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Abstract

We present a robust estimator for fitting multiple para-
metric models of the same form to noisy measurements. Ap-
plications include finding multiple vanishing points in man-
made scenes, fitting planes to architectural imagery, or esti-
mating multiple rigid motions within the same sequence. In
contrast to previous works, which resorted to hand-crafted
search strategies for multiple model detection, we learn the
search strategy from data. A neural network conditioned
on previously detected models guides a RANSAC estima-
tor to different subsets of all measurements, thereby finding
model instances one after another. We train our method su-
pervised as well as self-supervised. For supervised training
of the search strategy, we contribute a new dataset for van-
ishing point estimation. Leveraging this dataset, the pro-
posed algorithm is superior with respect to other robust es-
timators as well as to designated vanishing point estimation
algorithms. For self-supervised learning of the search, we
evaluate the proposed algorithm on multi-homography es-
timation and demonstrate an accuracy that is superior to
state-of-the-art methods.

1. Introduction
Describing 3D scenes by low-dimensional parametric

models, oftentimes building upon simplifying assumptions,
has become fundamental to reconstructing and understand-
ing the world around us. Examples include: i) fitting 3D-
planes to an architectural scene, which relates to finding
multiple homographies in two views; ii) tracking rigid ob-
jects in two consecutive images, which relates to fitting
multiple fundamental matrices; iii) identifying the domi-
nant directions in a man-made environment, which relates
to finding multiple vanishing points. Once such paramet-
ric models are discovered from images, they can ultimately
be used in a multitude of applications and high-level vision
tasks. Examples include the automatic creation of 3D mod-
els [1, 24, 48, 61], autonomous navigation [39, 47, 20, 30]
or augmented reality [10, 11, 2, 45].

Model-fitting has generally been realised as a two-step
procedure. Firstly, an error-prone, low-level process to ex-

Figure 1: CONSAC applications: line fitting (top), vanish-
ing point estimation (middle) and homography estimation
(bottom) for multiple instances. Colour hues in column two
and three indicate different instances, brightness in column
two varies by sampling weight.

tract data points which shall adhere to a model is executed.
For example, one could match 2D feature points between
pairs of images as a basis for homography estimation [21],
in order to determine the 3D plane where the 3D points live
on. Secondly, a robust estimator that fits model parameters
to inlier data points is used, while at the same time identi-
fying erroneous data points as so-called outliers [19]. Some
outliers can be efficiently removed by pre-processing, e.g.
based on the descriptor distances in feature matching [34].

While the case of fitting a single parametric model to
data has received considerable attention in the literature, we
focus on the scenario of fitting multiple models of the same
form to data. This is of high practical relevance, as mo-
tivated in the example above. There, multiple 3D planes
represented by multiple homographies are fitted. However,
when multiple models are present in the data, estimation
becomes more challenging. Inliers of one model constitute
outliers of all other models. Naturally, outlier filters fail in
removing such pseudo-outliers.
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Early approaches to multi-model fitting work sequen-
tially: They apply a robust estimator like RANSAC re-
peatedly, removing the data points associated with the
currently predicted model in each iteration [59]. Mod-
ern, state-of-the-art methods solve multi-model fitting si-
multaneously instead, by using clustering or optimisation
techniques to assign data points to models or an outlier
class [6, 7, 8, 42, 3, 26, 54, 35, 36, 37, 38, 13]. In our
work, we revisit the idea of sequential processing, but com-
bine it with recent advances in learning robust estimators
[66, 46, 12]. Sequential processing easily lends itself to
conditional sampling approaches, and with this we are able
to achieve state-of-the-art results despite supposedly being
conceptually inferior to simultaneous approaches.

The main inspiration of our work stems from the work
of Brachmann and Rother [12], where they train a neural
network to enhance the sample efficiency of a RANSAC
estimator for single model estimation. In contrast, we in-
vestigate multi-model fitting by letting the neural network
update sampling weights conditioned on models it has al-
ready found. This allows the neural network to not only
suppress outliers, but also inliers of all but the current model
of interest. Since our new RANSAC variant samples model
hypotheses based on conditional probabilities, we name
it Conditional Sample Consensus or CONSAC, in short.
CONSAC, as illustrated by Fig. 1, proves to be powerful
and achieves top performance for several applications.

Machine learning has been applied in the past to fitting of
a single parametric model, by directly predicting model pa-
rameters from images [27, 18], replacing a robust estimator
[66, 46, 52] or enhancing a robust estimator [12]. However,
to the best of our knowledge, CONSAC is the first applica-
tion of machine learning to robust fitting of multiple models.

One limiting factor of applying machine learning to
multi-model fitting is the lack of suitable datasets. Previ-
ous works either evaluate on synthetic toy data [54] or few
hand-labeled, real examples [63, 56, 17]. The most com-
prehensive and widely used dataset, AdelaideRMF [63] for
homography and fundamental matrix estimation, does not
provide training data. Furthermore, the test set consists of
merely 38 labeled image pairs, re-used in various publica-
tions since 2011 with the danger of steering the design of
new methods towards overfitting to these few examples.

We collected a new dataset for multi-model fitting, van-
ishing point (VP) estimation in this case, which we call
NYU-VP1. Each image is annotated with up to eight van-
ishing points, and we provide pre-extracted line segments
which act as data points for a robust estimator. Due to its
size, our dataset is the first to allow for supervised learn-
ing of a multi-model fitting task. We observe that robust
estimators which work well for AdelaideRMF [63], do not
necessarily achieve good results for our new dataset. CON-

1Code and datasets: https://github.com/fkluger/consac

SAC not only exceeds the accuracy of these alternative ro-
bust estimators for vanishing point estimation. It also sur-
passes designated vanishing point estimation algorithms,
which have access to the full RGB image instead of only
pre-extracted line segments, on two datasets.

Furthermore, we demonstrate that CONSAC can be
trained self-supervised for the task of multi-homography es-
timation, i.e. where no ground truth labelling is available.
This allows us to compare CONSAC to previous robust es-
timators on the AdelaideRMF [63] dataset despite the lack
of training data. Here, we also achieve a new state-of-the-
art in terms of accuracy.
To summarise, our main contributions are as follows:

• CONSAC, the first learning-based method for robust
multi-model fitting. It is based on a neural network that
sequentially updates the conditional sampling proba-
bilities for the hypothesis selection process.

• A new dataset, which we term NYU-VP, for vanishing
point estimation. It is the first dataset to provide suf-
ficient training data for supervised learning of a multi-
model fitting task. In addition, we present YUD+, an
extension to the York Urban Dataset [17] (YUD) with
extra vanishing point labels.

• We achieve state-of-the-art results for vanishing point
estimation for our new NYU-VP and YUD+ datasets.
We exceed the accuracy of competing robust estima-
tors as well as designated VP estimation algorithms.

• We achieve state-of-the-art results for multi-model
homography estimation on the AdelaideRMF [63]
dataset, while training CONSAC self-supervised with
an external corpus of data.

2. Related Work

2.1. Multi-Model Fitting

Robust model fitting is a key problem in Computer
Vision, which has been studied extensively in the past.
RANSAC [19] is arguably the most commonly imple-
mented approach. It samples minimal sets of observations
to generate model hypotheses, computes the consensus sets
for all hypotheses, i.e. observations which are consistent
with a hypothesis and thus inliers, and selects the hypothesis
with the largest consensus. While effective in the single-
instance case, RANSAC cannot estimate multiple model
instances apparent in the data. Sequential RANSAC [59]
fits multiple models sequentially by applying RANSAC,
removing inliers of the selected hypothesis, and repeat-
ing until a stopping criterion is reached. PEARL [26] in-
stead fits multiple models simultaneously by optimising an
energy-based functional, initialised via a stochastic sam-
pling such as RANSAC. Several approaches based on fun-
damentally the same paradigm have been proposed sub-
sequently [6, 7, 8, 42, 3]. Multi-X [6] is a generalisa-
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tion to multi-class problems – i.e. cases where models of
multiple types may fit the data – with improved efficiency,
while Progressive-X [7] interleaves sampling and optimisa-
tion in order to guide hypothesis generation using interme-
diate estimates. Another group of methods utilises prefer-
ence analysis [68] which assumes that observations explain-
able by the same model instance have similar distributions
of residuals w.r.t. model hypotheses [54, 35, 36, 37, 38, 13].
T-Linkage [35] clusters observations by their preference
sets agglomeratively, with MCT [38] being its multi-class
generalisation, while RPA [36] uses spectral clustering in-
stead. In order to better deal with intersecting models,
RansaCov [37] formulates multi-model fitting as a set cov-
erage problem. Common to all of these multi-model fit-
ting approaches is that they mostly focus on the analysis
and selection of sampled hypotheses, with little attention
to the sampling process itself. Several works propose im-
proved sampling schemes to increase the likelihood of gen-
erating accurate model hypotheses from all-inlier minimal
sets [12, 5, 40, 15, 55] in the single-instance case. No-
tably, Brachmann and Rother [12] train a neural network
to enhance the sample efficiency of RANSAC by assign-
ing sampling weights to each data point, effectively sup-
pressing outliers. Few works, such as the conditional sam-
pling based on residual sorting by Chin et al. [14], or the
guided hyperedge sampling of Purkait et al. [43], consider
the case of multiple instances. In contrast to these hand-
crafted methods, we present the first learning-based condi-
tional sampling approach.

2.2. Vanishing Point Estimation

While vanishing point (VP) estimation is part of a
broader spectrum of multi-model fitting problems, a variety
of algorithms specifically designed to tackle this task has
emerged in the past [4, 9, 29, 32, 50, 53, 58, 62, 65, 67].
While most approaches proceed similarly to other multi-
model fitting methods, they usually exploit additional,
domain-specific knowledge. Zhai et al. [67] condition VP
estimates on a horizon line, which they predict from the
RGB image via a convolutional neural network (CNN).
Kluger et al. [29] employ a CNN which predicts initial VP
estimates, and refine them using a task-specific expectation
maximisation [16] algorithm. Simon et al. [50] condition
the VPs on the horizon line as well. General purpose ro-
bust fitting methods, such as CONSAC, do not rely on such
domain-specific constraints. Incidentally, these works on
VP estimation conduct evaluation using a metric which is
based on the horizon line instead of the VPs themselves. As
there can only be one horizon line per scene, this simplifies
evaluation in presence of ambiguities w.r.t. the number of
VPs, but ultimately conceals differences in performance re-
garding the task these methods have been designed for. By
comparison, we conduct evaluation on the VPs themselves.

Figure 2: Multi-Hypothesis Generation: a neural network
predicts sampling weights p for all observations conditioned
on a state s. A RANSAC-like sampling process uses these
weights to select a model hypothesis and appends it to the
current multi-instance hypothesisM. The state s is updated
based onM and fed into the neural network repeatedly.

3. Method
Given a set of noisy observations y ∈ Y contaminated

by outliers, we seek to fitM instances of a geometric model
h apparent in the data. We denote the set of all model in-
stances as M = {h1, . . . ,hM}. CONSAC estimates M
via three nested loops, cf. Fig. 2.

1. We generate a single model instance ĥ via RANSAC-
based [19] sampling, guided by a neural network. This
level corresponds to one row of Fig. 2.

2. We repeat single model instance generation while con-
ditionally updating sampling weights. Multiple single
model hypotheses compound to a multi-hypothesisM.
This level corresponds to the entirety of Fig. 2.

3. We repeat steps 1 and 2 to sample multiple multi-
hypotheses M independently. We choose the best
multi-hypothesis as the final multi-model estimate M̂.

We discuss these conceptional levels more formally below.

Single Model Instance Sampling We estimate parame-
ters of a single model, e.g. one VP, from a minimal set of
C observations, e.g. two line segments, using a minimal
solver fS. As in RANSAC, we compute a hypothesis pool
H = {h1, . . . ,hS} via random sampling of S minimal sets.
We choose the best hypothesis ĥ based on a single-instance
scoring function gs. Typically, gs is realised as inlier count-
ing via a residual function r(y,h) and a threshold τ .

Multi-Hypothesis Generation We repeat single model
instance sampling M times to generate a full multi-
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hypothesisM, e.g. a complete set of vanishing points for an
image. Particularly, we select M model instances ĥm from
their respective hypothesis poolsHm. Applied sequentially,
previously chosen hypotheses can be factored into the scor-
ing function gs when selecting ĥm:

ĥm = arg max
h∈Hm

gs(h,Y, ĥ1:(m−1)) . (1)

Multi-Hypothesis Sampling We repeat the previous pro-
cess P times to generate a pool of multi-hypotheses P =
{M1, . . .MP }. We select the best multi-hypothesis ac-
cording to a multi-instance scoring function gm:

M̂ = arg max
M∈P

gm(M,Y) , (2)

where gm measures the joint inlier count of all hypotheses
inM, and where the m in gm stands for multi-instance.

3.1. Conditional Sampling

RANSAC samples minimal sets uniformly from Y . For
large amounts of outliers in Y , the number of samples S
required to sample an outlier-free minimal set with reason-
able probability grows exponentially large. Brachmann and
Rother [12] instead sample observations according to a cat-
egorical distribution y ∼ p(y;w) parametrised by a neu-
ral network w. The neural network biases sampling to-
wards outlier-free minimal sets which generate accurate hy-
potheses ĥ. While this approach is effective in the pres-
ence of outliers, it is not suitable for dealing with pseudo-
outliers posed by multiple model instances. Sequential
RANSAC [59] conditions the sampling on previously se-
lected hypotheses, i.e. y ∼ p(y|{ĥ1, . . . , ĥm−1}), by re-
moving observations already deemed as inliers from Y af-
ter each hypothesis selection. While being able to reduce
pseudo-outliers for subsequent instances, this approach can
neither deal with pseudo-outliers in the first sampling step,
nor with gross outliers in general. Instead, we parametrise
the conditional distribution by a neural network w condi-
tioned on a state s: y ∼ p(y|s;w) .

The state vector sm at instance sampling step m en-
codes information about previously sampled hypotheses in
a meaningful way. We use the inlier scores of all obser-
vations w.r.t. all previously selected hypotheses as the state
sm. We define the state entry sm,i of observation yi as:

sm,i = max
j∈[1,m)

gy(yi, ĥj) , (3)

with gy gauging if y is an inlier of model h. See the last
column of Fig. 2 for a visualisation of the state. We sample
multi-instance hypothesis pools independently:

p(P;w) =

P∏
i=1

p(Mi;w) , (4)

while conditioning multi-hypotheses on the state s:

p(M;w) =

M∏
m=1

p(Hm|sm;w) ,

with p(H|s;w) =

S∏
s=1

p(hs|s;w) ,

with p(h|s;w) =

C∏
c=1

p(yc|s;w) .

(5)

Note that we do not update state s while sampling single
instance hypotheses pools H, but only within sampling of
multi-hypotheses M. We provide details of scoring func-
tions gy, gm and gs in the appendix.

3.2. Neural Network Training

Neural network parameters w shall be optimised in order
to increase chances of sampling outlier- and pseudo-outlier-
free minimal sets which result in accurate, complete and
duplicate-free multi-instance estimates M̂. As in [12], we
minimise the expectation of a task loss `(M̂) which mea-
sures the quality of an estimate:

L(w) = EP∼p(P;w)

[
`(M̂)

]
. (6)

In order to update the network parameters w, we approxi-
mate the gradients of the expected task loss:

∂

∂w
L(w) = EP

[
`(M̂)

∂

∂w
log p(P;w)

]
, (7)

by drawing K samples Pk ∼ p(M;w):

∂

∂w
L(w) ≈ 1

K

K∑
k=1

[
`(M̂k)

∂

∂w
log p(Pk;w)

]
. (8)

As we can infer from Eq. 7, neither the loss `, nor the sam-
pling procedure for M̂ need be differentiable. As in [12],
we subtract the mean loss from ` to reduce variance.

3.2.1 Supervised Training

If ground truth models Mgt = {hgt
1 , . . . ,h

gt
G} are avail-

able, we can utilise a task-specific loss `s(ĥ,hgt) measur-
ing the error between a single ground truth model m and
an estimate ĥ. For example, `s may measure the angle be-
tween an estimated and a true vanishing direction. First,
however, we need to find an assigment between Mgt and
M̂. We compute a cost matrix C, with Cij = `s(ĥi,h

gt
j ) ,

and define the multi-instance loss as the minimal cost of
an assignment obtained via the Hungarian method [31] fH:
`(M̂,Mgt) = fH(C1:min(M,G)) . Note that we only con-
sider at mostGmodel estimates ĥ which have been selected
first, regardless of how many estimates M were generated,
i.e. this loss encourages early selection of good model hy-
potheses, but does not penalise bad hypotheses later on.
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3.2.2 Self-supervised Training

In absence of ground-truth labels, we can train CONSAC
in a self-supervised fashion by replacing the task loss with
another quality measure. We aim to maximise the average
joint inlier counts of the selected model hypotheses:

gci(ĥm,Y) =
1

|Y|

|Y|∑
i=1

max
j∈[1,m]

gi(yi, ĥj) . (9)

We then define our self-supervised loss as:

`self(M̂) = − 1

M

M∑
m=1

gci(ĥm,Y) . (10)

Eq. 9 monotonically increases w.r.t. m, and has its mini-
mum when the models in M̂ induce the largest possible
minimally overlapping inlier sets descending in size.

Inlier Masking Regularisation For self-supervised
training, we found it empirically beneficial to add a
weighted regularisation term κ · `im penalising large sam-
pling weights for observations y which have already been
recognised as inliers: `im(p̃m,i) = max(0, p̃m,i+sm,i−1) ,
with sm,i being the inlier score as per Eq. 3 for observa-
tion yi at instance sampling step m, and p̃m,i being its
normalised sampling weight:

p̃m,i =
p(yi|sm;w)

maxy∈Y p(y|sm;w)
. (11)

3.3. Post-Processing at Test Time

Expectation Maximisation In order refine the selected
model parameters M̂, we implement a simple EM [16] al-
gorithm. Given the posterior distribution:

p(h|y) =
p(y|h)p(h)

p(y)
, with p(y) =

M∑
m=1

p(y|hm) , (12)

and likelihood p(y|h) = σ−1φ(r(y,h)σ−1) modelled by
a normal distribution, we optimise model parameters M∗
such thatM∗ = arg maxM p(Y) with:

p(Y) =

|Y|∏
i=1

M∑
m=1

p(yi|hm)p(hm) , (13)

using fixed σ and p(h) = 1 for all h.

Instance Ranking In order to asses the significance of
each selected model instance ĥ, we compute a permutation
πππ greedily sorting M̂ by joint inlier count, i.e.:

πm = arg max
q

|Y|∑
i=1

max
j∈πππ1:m−1∪{q}

gi(yi, ĥj) . (14)

Such an ordering is useful in applications where the true
number of instances present in the data may be ambiguous,
and less significant instances may or may not be of inter-
est. Small objects in a scene, for example, may elicit their
own vanishing points, which may appear spurious for some
applications, but could be of interest for others.

Instance Selection In some scenarios, the number of in-
stances M needs to be determined as well but is not known
beforehand, e.g. for uniquely assigning observations to
model instances. For such cases, we consider the subset
of instances M̂1:q up to the q-th model instance ĥq which
increases the joint inlier count by at least Θ. Note that the
inlier threshold θ for calculating the joint inlier count at this
point may be chosen differently from the inlier threshold τ
during hypothesis sampling. For example, in our experi-
ments for homography estimation, we use a θ > τ in order
to strike a balance between under- and oversegmentation.

4. Multi-Model Fitting Datasets

Robust multi-model fitting algorithms can be applied
to various tasks. While earlier works mostly focused on
synthetic problems, such as fitting lines to point sets ar-
tificially perturbed by noise and outliers [54], real-world
datasets for other tasks have been used since. The Ade-
laideRMF [63] dataset contains 38 image pairs with pre-
computed SIFT [34] feature point correspondences, which
are clustered either via homographies (same plane) or fun-
damental matrices (same motion). Hopkins155 [56] con-
sists of 155 image sequences with on average 30 frames
each. Feature point correspondences are given as well, also
clustered via their respective motions. For vanishing point
estimation, the York Urban Dataset (YUD) [17] contains
102 images with three orthogonal ground truth vanishing di-
rections each. All these datasets have in common that they
are very limited in size, with no or just a small portion of
the data reserved for training or validation. As a result, they
are easily susceptible to parameter overfitting and ill-suited
for contemporary machine learning approaches.

NYU Vanishing Point Dataset We therefore introduce
the NYU-VP dataset. Based on the NYU Depth V2 [49]
(NYU-D) dataset, it contains ground truth vanishing point
labels for 1449 indoor scenes, i.e. it is more than ten times
larger than the previously largest dataset in its category; see
Tab. 1 for a comparison. To obtain each VP, we manually
annotated at least two corresponding line segments. While
most scenes show three VPs, it ranges between one and
eight. In addition, we provide line segments extracted from
the images with LSD [60], which we used in our experi-
ments. Examples are shown in Fig. 3.
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Figure 3: Examples from our newly presented NYU-VP
dataset with two (left), three (middle) and five (right) van-
ishing points. Top: Original RGB image. Middle: Man-
ually labelled line segments used to generate ground truth
VPs. Bottom: Automatically extracted line segments.

task dataset train+val test instances
H Adelaide [63] 0 19 1–6

F Adelaide [63] 0 19 1–4
Hopkins [56] 0 155 2–3

VP
YUD [17] 25 77 3

YUD+ (ours) 25 77 3–8
NYU-VP (ours) 1224 225 1–8

Table 1: Comparison of datasets for different applications
of multi-model fitting: vanishing point (VP), homography
(H) and fundamental matrix (F) fitting. We compare the
numbers of combined training and validation scenes, test
scenes, and model instances per scene.

YUD+ Each scene of the original York Urban Dataset
(YUD) [17] is labelled with exactly three VPs correspond-
ing to orthogonal directions consistent with the Manhattan-
world assumption. Almost a third of all scenes, however,
contain up to five additional significant yet unlabelled VPs.
We labelled these VPs in order to allow for a better evalu-
ation of VP estimators which do not restrict themselves to
Manhattan-world scenes. This extended dataset, which we
call YUD+, will be made available together with the auto-
matically extracted line segments used in our experiments.

5. Experiments
For conditional sampling weight prediction, we imple-

ment a neural network based on the architecture of [12, 66].
We provide implementation and training details, as well as
more detailed experimental results, in the appendix.

5.1. Line Fitting

We apply CONSAC to the task of fitting multiple lines
to a set of noisy points with outliers. For training, we gen-

erated a synthetic dataset: each scene consists of randomly
placed lines with points uniformly sampled along them and
perturbed by Gaussian noise, and uniformly sampled out-
liers. After training CONSAC on this dataset in a super-
vised fashion, we applied it to the synthetic dataset of [54].
Fig. 4 shows how CONSAC sequentially focuses on dif-
ferent parts of the scene, depending on which model hy-
potheses have already been chosen, in order to increase
the likelihood of sampling outlier-free non-redundant hy-
potheses. Notably, the network learns to focus on junctions
rather than individual lines for selecting the first instances.
The RANSAC-based single-instance hypothesis sampling
makes sure that CONSAC still selects an individual line.

5.2. Vanishing Point Estimation

A vanishing point v ∝ Kd arises as the projection of
a direction vector d in 3D onto an image plane using cam-
era parameters K. Parallel lines, i.e. with the same direc-
tion d, hence converge in v after projection. If v is known,
the corresponding direction d can be inferred via inversion:
d ∝ K−1v. VPs therefore provide information about the
3D structure of a scene from a single image. While two
corresponding lines are sufficient to estimate a VP, real-
world scenes generally contain multiple VP instances. We
apply CONSAC to the task of VP detection and evaluate
it on our new NYU-VP and YUD+ datasets, as well as on
YUD [17]. We compare against several other robust estima-
tors, and also against task-specific state-of-the art VP detec-
tors. We train CONSAC on the training set of NYU-VP in
a supervised fashion and evaluate on the test sets of NYU-
VP, YUD+ and YUD using the same parameters. YUD and
YUD+ were neither used for training nor parameter tuning.
Notably, NYU-VP only depicts indoor scenes, while YUD
also contains outdoor scenes.

Figure 4: Line fitting result for the star5 scene from [54].
We show the generation of the multi-hypothesis M̂ eventu-
ally selected by CONSAC. Top: Original points with esti-
mated line instances at each instance selection step. Mid-
dle: Sampling weights at each instance step. Bottom: State
s generated from the selected model instances.
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5.2.1 Evaluation Protocol

We compute the error e(ĥ,hgt) between two particular VP
instances via the angle between their corresponding direc-
tions in 3D. Let C be the cost matrix with Cij = e(ĥi,h

gt
j ).

We can find a matching between ground truthMgt and esti-
mates M̂ by applying the Hungarian method on C and con-
sider the errors of the matched VP pairs. For N > M how-
ever, this would benefit methods with a tendency to over-
segment, as a larger number of estimated VPs generally in-
creases the likelihood of finding a good match to a ground
truth VP. On the other hand, we argue that strictly penal-
ising oversegmentation w.r.t. the ground truth is unreason-
able, as smaller or more fine-grained structures which may
have been missed during labelling may still be present in the
data. We therefore assume that the methods also provide a
permutation πππ (cf. Sec. 3.3) which ranks the estimated VPs
by their significance, and evaluate using at most N most
significant estimates. After matching, we generate the re-
call curve for all VPs of the test set and calculate the area
under the curve (AUC) up to an error of 10◦. We report the
average AUC and its standard deviation over five runs.

5.2.2 Robust Estimators

We compare against T-Linkage [35], MCT [38], Multi-
X [6], RPA [36], RansaCov [37] and Sequential
RANSAC [59]. We used our own implementation of T-
Linkage and Sequential RANSAC, while adapting the code
provided by the authors to VP detection for the other meth-
ods. All methods including CONSAC get the same line seg-
ments (geometric information only) as input, use the same
residual metric and the same inlier threshold, and obtain the
permutation πππ as described in Sec. 3.3. As Tab. 2 shows,
CONSAC outperforms its competitors on all three datasets
by a large margin. Although CONSAC was only trained
on indoor scenes (NYU-VP) it also performs well on out-
door scenes (YUD/YUD+). Perhaps surprisingly, Sequen-
tial RANSAC also performs favourably, thus defying the
commonly held notion that this greedy approach does not
work well. Fig. 5 shows a qualitative result for CONSAC.

5.2.3 Task-Specific Methods

In addition to general-purpose robust estimators, we evalu-
ate the state-of-the-art task-specific VP detectors of Zhai et
al. [67], Kluger et al. [29] and Simon et al. [50]. Unlike the
robust estimators, these methods may use additional infor-
mation, such as the original RGB image, or enforce addi-
tional geometrical constraints. The method of Kluger et al.
provides a score for each VP, which we used to generate the
permutation πππ. For Zhai et al. and Simon et al., we resorted
to the more lenient naı̈ve evaluation metric instead. Despite

Figure 5: VP fitting result for a scene from the NYU-VP
test set. Top: Original image, extracted line segments, as-
signment to ground truth VPs, and assignment to VPs pre-
dicted by CONSAC (average error: 2.2◦). Middle: Sam-
pling weights of line segments at each instance step. Bot-
tom: State s generated from the selected model instances.

NYU-VP YUD+ YUD [17]
avg. std. avg. std. avg. std.

robust estimators (on pre-extracted line segments)
CONSAC 65.0 0.46 77.1 0.24 83.9 0.24
T-Linkage [35] 57.8 0.07 72.6 0.67 79.2 0.93
Seq. RANSAC 53.6 0.40 69.1 0.57 76.2 0.75
MCT [38] 47.0 0.67 62.7 1.28 67.7 0.59
Multi-X [6] 41.3 1.00 50.6 0.80 55.3 1.00
RPA [36] 39.4 0.65 48.5 1.14 52.5 1.35
RansaCov [37] 7.9 0.62 13.4 1.76 13.9 1.49

task-specific methods (full information)
Zhai [67]† 63.0 0.25 72.1 0.50 84.2 0.69
Simon [50]† 62.1 0.67 73.6 0.77 85.1 0.74
Kluger [29] 61.7 —* 74.7 —* 85.9 —*

Table 2: VP estimation: Average AUC values (avg., in %,
higher is better) and their standard deviations (std.) over
five runs for vanishing point estimation on our new NYU-
VP and YUD+ datasets as well as on YUD [17]. * Not
applicable. † Naı̈ve evaluation metric.

this, CONSAC performs superior to all task-specific meth-
ods on NYU-VP and YUD+, and slightly worse on YUD.

5.3. Two-view Plane Segmentation

Given feature point correspondences from two im-
ages showing different views of the same scene, we es-
timate multiple homographies H conforming to different
3D planes in the scene. As no sufficiently large labelled
datasets exist for this task, we train our approach self-
supervised (CONSAC-S) using SIFT feature correspon-
dences extracted from the structure-from-motion scenes
of [24, 51, 64] also used by [12]. Evaluation is per-
formed on the AdelaideRMF [63] homography estimation
dataset and adheres to the protocol used by [7], i.e. we re-
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Figure 6: Homography fitting result for the AdelaideRMF
unihouse scene. Top: Left and right image, feature points
with ground truth labels, and feature points with labels pre-
dicted by CONSAC-S (ME: 8.4%). Middle: Sampling
weights of feature points at each instance step. Bottom:
State s generated from the selected model instances.

AdelaideRMF-H [63]
avg. std.

CONSAC-S 5.21 6.46
Progressive-X [7]* 6.86 5.91
Multi-X [6]* 8.71 8.13
Sequential RANSAC 11.14 10.54
PEARL [26]* 15.14 6.75
MCT [38]† 16.21 10.76
RPA [36]* 23.54 13.42
T-Linkage [35]* 54.79 22.17
RansaCov [37]* 66.88 18.44

Table 3: Homography estimation: Average misclassifica-
tion errors (avg., in %, lower is better) and their standard
deviations (std.) over five runs for homography fitting on
the AdelaideRMF [63] dataset. * Results taken from [7].
† Results computed using code provided by the authors.

port the average misclassification error (ME) and its stan-
dard deviation over all scenes for five runs using identi-
cal parameters. We compare against the robust estimators
Progressive-X [7], Multi-X [6], PEARL [26], MCT [38],
RPA [36], T-Linkage [35], RansaCov [37] and Sequential
RANSAC [59].

5.3.1 Results

As the authors of [38] used a different evaluation protocol,
we recomputed results for MCT using the code provided
by the authors. For Sequential RANSAC, we used our own
implementation. Other results were carried over from [7]
and are shown in Tab. 3. CONSAC-S outperforms state-of-
the-art Progressive-X, yielding a significantly lower average
ME with a marginally higher standard deviation. Notably,
Sequential RANSAC performs favourably on this task as
well. Fig. 6 shows a qualitative result for CONSAC-S.

NYU-VP Adelaide
avg. std. avg. std.

with EM refinement
CONSAC 65.01 0.46 — —
CONSAC-S 63.44 0.40 5.21 6.46

without EM refinement
CONSAC 62.90 0.52 — —
CONSAC-S 61.83 0.58 6.17 7.79
CONSAC-S w/o IMR 59.94 0.47 8.14 11.79
CONSAC-S only IMR 29.31 0.37 21.12 13.45
CONSAC(-S) uncond. 48.36 0.29 9.17 11.50

Table 4: Ablation study: We compute mean AUC (NYU-
VP), mean ME (AdelaideRMF [63]) and standard devia-
tions for variations of CONSAC. See Sec. 5.4 for details.

5.4. Ablation Study

We perform ablation experiments in order to highlight
the effectiveness of several methodological choices. As
Tab. 4 shows, CONSAC with EM refinement consistently
performs best on both vanishing point and homography es-
timation. If we disable EM refinement, accuracy drops
measurably, yet remains on par with state-of-the-art (cf.
Tab. 2 and Tab. 3). On NYU-VP we can observe that
the self-supervised trained CONSAC-S achieves state-of-
the-art performance, but is still surpassed by CONSAC
trained in a supervised fashion. Training CONSAC-S with-
out inlier masking regularisation (IMR, cf. Sec. 3.2.2) re-
duces accuracy measurably, while training only with IMR
and disabling the self-supervised loss produces poor re-
sults. Switching to unconditional sampling for CONSAC
(NYU-VP) or CONSAC-S (AdelaideRMF) comes with a
significant drop in performance, and is akin to incorporat-
ing vanilla NG-RANSAC [12] into Sequential RANSAC.

6. Conclusion
We have presented CONSAC, the first learning-based ro-

bust estimator for detecting multiple parametric models in
the presence of noise and outliers. A neural network learns
to guide model hypothesis selection to different subsets of
the data, finding model instances sequentially. We have ap-
plied CONSAC to vanishing point estimation, and multi-
homography estimation, achieving state-of-the-art accuracy
for both tasks. We contribute a new dataset for vanish-
ing point estimation which facilitates supervised learning of
multi-model estimators, other than CONSAC, in the future.
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Appendix

This appendix contains additional implementation details
(Sec. A) which may be helpful for reproducing our results.
Sec. B provides additional details about the datasets pre-
sented and used in our paper. In Sec. C, we show additional
details complementing our experiments shown in the paper.

A. Implementation Details
In Alg. 1, we present the CONSAC algorithm in another

form, in addition to the description in Sec. 3 of the main
paper, for ease of understanding. A list of all user definable
parameters and the settings we used in our experiments is
given in Tab. 5.

Algorithm 1 CONSAC
Input: Y – set of observations, w – network parameters
Output: M̂ – multi-hypothesis
P ← ∅
for i← 1 to P do
M← ∅
s← 0
for m← 1 to M do
H ← ∅
for s← 1 to S do

Sample a minimal set of observations
{y1, . . . ,yC} with y ∼ p(y|s;w).

h← fS({y1, . . . ,yC})
H ← H∪ {h}

end
ĥ← arg maxh∈H gs(h,Y,M)

M←M∪ {ĥ}
s← maxĥ∈M gy(Y, ĥ)

end
P ← P ∪ {M}

end
M̂ ← arg maxM∈P gm(M,Y)

A.1. Neural Network

We use a neural network similar to PointNet [44] and
based on [12, 66] for prediction of conditional sampling
weights in CONSAC. Fig. 7 gives an overview of the ar-
chitecture. Observations y ∈ Y , e.g. line segments or fea-
ture point correspondences, are stacked into a tensor of size
D×|Y|× 1. Note that the size of the tensor depends on the
number of observations per scene. The dimensionalityD of
each observation y is application specific. The current state
s contains a scalar value for each observation and is hence a
tensor of size 1×|Y|×1. The input of the network is a con-
catenation of observations Y and state s, i.e. a tensor of size
(D+1)×|Y|×1. After a single convolutional layer (1×1,

VP homography
estimation estimation

tr
ai

ni
ng

learning rate 10−4 2 · 10−6

batch size B 16 1
batch normalisation yes no
epochs 400 100
inlier threshold τ 10−3 10−4

IMR weight κ 10−2 10−2

observations per scene |Y| 256 256
number of instances M 3 6
single-instance samples S 2 2
multi-instance samples P 2 2
sample count K 4 8

te
st

inlier threshold τ 10−3 10−4

inlier thresh. (selection) θ — 3 · 10−3

inlier cutoff (selection) Θ — 6
observations per scene |Y| variable
number of instances M 6 6
single-instance samples S 32 100
multi-instance samples P 32 100
EM iterations 10 10
EM standard deviation σ 10−8 10−9

Table 5: User definable parameters of CONSAC and the
values we chose for our experiments on vanishing point es-
timation and homography estimation. We distinguish be-
tween values used during training and at test time. Mathe-
matical symbols refer to the notation used either in the main
paper or in this supplementary document.

128 channels) with ReLU [22] activation function, we apply
six residual blocks [23]. Each residual block is composed
of two series of convolutions (1×1, 128 channels), instance
normalisation [57], batch normalisation [25] (optional) and
ReLU activation. After another convolutional layer (1×1, 1
channel) with sigmoid activation, we normalise the outputs
so that the sum of sampling weights equals one. Only using
1×1 convolutions, this network architecture is order invari-
ant w.r.t. observations Y . We implement the architecture
using PyTorch [41] version 1.2.0.

A.1.1 Training Procedure

We train the neural network using the Adam [28] optimiser
and utilise a cosine annealing learning rate schedule [33].
We clamp losses to a maximum absolute value of 0.3 in or-
der to avoid divergence caused by large gradients resulting
from large losses induced by poor hypothesis samples.

Number of Observations In order to keep the number
of observations |Y| constant throughout a batch, we sam-
ple a fixed number of observations from all observations of

9



Figure 7: CONSAC neural network architecture used for all experiments. We stack observations Y , e.g. line segments or
point correspondences (not an image), and state s into a tensor of size (D + 1)× |Y| × 1, and feed it into the network. The
network is composed of linear 1 × 1 convolutional layers interleaved with instance normalisation [57], batch normalisation
[25] and ReLU [22] layers which are arranged as residual blocks [23]. Only using 1 × 1 convolutions, the network is order
invariant w.r.t. observations Y . The architecture is based on [12, 66].

a scene during training. At test time, all observations are
used.

Pseudo Batches During training, we sample P multi-
hypotheses M, from which we select the best multi-
hypothesis M̂ for each set of input observations Y within
a batch of size B. To approximate the expectation of our
training loss (see Sec. 3.2 of the main paper), we repeat
this process K times, to generate K samples of selected
multi-hypotheses M̂ for each Y . We generate each multi-
hypothesis M by sequentially sampling S single-instance
hypotheses h and selecting the best one, conditioned on a
state s. The state s varies between these innermost sam-
pling loops, since we compute s based on all previously se-
lected single instance hypotheses ĥ of a multi-hypothesis
M. Because s is always fed into the network alongside
observations Y , we have to run P · K forward passes
for each batch. We can, however, parallelise these passes
by collating observations and states into a tensor of size
P×K×B×(D+1)×|Y|. We reshape this tensor so that it
has size B∗× (D+ 1)× |Y| with an effective pseudo batch
size B∗ = P ·K ·B, in order to process all samples in par-
allel while using the same neural network weights for each
pass within B∗. This means that sample sizes P and K are
subject to both time and hardware memory constraints. We
observe, however, that small sample sizes during training
are sufficient in order to achieve good results using higher
sample sizes at test time.

Inlier Masking Regularisation For self-supervised
training, we multiply the inlier masking regularisation

(IMR) term `im (cf. Sec. 3.2.2 in the main paper) with a
factor κ in order to regulate its influence compared to the
regular self-supervision loss `self , i.e.:

` = `self + κ · `im (15)

A.2. Scoring Functions

In order to gauge whether an observation y is an inlier of
model instance h, we utilise a soft inlier function adapted
from [11]:

gi(y,h) = 1− σ(βr(y,h)− βτ) , (16)

with inlier threshold τ , softness parameter β = 5τ−1, a
task-specific residual function r(y,h) (see Sec. A.3 for de-
tails), and using the sigmoid function:

σ(x) =
1

1 + e−x
. (17)

The multi-instance scoring function gm, which we use to
select the best muti-hypothesis, i.e. hypothesis of multiple
model instances M̂ = {ĥ1, . . . , ĥM}, from a pool of multi-
instance hypotheses P = {M1, . . . ,MP }, counts the joint
inliers of all models in a multi-instance:

gm(M,Y) =
∑
y∈Y

max
h∈M

gi(y,h) . (18)

The single instance scoring function gs, which we use
for selection of single model instances h given the set of
previously selected model instancesM, is a special case of
the multi-instance scoring function gm:

gs(h,Y,M) = gm(M∪ {h},Y) . (19)
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Figure 8: Visualisation of the angle α used for the vanishing
point estimation residual function r(y,h).

A.3. Residual Functions

Line Fitting For the line fitting problem, each obser-
vation is a 2D point in homogeneous coordinates y =

(x y 1)
T, and each model is a line in homogeneous coordi-

nates h = 1
‖(n1 n2)‖ (n1 n2 d)

T. We use the absolute point-
to-line distance as the residual:

r(y,h) = |yTh| . (20)

Vanishing Point Estimation Observations y are given by
line segments with start point p1 = (x1 y1 1)

T and end
point p2 = (x2 y2 1)

T, and models are vanishing points
h = (x y 1)

T. For each line segment y, we compute the
corresponding line ly = p1 × p2 and the centre point
pc = 1

2 (p1 + p2). As visualised by Fig. 8, we define the
residual via the cosine of the angle α between ly and the
constrained line lc = h × pc, i.e. the line connecting the
vanishing point with the centre of the line segment:

r(y,h) = 1− cosα = 1−
|lTy,1:2lc,1:2|
‖ly,1:2‖‖lc,1:2‖

. (21)

Homography Estimation Observations y are given by
point correspondences p1 = (x1 y1 1)

T and p2 =

(x2 y2 1)
T, and models are plane homographies h = H3×3

which shall map p1 to p2. We compute the symmetric
squared transfer error:

r(y,h) = ‖p1 − p′1‖2 + ‖p2 − p′2‖2 , (22)

with p′2 ∝ Hp1 and p′1 ∝ H−1p2.

B. Dataset Details and Analyses
B.1. Line Fitting

For training CONSAC on the line fitting problem, we
generated a synthetic dataset of 10000 scenes. Each scene
consists of four lines placed at random within a {0, 1} ×
{0, 1} square. For each line, we randomly define a line seg-
ment with a length of 30 − 100% of the maximum length

Figure 9: Line fitting: we show examples from the syn-
thetic dataset we used to train CONSAC on the line fitting
problem. Each scene consists of four lines placed at ran-
dom, with points sampled along them, perturbed by Gaus-
sian noise and outliers. Cyan = ground truth lines.

Figure 10: Line fitting: we use the synthetic stair4 (left),
star5 (middle) and star11 (right) scenes from [54], which
were also used by [7], in our experiments.

of the line within the square. Then, we randomly sample
40 − 100 points along the line segment and perturb them
by Gaussian noise N ∼ (0, σ2), with σ ∈ (0.007, 0.008)
sampled uniformly. Finally, we add 40 − 60% outliers via
random uniform sampling. Fig. 9 shows a few examples
from this dataset.

For evaluation, we use the synthetic stair4, star5 and
star11 scenes from [54], which were also used by [7]. As
Fig. 10 shows, each scene consists of 2D points forming
four, five or eleven line segments. The points are perturbed
by Gaussian noise (σ = 0.0075) and contain 50− 60% out-
liers.
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Figure 11: Vanishing points per scene: Histograms showing the numbers of vanishing point instances per image for our
new NYU-VP dataset (top) and our YUD+ dataset extension (bottom), in addition to a few example images. We illustrate the
vanishing points present in each example via colour-coded line segments.

B.2. Vanishing Point Estimation

NYU-VP In Fig. 11 (top), we show a histogram of the
number of vanishing points per image in our new NYU-
VP dataset. In addition, we show a few example images
for different numbers of vanishing points. NYU-VP solely
consists of indoor scenes.

YUD+ In Fig. 11 (bottom), we show a histogram of the
number of vanishing points per image in our new YUD+
dataset extension. By comparison, the original YUD [17]
contains exactly three vanishing point labels for each of the
102 scenes. YUD contains both indoor and outdoor scenes.

B.3. Homography Estimation

For self-supervised training for the task of homography
estimation, we use SIFT [34] feature correspondences ex-
tracted from the structure-from-motion scenes of [24, 51,
64]. Specifically, we used the outdoor scenes Bucking-
ham, Notredame, Sacre Coeur, St. Peter’s and Reichstag
from [24], Fountain and Herzjesu from [51], and 16 in-
door scenes from SUN3D [64]. We use the SIFT cor-
respondences computed and provided by Brachmann and
Rother [12], and discard suspected gross outliers with a
matching score ratio greater than 0.9. As this dataset is im-
balanced in the sense that some scenes contain significantly
more image pairs than others – for St. Peter’s we have 9999
image pairs, but for Reichstag we only have 56 – we apply
a rebalancing sampling during training: instead of sampling
image pairs uniformly at random, we uniformly sample one
of the scenes first, and then we sample an image pair from
within this scene. This way, each scene is sampled during
training at the same rate. During training, we augment the
data by randomly flipping all points horizontally or verti-
cally, and shifting and scaling them along both axes inde-
pendently by up to ±10% of the image width or height.

C. Additional Experimental Results

C.1. Line Fitting

Sampling Efficiency In order to analyse the efficiency of
the conditional sampling of CONSAC compared to a Se-
quential RANSAC, we computed the F1 score w.r.t. es-
timated model instances on the stair4, star5 and star11
line fitting scenes from [54] for various combinations of
single-instance samples S and multi-instance samples P .
As Fig. 12 shows, CONSAC achieves higher F1 scores
with fewer hypotheses on stair4 and star5. As we trained
CONSAC on data containing only four line segments, while
star5 depicts five lines, this demonstrates that CONSAC is
able to generalise beyond the number of model instances
it has been trained for. On star11, which contains eleven
lines, it does not perform as well, suggesting that this gen-
eralisation may not extend arbitrarily beyond numbers of
instances CONSAC has been trained on. In practice, how-
ever, our real-world experiments on homography estimation
and vanishing point estimation show that it is sufficient to
simply train CONSAC on a reasonably large number of in-
stances in order to achieve very good results.

Sampling Weights Throughout Training We looked at
the development of sampling weights as neural network
training progresses, using star5 as an example. As Fig. 13
shows, sampling weights are randomly – but not uniformly
– distributed throughout all instance sampling steps before
training has begun. At 1000 iterations, we observe that the
neural network starts to focus on different regions of the
data throughout the instance sampling steps. From thereon,
this focus gets smaller and more accurate as training pro-
gresses. After 100000 iterations, the network has learned to
focus on points mostly belonging to just one or two true line
segments.
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Figure 12: Line fitting: Using the stair4 (top), star5 (mid-
dle) and star11 (bottom) line fitting scenes from [54], we
compute the F1 scores for various combinations of single-
instance samples S (abscissa) and multi-instance samples P
(ordinate) and plot them as a heat map. We compare CON-
SAC (left) with Sequential RANSAC (right). Magenta =
low, cyan = high F1 score.

C.2. Vanishing Point Estimation

Evaluation Metric We denote ground truth VPs of an
image by V = {v1, . . . ,vM} and estimates by V̂ =
{v̂1, . . . , v̂N}. We compute the error between two particu-
lar VP instances via the angle e(v, v̂) between their corre-
sponding directions in 3D using camera intrinsics K:

e(v, v̂) = arccos

∣∣∣(K−1v)T K−1v̂
∣∣∣

||K−1v| | · ||K−1v̂| |
. (23)

We use this error to define the cost matrix C: Cij =
e(vi, v̂j) in Sec. 5.2.1 of the main paper.

Results For vanishing point estimation, we provide recall
curves for errors up to 10◦ in Fig. 14 for our new NYU-
VP dataset, for our YUD+ dataset extension, as well as the

Figure 13: Line fitting: We show how the sampling
weights at each instance sampling step develop as neu-
ral network training progresses, using the star5 line fitting
scene from [54] as an example. Each row depicts the sam-
pling weights used to sample the eventually selected best
multi-hypothesis M̂. Top to bottom: training iterations
0 − 100000. Left to right: model instance sampling steps
1− 5. Sampling weights: Blue = low, white = high.

original YUD [17]. We compare CONSAC with the robust
multi-model fitting approaches T-Linkage [35], Sequential
RANSAC [59], Multi-X [6], RPA [36] and RansaCov [37],
as well as the task-specific vanishing point estimators of
Zhai et al. [67], Simon et al. [50] and Kluger et al. [29].
We selected the result with the median area under the curve
(AUC) of five runs for each method. CONSAC does not
find more vanishing points within the 10◦ range than state-
of-the-art vanishing point estimators, indicated by similar
recall values at 10◦. However, it does estimate vanishing
points more accurately on NYU-VP and YUD+, as the high
recall values for low errors (< 4◦) show. On YUD [17],
CONSAC achieves similar or slightly worse recall. Com-
pared to other robust estimators, however, CONSAC per-
forms better than all methods on all datasets across the
whole error range. In Fig. 16, we show additional quali-
tative results from the NYU-VP dataset, and in Fig. 17, we
show additional qualitative results from the YUD+ dataset.

C.3. Homography Estimation

We provide results computed on AdelaideRMF [63] for
all scenes seperately. In Fig. 15, we compare CONSAC-
S – i.e. CONSAC trained in a self-supervised manner –
to Progressive-X [7], Multi-X [6], PEARL [26], RPA [36],
RansaCov [37] and T-Linkage [35]. We adapted the graph
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Figure 14: Vanishing point estimation: Recall curves for
errors up to 10◦ for all methods which we considered in our
experiments. We selected the result with the median AUC
out of five runs for each method. Robust estimators are rep-
resented with solid lines, task-specific VP estimators with
dashed lines. Top: Results on our new NYU-VP dataset.
Middle: Results on our new YUD+ dataset extension. Bot-
tom: Results on the original YUD [17].

ba
rrs
m
ith

bo
nh
all

bo
ny
th
on

eld
er
ha
lla

eld
er
ha
llb

ha
rtl
ey

joh
ns
so
na

joh
ns
so
nb

lad
ys
ym
on

lib
ra
ry

na
pie
ra

na
pie
rb
ne
em ne

se

old
cla
ss
ics
wi
ng

ph
ys
ics
se
ne

un
iho
us
e

un
ion
ho
us
e

0

20

40

60

80

100

M
is

cl
as

s.
 e

rr
o

r 
(%

) Progressive-X

Multi-X
PEARL
RPA
RansaCov
T-Linkage

CONSAC-S

Figure 15: Homography estimation: Misclassification er-
rors (in %, average over five runs) for all homography
estimation scenes of AdelaideRMF [63]. Graph adapted
from [7].

no. of CONSAC-S MCT [38] Sequential
planes RANSAC

barrsmith 2 2.07 11.29 12.95
bonhall 6 16.63 29.29 20.43
bonython 1 0.00 2.42 0.00
elderhalla 2 4.39 21.41 16.36
elderhallb 3 11.69 20.31 18.67
hartley 2 2.94 15.19 9.38
johnsona 4 14.48 18.77 28.04
johnsonb 6 19.17 33.87 27.46
ladysymon 2 2.95 16.46 3.80
library 2 1.21 14.79 11.35
napiera 2 2.72 21.32 11.66
napierb 3 6.72 16.83 21.24
neem 3 2.74 14.36 14.44
nese 2 0.00 12.83 0.47
oldclass. 2 1.69 15.20 1.32
physics 1 0.00 3.21 0.00
sene 2 0.40 4.80 2.00
unihouse 5 8.84 34.10 10.69
unionhouse 1 0.30 1.51 1.51

average 5.21 16.21 11.14

Table 6: Homography estimation: Misclassification errors
(in %, average over five runs) for all homography estimation
scenes of AdelaideRMF [63].

directly from [7]. CONSAC-S achieves state-of-the-art per-
formance on 13 of 19 scenes. Tab. 6 compares CONSAC-S
with MCT [38] and Sequential RANSAC. We computed re-
sults for MCT using code provided by the authors, and used
our own implementation for Sequential RANSAC, since no
results obtained using the same evaluation protocol (aver-
age over five runs) were available in previous works. In
Fig. 18, we show additional qualitative results from the
AdelaideRMF [63] dataset.
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Figure 16: Three qualitative examples for VP estimation with CONSAC on our NYU-VP dataset. For each example we show
the original image, extracted line segments, line assignments to ground truth VPs, and to final estimates in the first row. In the
second and third row, we visualise the generation of the multi-hypothesis M̂ eventually selected by CONSAC. The second
row shows the sampling weights per line segment which were used to generate each hypothesis ĥ ∈ M̂. The third row shows
the resulting state s. (Blue = low, white = high.) Between rows two and three, we indicate the individual VP errors. The
checkerboard pattern and ”—” entries indicate instances for which no ground truth is available. The last example is a failure
case, where only two out of four VPs were correctly estimated.15



Figure 17: Three qualitative examples for VP estimation with CONSAC on the YUD+ dataset. For each example we show
the original image, extracted line segments, line assignments to ground truth VPs, and to final estimates in the first row. In the
second and third row, we visualise the generation of the multi-hypothesis M̂ eventually selected by CONSAC. The second
row shows the sampling weights per line segment which were used to generate each hypothesis ĥ ∈ M̂. The third row shows
the resulting state s. (Blue = low, white = high.) Between rows two and three, we indicate the individual VP errors. The
checkerboard pattern and ”—” entries indicate instances for which no ground truth is available. The last example is a failure
case, where only two out of four VPs were correctly estimated.
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Figure 18: Three qualitative examples for homography estimation with CONSAC-S on the AdelaideRMF [63] dataset. For
each example we show the original images, points with ground truth labels, final estimates, and the misclassification error
(ME) in the first row. In the second and third row, we visualise the generation of the multi-hypothesis M̂ eventually selected
by CONSAC. The second row shows the sampling weights per point correspondence which were used to generate each
hypothesis ĥ ∈ M̂. The third row shows the resulting state s. (Blue = low, white = high.) The checkerboard pattern indicates
instances which were discarded by CONSAC in the final instance selection step.
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