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This paper describes an approach for automatically analyzing the alterations of an original artwork during its
reproduction. The overall deformation of the artwork is modelled by a piecewise linear model, where regions
of the artwork that feature similar alterations are automatically inferred and assigned to the different model
components. Model complexity, that is, the required number of affine components required for registration, is
automatically estimated using a statistical stability analysis. The main challenge is to simultaneously solve
three tasks: (i) inferring the correspondences between both shapes, (ii) identifying the groups in the image
that share the same transformation, and (iii) estimating the transformation of these groups. Our approach is
tested on controlled scenarios as well as on real historical images.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Although some stylistic movements in art like impressionism or
pointillism define themselves by color, shape has been the predominant
way to perceive an artwork. The theory about the primacy of shape can
be traced back to Giorgio Vasari (1511–1574) who propagated the line
drawing as the predominant technique of all visual arts. His use of the
term disegno (conceptual design) can be read as the assignment of
ideas to shapes. This “shaped idea” is represented through shapes in
preparatory drawings, in the artwork itself as well as in drawn repro-
ductions. Based on this observation, changes in shape between artworks
and their reproductions or preparatory drawings can be associatedwith
changes in ideas and concepts that reveal artistic choices and stylistic
variations. Thus, the analysis of these changes helps art historians to
understand the impact of historical influences in the creation and repro-
duction of art. However, in many cases, these alterations between
shapes are very subtle and thus, it becomes extremely difficult, even
for experts, to determine the nature and extent of the deformations
suffered by different parts within an artwork. The automatic solution
of such a shape analysis poses an ambitious computer vision task, and
its solution is the focus of the present paper. The nature of the artwork
deformations analyzed in this work arises either due to deliberate

alterations or due to geometric errors accumulated during the drawing
process. For instance, a typical example for a deliberate alteration
between a preparatory drawing and the finished work is a subtle con-
ceptual change that induces small alterations in the relative position
of extremities in a human pose. These conceptual changes may have
personal, cultural, or historical reasons, and thus, it is of interest for art
historians to recognize the parts that feature similar transformations
and to determine to which extent these parts differ from other regions
in the image.

1.1. Piecewise transformation model

The system presented in this contribution addresses the description
of an overall non-linear deformation as featured between an original
artwork and its reproduction, and at the same time, it gives insights
about the local structure of the shape deformation. Shape transforma-
tion models within computer vision can be classified into linear and
non-linear models. Since global linear models cannot be used for
describing complex shape changes due to their limited description
power, a common choice for describing non-linear changes has been
the usage of splines like the TPS [5]. However, besides requiring the
estimation of a high number of parameters (proportional to the number
of points in the shape) to determine the model, its complexity is
regularized by a single manually set parameter for the entire shape.
The global nature of this parameter makes it impossible for the model
to locally adapt its complexity according to the shape deformation.
Therefore, the present paper presents a piecewise linear registration
model that adapts the complexity of each component according to the
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shape deformation in the underlying region. Moreover, the assignment
of regions in the shape to differentmodel components induces a cluster-
ing which is used in turn to visualize the structure and geometry of
the deformation introduced by the artist during the reproduction
procedure.

1.2. Automatic complexity estimation

However, a challenge of using piecewise linear models is to auto-
matically determine the number of components required for registra-
tion. In the absence of prior knowledge about the shape deformation,
the answer to this question represents an important part of the analysis.
Nonetheless, an indispensable requirement for selecting the number of
components is the robustness of the registration solution. The present
paper considers this robustness or stability from a statistical point of
view. A stable registration solution for a given number of components
is understood as a solution that is reproducible on different subsampled
versions of the shape and does not too sensitively dependent on the
sample set at hand. Thus, the “correct” number of transformations is
defined as the number that yields the most stable solution capable of
handling the trade-off between a too rigid transformation and an
overparameterization of the transformation model.

1.3. Historical analysis of image reproductions

Finally, we utilize the proposed approach to analyze prominent re-
productions fromdifferent periods of art history. Atfirst, images coming
from the Codex Manesse illustrated between ca. 1305 and ca. 1340 in
Zürich and their reproductions commissioned by Bodmer/Breitinger in
1746/1747 are considered. This image collection is important for art
history since the Codex Manesse is the single most comprehensive
source of Middle High German Minnesang poetry [3] and represents
an outstanding source for understanding the visual interpretation of
the Middle Ages in early modern and modern times. Whereas the
tracings from book illustrations like the reproductions of the Codex
Manesse exhibit only slight changes, the differences between a drawing
and a mural painting are obviously greater. Therefore, we also
analyze parts of Michelangelo's ceiling fresco in the Sistine Chapel
(1508–1512) with sketches, which were made in the artists surround-
ings, probably after Michelangelo's own preparatory drawings or by
Dutch artists after the original artwork had been completed.

2. Related work

In the study of Monroy et al. [18], the temporal drawing process of
how an image is reproduced was analyzed. It was assumed that parts
drawn in closed succession in the reproduction exhibit similar deforma-
tions between the images. A limitation is the manual location and
matching of landmark points. Furthermore, the approach lacks a unified
model since two different clustering algorithms were applied for esti-
mating the parameters of local affine transformations assuming perfect
point correspondences, thus making this procedure very susceptible to
noise. The present paper formulates a single optimization problem
where affine transformations are estimated and points are grouped
within the same procedure.

In thework ofMonroy et al. [17],we proposed to solve for the groups
and affine transformations by formulating a single optimization prob-
lem that was solved using deterministic annealing (DA). However, at
the beginning of the optimization procedure, shape points were
assigned with almost the same probability to the initial affine transfor-
mations. Thus, after updating the transformations, all affine parameters
became equal and the algorithm got trapped in a local minimum. A
further limitation, which is also shared by Monroy et al. [18], was the
inclusion of a Euclidean distance term in the energy function to force
the compactness of the groups. Thus, a bias in the solution was intro-
duced since groups were clustered due to proximity and not depending

on the registration quality. In the study of Monroy et al. [17], we
also assumed for simplicity to have fix point correspondences between
shapes, and their calculation was not related to the main optimization
procedure. The current approach substitutes the DA technique by a
linear program (LP) formulation for assigning points to groups.
Moreover, we eliminate the Euclidean distance term in the energy
function, and groups are found only by the accuracy of registration. In
addition, our method also optimizes point correspondences between
shapes along with the groups and the transformation within the same
procedure.

In the field of sparse motion segmentation for instance, Wang and
Adelson [25] presented amethod for decomposing videos into similarly
moving layers. This method estimates affine motion models for seg-
ments on a regular grid. Due to clutter and missing contours, the accu-
rate estimation of small and continuous deviations in transformations
cannot be estimated with this approach. In the study of Delong et al.
[8], a regularized energy function was minimized with Graph-Cuts
([2]), which also included a pairwise regularization and thus a bias in
the result. This regularization led in practice to poorer registration qual-
ity since parts in the shape belonging to different model components
weremixed. Furthermore, Komodakis et al. [12] presented an LP formu-
lation of a central clustering in which the number of clusters is deter-
mined indirectly by a hard to determine penalty term for each data
point. Lazic et al. [14] also indirectly determined the number of clusters
through the weighting of the different randomly subsampled linear
subspaces. Normally, (rigid)motion segmentation can be seen as an ap-
plication of the more general task of subspace segmentation [14,26].
This latter task commonly assumes that the data points lie on several
distinct linear subspaces [9,26,7,24,11]. However, the linearity assump-
tion does not hold in our setting:Whereas shape points lie in a 2Dvector
space, each of the shape parts that were similarly altered by the artist
are represented through elements of the affine group. Therefore, the
task consists not only of clustering points that define a linear subspace,
but three tasks need to be solved jointly: the correspondence between
both shapes, the groups in the image that share the same transforma-
tion, and the estimation of the transformations of those groups.

In the field of computer graphics, Sýkora et al. [21] embedded each
shape in a lattice consisting of several connected squares and registered
them by estimating a rigid transformation for every square. Since the
registration is only on the level of rigid squares, a grouping into flexibly
shaped regions with related modifications is not part of this contribu-
tion. Furthermore, Sýkora et al. [21] are not able to handle deformations
that do not preserve local rigidity (e.g., scaling or shear), and it requires
a significant overlap between shapes for registration. Additionally, in
our setting, background clutter needs to be handled, whereas themeth-
od of Sýkora et al. [21] is only applied to cartoons without any clutter.
Another interesting related work is by Commowick et al. [6], which
presented a piecewise affine regularization method for medical image
registration. The drawback of this method is that the affine-registered
areas need to be estimated manually by the user. Related to piecewise
affine registration, Hongsheng et al. [10] recently introduced amatching
algorithm based on affine transformations calculated on a triangulation
of the shape. In this case, to match articulated objects, it is required to
manually select the groups and their articulation in order to match the
scene images. Two different works that are related to estimating trans-
formations between artworks are by Chang and Stork [4] and Usami
et al. [22].While Chang and Stork [4] tried to ensure consistent perspec-
tive in art images, Usami et al. [22] aimed to dewarp image reflections
shown in convex mirrors within very specific paintings. Common
non-linear registration algorithms like Chui and Rangarajan [5] or
Myronenko and Song [19] are also not suited to the purpose of the
present task. Whereas Chui and Rangarajan [5] used a thin plate spline
(TPS) tomodel the transformation,Myronenko and Song [19] estimated
a displacement vector for each point in the shape. In both cases, these
models introduce artifacts in the registration as observed by Monroy
et al. [17], which is undesirable for art comparison.
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3. Approach

In this paper, shapes are represented through landmark points
(given in homogeneous coordinates), which are regularly sampled
along extracted contours of the corresponding image in an automatic
manner (see Section 4.4 for more details). The shape of the original
artwork is referred to with the matrix X ∈ ℝm × 3 and the shape of the
reproduced artwork with the matrix Y ∈ ℝn × 3.

3.1. Problem statement

The main challenge consists of simultaneously solving three tasks.
First, the correspondences between both shapes have to be inferred.
Second, the groups in the image that share the same transformation
need to be found. Finally, the transformations of those groups and
thus the overall deformation model need to be estimated. The missing
groups correspond to image regions that are reproduced similarly by
the artist. Therefore, each of these groups is modeled through an affine
transformation capable of transforming the group from the reproduc-
tion into the original painting. The advantage of using a piecewise-
affine transformation model is that it allows to describe a non-linear
transformation in amore parsimoniousmanner; that is, less parameters
are required for describing the overall transformation. At the same time,
the components in the model associated with different regions in the
shape give insights about the structure and geometry of the artistic
deformation.

Formally, the problem consists of estimating a binary data assign-
mentmatrixC∈Bn!m of n points belonging to the first shape tom points
in the second shape. At the same time, a binary matrix M∈Bn!k of n
points to k groups needs to be calculated together with different affine
transformations Tν∈ℝ3× 3(ν=1,…,k) for each group. Thus, the overall
registration error made by a solution (M,C,T1,⋯,Tk) can be written as

Ereg :¼
Xn;k

i;ν¼1

Mνi

Xm

j¼1

Cijkxj−Tνyik
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:rνi

0

BBBB@

1

CCCCA
: ð1Þ

An important observation is that although the global deformation
between both artworks is expected to be non-linear, regions between
both images that were copied without any or little alteration by the
artist are transformed homogeneously, and therefore, these parts can
be described using a single affine transformation. Thus, for any two
points yi and yj within such an affine-transformed shape part together
with their respective correspondent points xa and xb, the distortion
between the vector from yi to yj and the vector from xa to xb is expected
to be small (and minimal in the presence of a rigid transformation).
Similar to Berg et al. [1], this distortion can be measured by

d yi; yj; xa; xb
" #
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dl yi; yj; xa; xb
" #

:¼
sij

$$$
$$$− ŝabk k

sij
$$$

$$$þ σd

" # ; ð4Þ

sij :¼ yi−yj; ŝab :¼ xa−xb: ð5Þ

While thefirst term da(yi, yj; xa, xb) penalizes the change in direction,
the second term dl(yi, yj; xa, xb) penalizes the change of length between
two pairs of points in both shapes. The constants αd = βd = σd = 0.5
allow more flexibility for nearby points, and the constant γ = 0.3
weighs the angle distortion term against the length distortion term.
All these parameters have been kept fixed in all experiments, thus
showing the robustness of the solution with this set of parameters,
despite large variations in the input. We use this measure to further
enforce the matching consistency between both shapes, and thus the
energy term Eq. (1) to be minimized is extended to

min
M;Tν ;C

Etot :¼
Xn;k

i;ν¼1

Mνi

Xm

j¼1

Cij x j−Tνyi
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" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
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s:t:
Xk

ν¼1
Mνi ¼ 1 ∀i ¼ 1; ⋯;nð Þ ð7Þ

Xn

i¼1

Cij ¼ 1 ∀ j ¼ 1; ⋯;nð Þ; ð8Þ

Cij∈ 0;1f g; Mνi∈ 0;1f g ð9Þ

where k is the complexity of the piecewise model (i.e., the number of
affine transformations desired for registration). This parameter will be
set automatically based on the stability analysis described in
Section 3.3.While the constraint Eq. (7) forces each point to be assigned
to a single group, the constraint Eq. (8) ensures a many-to-one
matching between both point sets yielding robustness in cases of miss-
ing points. Important to remark is thatwhereas Berg et al. [1]minimized
the pairwise distortions for all points in the shape together, our model
minimizes the pairwise distortions within each of the groups defined
through the matrix M.

3.2. Optimization strategy

The general setting of jointly solving for M, C, and Tv is hard. This is
reflected in the above problem formulation (Eq. (6)), where solving
for the matrix C exactly is already NP-hard [1]. A practical solution to
minimize the above energy is to assume an alternating procedure.
Departing from an initial solution, the above energy function is reduced
by first calculating the matrix M and the transformations Tv (assuming
the matrix C is given) and solving for the matrix C (assumingM, Tv are
given) thereafter. This procedure is iterated until the matrix C and M
do not change.

3.2.1. Problem formulation using a superset of affine transformations
Estimating the matrixM and the different affine transformations

Tv (given the matrix C) are closely interrelated problems, and their
solution poses a challenging issue. Because Tv (v = 1,…,k) can only
be estimated when the assignment of points to k groups (given by
the matrix M) is known, each of the groups v is defined by the fact
that all points within it can be registered using a single affine trans-
formation Tv. Thus, the rationale of our previous work [17] was to ap-
proach this problem by first proposing a single initial clustering (i.e., a
matrixM) based on the Euclidean proximity of the shape points. There-
after, based on this matrix, the estimation of the affine transformations
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Tv was alternated with the actualization of matrix M until local conver-
gence was reached. However, this procedure turned out to be very
susceptible to the initialization of the matrix M. We show this fact in
Fig. 1(e) where a textitsingle initial k-tuple of affine transformations
led to a wrong clustering, where parts in the shape corresponding to
different affine deformations were mixed into the same group. This
paper studies an orthogonal approach for solving the aforementioned
problem leading to better results as shown in Fig. 1(b) (see experimental
section for more details). Instead of proposing an initialization for
the matrix M or a single k-tuple of affine transformations and thus
risking a wrong initialization, we construct a large superset of affine
transformations

Tpool :¼ Tν Tν∈ℝ3!3
; ν ¼ 1; ⋯; l

%%%
o
;

n
ð10Þ

where lN N k. For this purpose, the shape Y is subdivided into non-
overlapping small segments, each of them containing at least 6 non-
collinear points. For each segment an affine transformation is estimated
and added to the superset Tmboxpool (we assume to have an estimate of
matrix C). At this point, if there are not enough samples to estimate an
affine transformation due to an occlusion, the remaining points in that
regionwill be considered as outliers, and the regionwill not bematched.
Thereafter, each segment is merged with its nearest neighbor, and an
affine transformation is calculated for the merged segment, which in
turn is added to Tpool. For the nearest neighbor estimation, the distance
between two segments is defined as the Euclidean distance between
their centers ofmass (i.e., the average of the segment points). Thismerg-
ing is repeated until the whole shape is merged into a single segment.
Thereafter, using this superset Tpool, our algorithm optimally selects a

subset of k transformations that best register the shape and use these
active transformations to estimate the matrix M. Based on this matrix,
the active transformations are then updated in turn. Thus, the original
problem (Eq. (6)) is transformed into its final form:

min
M;W ;C;Tν

Xl

ν¼1
wν

Xn

i¼1

Mνirνi

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:Elin W;M;C;Tνð Þ

þ Equad ð11Þ

s:t:
Xl

ν¼1
wν ¼ k; ð12Þ

n &wν−
Xn

i¼1

Mνi≥0 ∀ν ¼ 1; ⋯; lð Þ ð13Þ

wν∈ 0;1f g ð14Þ

plus Eqs. (7)–(9). Here the binary vectorwv=1 indicates that the vth el-
ement of the set Tpool is being used and otherwisewv=0.While Eq. (12)
guarantees to obtain the desired number of transformations k, Eq. (13)
avoids the assignment of points to inactive transformations wv = 0.
This becomes clearer by remarking that Eq. (13) is fulfilled whenever
the logical constraint wν = 0⇒∑i = 1

n Mνi = 0 is met.

3.2.2. Finding correspondences
We first describe how to estimate the correspondence matrix C

between shapes Y and X assuming the knowledge of the groups M and

a

d e

b c

Fig. 1. Results on synthetic data. (a) Original image in blue and distorted image in red. (b) Groups found by our algorithm of Section 3.1 (each color corresponds to a different group).
(c) Instability analysis for different numbers of groups. (d) Distribution of pairwise distances 18 for themost stable solutions. Since the distribution is not normal, taking the (normalized)
sample mean as in Luxburg [23] is not appropriate.(e) Resulting clustering if the algorithm of Monroy et al. [17], which utilizes a single initial k-tuple of affine transformations is used
instead of our LP-based method described in Section 3.2.1 and shown in panel b.
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the transformations Tv (i.e., transformations Tv where wv = 1) Thus,
Eq. (11) can be alternatively formulated as

min
z

Xk

ν¼1
zTDνz; s:t: Az ¼ 1; z∈ 0;1f g: ð15Þ

In this case, z is an indicator vector such that zia = 1 if point yi is
matched to point xa and otherwise zero. In this formulation, the original
matrix C is implicitly included in the vector z. Furthermore, each matrix
Dv contains the values d(Tνyi, Tνyj; xa, xb) corresponding to the group v
and otherwise zero. Whereas the diagonal of Dv consists of the linear
terms of Eq. (11), the many-to-one constraints of matrix C are expressed
through the matrix A. In order to solve for each group independently,
vectors uv are defined which contain all entries of the form zi• for which
Mvi=1,wv=1.Using this vector,we obtain the following local problems:

min
uν

uνTD uνuνj ð16Þ

s:t: A uνj uν ¼ 1; uν∈ 0;1f g; ∀ν : wν ¼ 1
& '

ð17Þ

whereD uνj is the submatrix of Dv containing only pairwise distortions re-
lated to points belonging to group v (the non-zero submatrix of Dv in
Eq. (15)) and A uνj is the many-to-one constraint submatrix of A for the
corresponding points. Each of the subproblems in Eq. (16) is then approx-
imated using the integer projected fixed point (IPFP) algorithm for graph
matching ([15]). To estimate the initialmatrix C required by the IPFP algo-
rithm, both shapesX andY are registeredusing a single global transforma-
tion (e.g., using a global affine transformation [19]), and for each point in
Y, its correspondent point is given as the nearest neighbor point in X.
Although we cannot guarantee finding a global minimum for problem
(15), we are able to reduce the energy (Eq. (11)) at each iteration
(given the matrices M, W) since the solution of each subproblem
(Eq. (16)) reduces the total energy of the joint problem (see, e.g., [15]).
In practice, this is confirmed through the improvement of the matching
accuracy (see Fig. 2(a) in the Experimental section).

3.2.3. LP-based solution for transformations and assignment of points to
groups

In this section,wedescribehow to estimate the active transformations
(i.e., the vector W), assign points to the corresponding transformations
(through the matrix M), and update them afterwards (we assume to
have the matrix C). Jointly optimizingW andM in Elin + Equad (Eq. (11))

is veryharddue to the non-linearity of both terms. Thus, to render optimi-
zation feasible, we focus on the minimization of the term Elin.
Disregarding the term Equad at thismoment of the optimization is justified
by the fact that the term Elin controls the overall registration error since
the matrix M defines the support of the different transformations,
which are indirectly given byW. This error iswhatwe intend tominimize,
while Equad is mainly required (cf. [1]) to obtain better landmark corre-
spondences C, which are now given at this point. A further difficulty is
given by the binary constraints onM andW. For instance, if the elements
wv are relaxed to wv ∈ [0,1], the constraint ∑ ν = 1

n wν = k becomes a
soft-constraint. Therefore, despite fulfilling this constraint more than k
elements, wv can become greater than zero due to the relaxation. Thus,
Eq. (13) will assign points to more than k transformations yielding a
wrong solution to the joint problem. However, this last problem is allevi-
ated if we adopt an alternate procedure to minimize Elin:

• Solve minW Elin subject to Eq. (12). During the first iteration, all
elements of matrix M are set to one and the transformations to build
r are taken from Tpool.

• Assign points to active transformations solving the linear program
(LP) minM ∑i,ν = 1

n,k Mνirνi subject to the constraints ∑ν = 1
k Mνi = 1

(for all i=1,…,n) andMvi∈ [0,1]. Here thematrixM∈ℝk × n only in-
dicates the assignment of points to the k active transformations (and
not to the l elements in Tpool).

• Update the active transformations Tv usingM andW. This is done in an
exact manner using weighted least squares ([20]). The exact solution
for the transformations is an improvement over [18,17], where the
transformations were only approximated using the Levenberg
Marquardt algorithm.

Our complete method is summarized in Algorithm 1.

3.3. Choosing the right number of clusters

In this section, we describe how to automatically determine the
complexity of the model, that is, the number of affine transformations
required for registration. The underlying idea is to measure the fluctua-
tions in the registration results when random subsamples of the shapes
are considered. For a given number of clusters k, our algorithm is run on
bmax subsampled versions of the original shape Y (specifically, 60%of the
points in the shape are randomly subsampled each time). Thus, we
obtain the clustering results M̂b∈ℝns!1 (b = 1,⋯,bmax, ns = ⌊0.6 ∗ n⌋),
where M̂b indicates the cluster number for each point in shape Y.
Since the bmax clustering solutions are calculated on a subset of the
points, they are extended to the whole shape using nearest neighbors

a b

Fig. 2.Results for the CodexManesse corpus. (a) Improvement in thematching accuracy between the last and first iteration of our algorithm:we plot the difference between thematching
accuracy curves of the last and the first iteration.Matching accuracy is the percentage of correspondences where the ground-truth correspondent point lies atmost δerr from the predicted
correspondent point (see Section 4.2). (b) Instability analysis for all shapes in the corpus and showing the standard deviation for each k.
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for themissing points. The extended clustering solutions are referred to
by Mb ∈ ℝn × 1. Thereafter, pairwise distances between the different
cluster solutions are calculated in order to evaluate the fluctuations in
the results induced by the random subsampling. This is done using the
minimal matching distance

d̂mmd Mi;Mj

" #
¼ min

π

1
n

Xn

i¼1

1 Mi ið Þ≠π M j ið Þð Þ½ (; ð18Þ

where the minimum is taken over all permutations π of the k labels. In

other words, d̂mmd Mi;Mj

" #
measures the percentage of points that

changed the assignment (up to a permutation). However, in order to
avoid bias when the number of clusters k is increased, d̂mmd is normal-
ized similar to the study of Lange et al. [13] with the median r(n) of
pairwise distances between random labelings. Thus, the fluctuations
in the clustering results can be measured by

dmmd Mi;Mj

" #
:¼

d̂mmd Mi;Mj

" #

r nð Þ ð19Þ

In the case of stable clustering solutions, the pairwise distances
dmmd(Mi, Mj) are expected to be near zero. In contrast, unstable
solutions yield variations in the clusterings and large distances (see
Fig. 1(d)). Therefore, wemeasure the instability of a solution by approx-
imating the empirical distribution of pairwise distances dmmd(Mi, Mj)
through a histogram h ∈ ℝnbins × 1 over the distances and define as a
measure for the instability the sum of weighted counts:

instab kð Þ :¼
Xnbins

i

h ið Þ & ch ið Þ; ð20Þ

where h(i) is the absolute count and ch(i) is the value of the histogram
bin i. Since the number of runs bmax is the same for every value of k,
the absolute counts of the histogram can be used without introducing
any bias. This measure penalizes distances which are far from zero
and, thus, corresponds to unstable clustering solutions for a certain
value k. Therefore, the ideal most stable number of affine transforma-
tions required for registration is defined as

kopt :¼ min
k

instab kð Þ: ð21Þ

Consequently, using such an instability measure also helps to
approximate the different local deformations between the images.
While a region with affine deformation can be represented using a
single affine transformation, the stability analysis selects a larger num-
ber of affine transformations to approximate non-affine deformations.

Algorithm 1. Summary of the algorithm presented in this paper.

4. Experiments

4.1. Synthetic data

We first evaluate our algorithm on two frames of a synthetic image
sequence. Fig. 1(a) shows both frames in red and blue, respectively.
The head, both legs, and tail were modified through affine transforma-
tions, and thus, the global non-linear deformation between frames is
known. In this case, around 4000 points were used to describe the
shape and were uniformly sampled along the contours of the image.
In order to carry out the stability analysis (see Section 3.3), 60% of the
points were uniformly subsampled and the algorithm was run bmax =
60 times for each given number of clusters k (on average the algorithm
converged within 5 iterations each run). This resulted in 3600 pairwise
distances for each k. This experimentwas repeated 20 times, thus yield-
ing the instability plot of Fig. 1(c). The algorithmdetermined k=5 to be
themost stable number of groups. As Fig. 1(b) shows (each color repre-
sents a single group), the corresponding groups are consistent with the
manually introduced deformations. This experiment shows not only
how our algorithm registers both shapes but also how the inferred
groups describe and visualize how the different local parts in the
shape were truly deformed. Regarding this synthetic experiment, the
distribution of the pairwise distances dmmd(Mi, Mj) (Eq. (19)) for the
most stable number of groups (k = 4,5,6) is also shown in Fig. 1(d).
Luxburg [23] (p. 5) mentions that a simple (normalized) mean over
pairwise clustering distances dmmd(Mi, Mj) is commonly used as insta-
bility measure. This methodology presupposes that the distribution of
the pairwise distances is normal, and thus, the instability measure
weights every pairwise distance equally. However, in Fig. 1(d), we
show that thedistribution of pairwise distances is in general not normal.
Therefore, our measure in Eq. (20) is more appropriate to describe the
shape of the distribution since it weights the pairwise distances propor-
tional to their occurrence. Finally, the benefit of our LP-based method
(Section 3.2.3) for calculating the affine transformations and the assign-
ment of points to them are evaluated by comparing ourmethodwith an
alternative procedure based on the algorithm previously explored by
Monroy et al. [17]. Instead of using a pool of affine transformations
Tpool and the LP-based method described in Section 3.2.1, we provided
a single initial k-tuple of transformations by locally grouping points in
a greedy manner based on their proximity and registration quality.
This resulted in a deficient initialization which the successive updates
of groups, transformations, and correspondences could not correct.
While in Fig. 1(e) we can observe how parts in the shape corresponding
to different affine components were mixed into the same group
resulting in a clustering which is not consistent with the ground truth,
our current method (Fig. 1(b)) groups the different shape parts
correctly.

4.2. Reproductions of the Codex Manesse

In the study of Monroy et al. [18], we collected a corpus of 5 shapes
coming from the Codex Manesse (reproduced between ca. 1305 and ca.
1340) and their corresponding reproductions commissioned in 1746/47
by J. J. Bodmer and J. J. Breitinger. Since ground truth for the correspon-
dences between the shapes is known, it is possible to measure the
registration quality of our method and compare it with other state-of-
the-art algorithms. In Table 1, we show the mean squared error (MSE)
of the registration for all shapes. The number of affine transformations
for all models was automatically determined by our algorithm. Further-
more, we were also interested in measuring the ability of humans to
perceive deformations in different parts of a shape. Therefore, we devel-
oped an interactive registration tool that was used by 5 experts toman-
ually select the regions in the shape that according to their perception
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shared the same transformation. At the beginning of the experiment,
both shapes were registered using a single affine transformation. There-
after, each time a new group of points was selected, the overall shape
registration was updated, enabling each user to see the result of his
selection. Moreover, it was always possible to correct a group selected
before. The average of the MSE over the 5 experts in the experiment is
shown in Table 1 under the row human. From the largeMSE, it becomes
clear that the task of an art historian to manually analyze a shape
to understand the drawing process is extremely difficult. Thus, a
computer-based procedure is essential. The entries Kmeans and Ward
in Table 1 correspond to a piecewise affine registration based on the
clustering of the displacement vectors between both shapes using
Kmeans andWard'smethod, respectively.We have observed that cluster-
ing the error vectors featured only insufficient accuracy: contours have
been distorted (e.g., stretched), and junctions are partly missing and
thus affinedeformations cannot be described by clustering the displace-
ment term of the deformation. A similar method to Wang and Adelson
[25] was also reimplemented (second row of Table 1). For this method,
not the displacement vectors but the parameters of the affine transfor-
mations contained in Tpool were directly clustered instead. Thereafter,
we greedily iterated between the assignment of each point to the cen-
troids (i.e., the affine transformation representing a group) based on
its registration error and the refinement of the centroids themselves.
The clustering of transformation parameters resulted in being unstable
since they strongly varied depending on the locality of their support.
Furthermore, the greedy assignment of points to transformations was
also not optimal.

In Table 1, we also added the output of the algorithm from Monroy
et al. [18] for comparison. In this case, we observed that areas in a
shape were grouped based on their proximity due to the pairwise
Euclidean distance term used in their objective function. This bias was
also observed in the results of [8], where the assignments to

transformations were also regularized by a Euclidean distance-based
term in their energy function. This fact had an important impact on
the registration since parts of the shape featuring different transforma-
tions were forced to be registered together and a bigger MSE was pro-
duced. Finally, it is important to remark that all of these methods with
exception of the presented one only partially solved the full task since
the correspondence between shapes is not calculated. Furthermore, it
is not possible to automatically determine the model's complexity as
we do in our method.

Since we have ground truth for the correspondences, we also mea-
sured the improvement of the matching quality between shapes in-
duced by our algorithm. For this, we measured for each point yi in
shape Y the error produced between its estimated corresponding
point ∑j = 1

m Cijxj (as induced by the binary matrix C in our algorithm)
and its true correspondent point xigt (as provided in the ground-truth)
in shape X. We then measured for a threshold δerr (which we then
vary in turn) the percentage of points, where the estimated correspon-
dences lie at most δerr from the ground truth. This yields a matching-
accuracy curve depending on the parameter δerr. In Fig. 2(a), we show
the relative improvement in the matching accuracy between the last
and the first iteration (initialization) of our algorithm. Thus, optimizing
the correspondence matrix C together with the groups M is beneficial
for the registration process. In Fig. 2(b), we show the stability of the
solutions for the whole corpus of shapes and observe that a local
minimum value, indicating a stable solution for all shapes in the corpus
is always obtained.

Finally, in order to compare the registration quality of our method
with the CPD algorithm of Myronenko and Song [19], we focused on
complex medieval scenes. For this, we used reproductions of the
codex of Eike von Repgow's Sachsenspiegel (‘Mirror of the Saxons’)
composed ca. 1220–1235 in eastern Saxony, see Fig. 3 for one example.
The average computation timeof our algorithm for such complex scenes

Table 1
Reproductions of the Codex Manesse. Mean squared error (MSE) of the registration using ground-truth correspondences provided byMonroy et al. [18]. The complexity of the piecewise
affine transformation is automatically provided by our method.

Registration quality (MSE)

Shape ID (no. groups) [25] Kmeans Ward [18] Human [8] Our method

Shape 1 (10) 49.36 37.20 ± 2.25 35.46 34.71 57.91 ± 9.93 25.04 24.89
Shape 2 (7) 109.26 80.98 ± 5.30 84.19 131.07 194.33 ± 6.34 260.60 78.55
Shape 3 (6) 24.11 35.77 ± 1.27 36.15 45.62 37.06 ± 5.61 24.68 21.41
Shape 4 (7) 28.57 37.37 ± 0.99 39.26 37.68 44.21 ± 7.97 35.77 28.37
Shape 5 (4) 52.12 57.52 ± 4.83 52.66 66.89 60.23 ± 1.03 67.84 45.86
Average 52.68 49.76 ± 2.92 49.54 63.19 78.74 ± 6.17 82.78 39.81

Fig. 3. Registration quality for complex scenes. (a) Reproductions of the codex of Eike von Repgow's Sachsenspiegel (‘Mirror of the Saxons’) composed ca. 1220–1235 in eastern Saxony.
(b) Registration using theCPD algorithmofMyronenko and Song [19] (with an RMSE of 11.45 for this image). (c) Rigid registration (RMSE 17.48) (d) Registration results using ourmethod
(RMSE 7.78).
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is on the order of a minute. While the CPD algorithm of Myronenko and
Song [19] (using the default parameters) obtained a rootMSE (RMSE) of
12.64 ± 11.96 for the registration error over 3 scenes, our method
improved the registration with an RMSE of 8.79 ± 5.8. In contrast to
this, registering the scene with a rigid transformation resulted in a
poor RMSE of 20.65 ± 15.57. We observed that the improvement of
our method over the CPD algorithm was mainly due to CPD regulating
its complexity through a global parameter for thewhole image,whereas
our method has a greater flexibility since it adapts its complexity based
on its piecewise nature according to the underlying deformation.

4.3. Michelangelo reproductions

We also focused on the analysis of Michelangelo's ceiling fresco in
the Sistine Chapel (1508–1512) and compare distinctive shapes with
sketches, which were made by artists surrounding Michelangelo,
probably after preparatory drawings or by Dutch artists after the
original. The reason is that the differences between a drawing and a
mural painting are greater than the tracings from book illustrations
like the reproductions in the last section. Our aim here is not to
reconsider the connoisseurs' controversy about the attribution of
these drawings but to show how our automatic approach is used to
analyze the reproduction process of an artwork, which in turn is
noteworthy for an art-historical analysis.

The first column in Fig. 5 shows the original fresco images. The
second column shows two reproductions and a preparatory drawing.
All three images in the second column seem to be reproduced exactly
from the first column images. However, after applying an overall rigid
transformation, we see that the drawings feature important differences
and show non-linear deviations from the fresco. This can be seen in the
third row of Fig. 5, where the color of the arrows indicates the magni-
tude of the induced rigid registration error. Using our method, it is pos-
sible to discover a structure in the overall deformation by observing the
resulting groups obtained by our algorithm (see Fig. 4). For instance, the
Ignudo (i.e., themale nude flanking the Creation of Eve) in Fig. 5(a) fea-
tures only two relevant deformations:while the upper and lower part of
the body can be exactly registered to the other image, both parts togeth-
er yield a non-linear deformation. From an artistic point of view, this
inconsistency can be explained by noting the difficulty of bringing
both body parts into an appropriate distance and angle to each other
by the artist during the reproduction of the fresco and alterations be-
tween these parts can easily be introduced in this procedure. Further-
more, the Prophet Jonah in Fig. 5(b) features very interesting groups:

while the left leg fits using a single transformation, the right leg decom-
poses mainly into three groups which correspond to the observation
that this body part substantially differs from the leg in the fresco. in
Fig. 5(c) we can observe how the torso decomposes into the right and
left arm indicating a deliberate amplification of the articulation in the
sketching. Since our energy cost does not introduce any proximity
term that could bias the result, it can be concluded that the artist
approached the reproduction by independently reproducing smaller
parts corresponding to semantical entities. From an art historical point
of view, whereas these parts can be considered as technically sensible,
regions in the shape that were split in different groups indicate a possi-
ble difficulty of reproducing that area for the artist.

4.4. Implementation details

For shape drawings, we have to extract and deal with different con-
tour thickness and texture. Hence, contours are extracted by convolving
the image with Laplace of Gaussian (LoG) Filters of varying sigma (σ=
0.8 + j ∗ 0.4, j = 1,…,9) and then take the maximal response over all
sigmas for every pixel. This kind of filter is suitable since it allows
obtaining a single response for lines of varying thickness and ensures
in praxis a good contrast between ridge response and background. Fi-
nally, non-maximum suppression followed by hysteresis thresholding
is applied to obtain a single binary response. For images where shape
is encoded through texture and color boundaries, we use the Pb code
([16]) for edge extraction, which weights edge signals proportionally
to their strength.

In Section 3.2.2, we have estimated correspondences for each group
independently. When the group is too large (e.g., more than 1/5 of all
points in the shape), each group is subdivided into smaller pieces
based on a bottom-up contour grouping (using the Euclidean distance),
and then the point correspondence for each subgroup is independently
estimated. However, we force the groups to reach a minimum size to
guarantee a robust matching.

5. Conclusion

This paper has presented a novel approach for the analysis of alter-
ations between artworks and their reproductions. Therefore, the overall
shape deformation is represented by decomposition into a piecewise af-
fine model. Model complexity was automatically estimated using a sta-
tistical stability analysis. The present contribution jointly estimated the
correspondences between shapes, the affine structures in the shape,

a

b

ca b c

Fig. 4.Analysis of the drawing process. First to third column: Different shapeswere reproduced based in semantic entities (e.g., legs, arms, etc.). The grouped parts aremostly anatomically
or technically sensible,whereas theparts that are split in different groups showa complex deformation for that area. Last column: corresponding instability analysis togetherwith standard
deviation.
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and the complexity required by the overall deformationmodel.We have
tested our method in controlled scenarios as well as with real historical
images. Based on ground-truth correspondences between images from
the Codex Manesse and their 18th century reproductions, we have ob-
served an improvement over the state-of-the-art in both registration
andmatching quality. Furthermore, our algorithm outperformed aman-
ual solution of the problem showing the benefit of this method for art
historians. Finally, an important experimental finding was the discovery
that the drawings of two of the Ignudi and the Prophet Jonah in the ceil-
ing fresco of the Sistine Chapel featured different deformations. These
deformations corresponded either to semantical entities of the shape
(e.g., the arms in Fig. 4(c)) or indicated slight modifications in the rela-
tive position of extremities (e.g., Fig. 4(a) and (b)) by the artist.
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