originating
from the center (yellow arrows). We see that the boundary
of the preferred segmentation is largely perpendicular to v,
which is equivalent to the cuts being mostly aligned with v
(e.g. red arrow, pixel p — ¢). On the contrary, for unfa-
vorable segmentations such as “crescent”-shaped or donut-
s/perforated nuclei, the cuts can be orthogonal or even op-
posite to the vector field, as respectively shown in Fig. 2B
and Fig. 2C. Given the intuition above, we formulate our
shape prior term as

Eanape(lps lg) = e~ 402005 (0,1, 4) < 0)-6 (I, # 1) ,

2)
where v, is the unit vector of v at pixel p, up_,q is a u-
nit vector pointing from pixel p to pixel ¢, and ¢ (¢) is an
indicator function that returns 1 when the condition c is sat-
isfied and O otherwise. The first term in Eq. 2 penalizes
the divergence of the two vectors, the second one truncates
the penalty and avoids over-penalization, and the last term
ensures that this penalty is only counted on cuts.

2.2. Shape Prior Extension for Multiple Nuclei

Figure 3. Different vector fields as shape prior. A - raw intensity
gradient; B - gradient of seeded Euclidean distance transform; C -
gradient of seeded function distance transform.

Now we show how this prior is extended to affect multi-
ple nuclei simultaneously. This problem boils down to find-



ing an appropriate vector field that originates from the in-
side of each nucleus and points towards its boundary. Ap-
parently, raw intensity gradient fails to suffice (Fig. 3A).
We therefore include a nuclei detection procedure to rough-
ly locate the nuclei first. We use a method similar to [21]
but more efficient. It is based on the same intuition: noisy
local maxima are not stable across scales. Instead of com-
bining wavelet coefficients across scales [21], we combine
(logically, by A) the response, also across multiple scales,
of an indicator function Z(n; < 0). Here, n; consists of
all pixel p’s Hessian eigenvalues computed after the image
is smoothed at scale o. Each resulting connected compo-
nent is referred to as a “seed” (e.g. Fig. 3C, red regions).
The seeds are usually located well within the nuclei despite
a strong shrinking bias and irregularity in shape.

To generate a vector field that suffices, we pursue two
goals: high efficiency and low interference. For example of
Fig. 3B, the overextension of vectors from the small nu-
cleus will cause a shrinking bias to the large one. Such
vector field is generated by simply computing an Euclidean
distance map from the seed centers and taking its gradient.
Noticing that the seeds roughly describe the size of nuclei,
we propose to manipulate the extent of vectors from each
seed by its size. This is realized by using function distance
map, as

d, = mqin {(a:p —cy)? — \/size(q)} , 3)

where g indexes the seeds, x,, and ¢, denote the spatial co-
ordinate of pixel p and seed center, respectively, and size(q)
is the size of seed q. This is equivalent to pulling down the
parabola (z,, — ¢,)? rooted at ¢, by \/size(q), such that the
borders of the resulting Voronoi diagram are shifted towards
smaller seeds. Eq. 3 can be efficiently computed using [9]
with a complexity linear in image size, just like computing
the Euclidean distance map. The resulting vector field is
clean for each individual nucleus (Fig. 3C).

2.3. Data Fidelity Prediction by Random Forest

The shape term alone is certainly insufficient for good
performance. Another key term is the data term Eqgata(lp).
To capture the variability in brightness and texture, we ex-
tract local features F and train a random forest (RF) [5] on
them to compute a probability map Prob(I|F) as the data
fidelity (see [2] for more details on the features). To spare
the labeling effort, we directly take the seeds as the fore-
ground labels. We run a seeded watershed using the same
seeds and take the resulting watersheds as background la-
bels. Note that since RF accumulates votes through decision
trees trained on bags of samples, imperfect labeling does not
hurt the probability map much. A similar “automatic” label
generation technique appeared in [19]. In summary,

Eaata(lp) = 1 — Prob(l,|F,). “4)

However, it is difficult to demand perfect pixel predic-
tion from the classifier. The accuracy is bounded by the
performance of the classifier, the discriminative power of
the features and the representativeness of the training sam-
ples. For example, staining artifact inside nuclei may con-
fuse the classifier and eventually cause holes inside the seg-
mentation (see Fig. 4 for an example). Our shape prior can
prevent such errors and yield hole-free segmentations.

2.4. Details on Other Energy Terms

Graph cut is known to favor shorter segmentation bound-
aries, i.e. it exposes shrinking bias [15]. This is fur-
ther exacerbated after the introduction of the shape penalty.
We therefore add the flux term as a counterpoise. Based
on the same vector field that is used by the shape term,
Faux(lp) attempts to push the boundary outwards for each
nucleus, by maximizing the flux going through it. In prac-
tice, the flux passing through pixel p is approximated by
wp = quN,, (Vp, Up—q), Where N, is the set of p’s neigh-
bors, v, is the same vector field used by the shape term, and
Up—sq 1 the same as in Eq. 2. Then, the flux term is com-
puted by (see [15] for more details)

—w, ifw, <0andl, =1
Faux(l) =< w, ifw,>0andl, =0 (5
0 otherwise

Finally, we use the discontinuity penalty [4] that penal-
izes small intensity difference (||z, — z4||?) on the cuts, as

_lzp—zqll? 1

= o2 _— .
Esmooth(lp7 lq) € 2 dlSt(p, q) 1) (lp 75 lq) .

(6)

3. MRF Parametrization by Learning

Determining the optimal weights in Eq. 1 is nontrivial
since the terms can be incommensurable and their relative
magnitudes may change from one dataset to another. Early
work applies heuristics [27] or resorts to manual tweaking
[13]. We solve this MRF parametrization problem via a
more fundamental learning strategy.

3.1. Learning Formulation by Risk Minimization

The recent advances in structured learning [26] allows
for efficient parameter estimation for complicated graphical
models and, in particular, for MRFs and conditional random
fields (CRFs) [24]. Formally, given N training images X =
{x,} and ground truth binary labels L* = {l} }, the best set
of parameters is the optimizer of

. 1 * )\ 2
min N;R@v;wmln) + 5 llwl®. @)



Here, the empirical loss R(w; x,l*) =

max A = a5

E(x,l";w) +

1
where L,, is the structured space of all possible labels for
image n. A(l,1}) is aloss function that can be, for example,

normalized Hamming loss (i.e. the percentage of diverging
labels):

A(LT%) _WZ Y+ —1)]. )

The normalization factor ﬁ in Eq. 8 ensures numerical
stability because the sum of individual energy terms in
E(x,l;w) can be very huge, which may trouble the sub-
sequent subgradient computation for optimization (see Sec-

tion 3.3 for more details).

3.2. Max-Margin Structured Learning Formulation

The objective function in Eq. 7 can be reformulated us-
ing the max-margin structured learning formulation [26]:

min % 3, &+ 3wl

s.t. VYn,Vle L,
|ll*| [E(wn’l;:ﬁw) - E(xnvl;w)] > A(l:wl) —&ns
w>0,6>0.

(10)
Here, A(l},1) is known as “margin-rescaling” [26]. Intu-
itively, it pushes the decision boundary further away from
the “bad” solutions with high losses.

Note that we have a non-negativity constraint on w. This
is suggested by [24] such that the graph cut energy formula-
tion remains submodular [16]. Otherwise, one has to resort
to structured learning with approximation inference [10] on

non-submodular energies (e.g. QPBO [22]).
3.3. Optimization with Bundle Method

We developed our optimizer for the above max-margin
problem based on bundle method [25]. Bundle method is
an enhancement over the popular cutting plane method that
provides better convergence rate: given precision ¢, it con-
verges with speed L rather than 2 of usual cutting planes.
Briefly, bundle method starts w1th some parametrization
w and no constraints. Iteratively find, first, the optimum
labeling using the current w by solving, for all n, I =
E(x, l;w) + A", )} Use all the  to iden-
tify the most violated constraint, and add it to Eq. 10. Up-
date w by solving Eq. 10 (with added constraints), then find
new best labeling, etc. pp. From the perspective of func-
tional approximation, those constraints form a lower bound
linear approximation of the original objective and the ap-
proximated version of Eq. 10 can be efficiently solved in its

arg maxl{ &

dual form. Pseudocode of bundle method and adaption of
its dual formulation to incorporate non-negativity constraint
on w are provided in the supplementary.

Searching for the most violated constraints requires solv-
ing an “augmented” graph cut problem as shown in Eq. 8.
To see this, we drop the independent middle term and re-

move the common factor \l*\ ‘We obtain

max > (1=12)-0(l, = 1)+ 15:6(lp # 1)+E(an, b w),

leL
pel pel
1)
which suggests the following graph construction procedure:
(1) set the default t-link and n-link energies from the original
graph cut problem (Eq. 1); (ii) for each node p, append value
1 — I to its source t-link and append [}, to its sink t-link.

3.4. Implementation Details

Our energy function is submodular since both pairwise
terms are binary Potts models and their weighting parame-
ters are constrained to be non-negative. Global optimality is
guaranteed by graph cut [4]. We implemented our method
in C++ using VIGRA! for image representation, watershed
and random forest classification. For graph cut, we used
the max-flow/min-cut code?. We implemented the bundle
method adapted to our problem using LIBQP? for QP solv-
ing. The segmentation software will be available to the pub-
lic at: https://github.com/xlou.

4. Results

We conducted an extensive evaluation on both 2D and
3D images acquired from different fluorescence micro-
scopes. The methods in comparison include level-set (LS)
with Chan-Vese model* (base model for [8]), gradient flow
tracking’ (GFT) [17], graph cut with a-expansion® (GC-a)
[1], the classic graph cut (GC) without shape prior [4], and
the watershed based merging algorithm (MA) [18].

We trained our model on the 2D benchmark using the
annotations therein [6]. We observe that the normalized
Hamming loss becomes less informative when training the
model on the entire image since it is usually close to one.
We therefore train the model on randomly selected image
patches (200 out of 1549) with a much smaller size, espe-
cially on those where cell nuclei clutter (usually contains
less than 4 proximate nuclei). The bundle method usually
takes around 15 iterations before convergence. We did not
train the model on the 3D dataset due to lack of 3D ground
truth.

Uhttp://hci.iwr.uni-heidelberg.de/vigra/
Zhttp://vision.csd.uwo.ca/code/

3http://cmp.felk.cvut.cz/ xfrancv/libgp/html/

4Matlab code by Yan Zhang (University of Central Lancashire)
Shttp://www.biomedcentral.com/1471-2121/8/40
Shttp://www.farsight-toolkit.org



Other important parameters are the scales used in nuclei
detection (i.e. the Gaussian kernel width o). They are com-
puted as in [3]: ¢ = 1.2 x D/9, where D is sampled evenly
from the range of nuclei’s diameter (in pixel). The parame-
ters for the remaining methods are tuned via grid search.

4.1. 2D Segmentation: Hand-Labeled Benchmark

For the 2D nuclei segmentation benchmark from [6], we
use the same measures for qualitative evaluation, such as
merge, split, spurious and missing, and those for quantita-
tive evaluation like Rand index (RI) and Hausdorff distance.
The result in Table 1 shows our superior performance in
most categories. In particular, due to shape prior and shrink-
ing bias reduction, our method provides significant quan-
titative improvement (+8.2% RI and -4.3 Haus. over the
second best). The high sensitivity yields a low number of
missing detections but also brings many spurious detection-
s. Many of them are small debris that can be easily filtered
out by size thresholding. Note that those spurious detections
are not excluded from the statistics in Table 1.

RI Haus. Spl. Mer. Spu. Mis.
LS 82.6% 14.6 1.8 39 3.9 2.9
GFT 80.8% 20.4 2.7 4.0 11.1 1.1
GC-a 83.3% 15.2 4.0 4.7 5.7 1.7
GC 80.4% 27.7 3.1 2.9 19.8 0.8
Ours 91.5% 10.3 2.4 1.6 13.8 0.0
MA 83.0% 15.9 1.6 3.0 6.8 5.9
Table 1. Statistics on segmenting NIH3T3 cell nuclei of [6]. The
results for MA are directly from [6].

Fig. 4 shows the results on the “difficult” image (U20S)
suggested in [6]. With respect to the ground truth (Fig. 4A),
level-set segments sparse nuclei perfectly but has severely
under-segmentation in dense regions (Fig. 4B). The same
applies to gradient flow tracking (Fig. 4C). Graph cut with
a-expansion exploits no prior and is subject to many wrong
expansions of labels that lead to irregularly shaped objects
(Fig. 4D). The classic graph cut (Fig. 4E) uses a RF pixel
classifier trained on another image. It seems that the man-
ual trained pixel classifier does not generalize well to more
difficult images, yielding obvious shrinking, missed detec-
tion and perforated nuclei. On the contrary, the RF classifier
trained with automatic label generation seems useful when
combined with the shape and flux (Fig. 4F).

4.2. 3D Segmentation: Digital Zebrafish Embryo

The digital embryo dataset was acquired using digital
laser light sheet fluorescence microscopy (DSLM) [14]. It
records the location and movement of stained cell nuclei in
an entire zebrafish embryo over the first 24 hours of devel-
opment. Segmenting each and every nucleus for the ulti-
mate goal of lineage-tree reconstruction [14, 20] has a far

reaching impact on the field of developmental biology. The
challenges in this dataset include strong staining/imaging
artifacts at early stage (Fig. SA) and severe nuclei clutter at
late stage (Fig. 5D). Maximum intensity projections of two
representative volumes are shown in Fig. 5B and Fig. SE, re-
spectively. The respective segmentations by our method are
rendered in Fig. 5C and Fig. SF. In summary, we obtained
an F-score from 96.8% to 98.8% for the first 100 time steps.
The original local adaptive thresholding segmentation used
in [14] yields an F-score between 92.3% and 97.6%.

For detailed comparison, Fig. 6 shows two subvolumes
from each volume in Fig. 5 (yellow box). The first row
shows a representative sparse subvolume with “stripe”-like
artifacts and the second row is on another one with very high
density. GC-« [1] exhibits apparent “blocky” artifacts due
to the metrication error (Fig. 6B). Generally, it appears to
fail in this dense subvolume where a huge number of labels
have to be propagated by expansion move (Fig. 6F). Results
could only be obtained partially for the 200 x 200 x 100 sub-
volume, due to excessive memory consumption (2GB). Gra-
dient flow tracking [17] is sensitive to those stripe artifacts
(see Fig. 5A and Fig. 6C) and is prone to obvious under-
segmentation (Fig. 6G). Despite the artifacts and high den-
sity, our method manages to produce clean segmentations
with regularly shaped nuclei (Fig. 6D, H).

5. Conclusions & Future Work

We present a novel nuclei segmentation method which
extends the classic graph cut framework with a manifestly
useful multi-object shape prior. Extensive evaluation on 2D
and 3D images from different modalities shows our superior
performance over several state-of-the-art methods. A struc-
tured learning-based strategy allows to parameterize the M-
RF energy terms from user annotated segmentations, rather
than by tweaking unintuitive parameters.

Our method could be further sped up and scaled up by
dual decomposition and parallel computing. This is particu-
larly meaningful in view of the ongoing trend of ubiquitous
application of 3D imaging in biomedical research.
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