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Abstract— Dynamic contrast-enhanced magnetic resonance of a few seconds the uptake and washout of the administered

(DCE-MR) imaging can be used to study microvascular struc-
ture in vivo by monitoring the abundance of an injected dif-
fusible contrast agent over time. The resulting spatially esolved
intensity-time curves are usually interpreted in terms of kinetic
parameters obtained by fitting a pharmacokinetic model to tte
observed data. Least squares estimates of the highly nongar
model parameters, however, can exhibit high variance and c¢a

be severely biased. As a remedy, we bring to bear spatial
prior knowledge by means of a generalized Gaussian Markov

random field (GGMRF). By using information from neighboring
voxels and computing the maximum a posteriori solution for

contrast medium (CM) can be observed in the imaged tissue,
leading to characteristic intensity-time curves. Sincdysgon

and permeability are usually changed in tumors, dynamic
contrast-enhanced MR imaging (DCE-MRI) can be a valuable
tool for clinical diagnostics [1], [4]-[8]-

A variety of postprocessing strategies for DCE-MRI have
been proposed, ranging from simple descriptive statigfi¢s
over unsupervised and supervised learning approaches [10]
[11] to methods using physiologic and pharmacokinetic mod-

entire parameter maps at once, both bias and variance of the els which describe the expected signal enhancement dynam-

parameter estimates can be reduced thus leading to smalleoot

mean square error (RMSE). Since the number of variables gets

very big for common image resolutions, sparse solvers have t

be employed. To this end, we propose a generalized iterated

conditional modes (ICM) algorithm operating on blocks insead

ics [12]-[17]. The latter require the estimation of model

parameters which is usually done using a nonlinear least
squares (NLS) approach. Because of signal noise and the
small number of sampling points, these parameter estimates

of sites which is shown to converge considerably faster than may exhibit large variance as well as considerable bias{18]

the conventional ICM algorithm. Results on simulated DCE-MR

images show a clear reduction of RMSE and variance as well
as, in some cases, reduced estimation bias. The mean resitiua
bias (MRB) is reduced on the simulated data as well as for all

37 patients of a prostate DCE-MRI dataset. Using the propose
algorithm, average computation times only increase by a fdor

[21]. Furthermore, since the NLS objective is not convex
and can have multiple local optima, an iterative NLS solver
may converge to erroneous solutions or fail to converge
altogether [18]-[21].

In [21], Ahearnet al show by means of a systematic

of 1.18 (871 ms per voxel) for a Gaussian prior and 1.51 (1.12s Monte-Carlo study using an instance of the generalizedikine

per voxel) for an edge-preserving prior compared to the sintp
voxel approach (740 ms per voxel).

Index Terms—dynamic contrast-enhanced imaging, Markov
random field, nonlinear least squares, block iterated condional
modes, kinetic parameter maps

|I. INTRODUCTION

model (GKM) [14] that certain areas in parameter space tend
to generate poor fits and propose to use a multiple-starting-
points strategy. Schmidt al. [20] propose to use Bayesian

prior knowledge and obtain parameter estimates by means of
sampling methods. They show that Bayesian prior knowledge
can help reduce problems due to local optima and reduce the
variance of the parameter estimates. Improvements are also

YNAMIC contrast-enhanced MR imaging is used tachieved by appropriate parameter constraints, which ean b
track the diffusion of a paramagnetic contrast mediumegarded as Bayesian priors [18] and help to exclude areas of
such as gadopentate dimeglumine (Gd-DTPA) and to stuthe parameter space that might contain local optima. Orton

tissue perfusion and vascular permeabilityvivo [1]—-[3]. By

et al [18] also observe severe estimation bias which they

recording a sequence of T1-weighted MR images at intervalgiribute to the existence of multiple local and biased glob
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optima in the common approach. As a remedy, they propose
to marginalize the onset time (lag tintg) which they identify
as a critical parameter in their model.

In all approaches mentioned so far, intensity-time curves
have been processed voxel by voxel. Thus, arbitrarily ex-
changing voxels would not change the evaluation results.
Only recently, the application apatial prior knowledgen
DCE-MRI has been proposed [19], [22]. In addition to a
pharmacokinetic model it is assumed that the charactsisti
of the tissue within homogeneous regions only vary gragiuall
from voxel to voxel and, hence, that the parameter maps that
best describe the physiologic properties of the tissue ldhou
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exhibit some spatial smoothness. make results comparable across patients and institutiitis.
In the present paper the approach from [22] is refined anecent models such as [12], [13], [24] this goal is achieved
studied in more detail. Kinetic parameter maps are modeladreasingly well, however, at the cost of increased corifyle
as a generalized Gaussian random field (GGMRF) and th®re complex models are also more demanding and require,
recorded DCE-MRI data are regarded as noisy observatidnsexample, higher temporal resolutiomd [12], [24]) or the
of a nonlinear transformation of the hidden parameter magstimation of more parameters.§ [13]). Furthermore, the
Hence, the parameter estimates at each voxel are supposgeclracy of any model is ultimately limited by the complgxit
by the DCE-MR data of a local neighborhood which reducesd variation of the underlying pathophysiology [1], [1Bfr
estimation error and which helps to alleviate problems due ¢tlinical purposes, the choice of the “right” model is stilicgic
local optima of the NLS objective. Furthermore, we presenf debate. Simple descriptive statistics, for exampleghzen
a block variant of the iterated conditional modes algorithfiound to yield competitive performance in the characteigra
(Block-ICM) that can be used to tackle the huge but spareé prostate cancer [5], [9]. The present work does not attemp
optimization problem and which converges considerabliefasto address the question of which model best describes the
than the conventional ICM algorithm. physiological processes. Instead we propose an approath th
Our approach is different from previous approaches suchhkeglps reduce problems with parameter estimation using any
[18], [20], [21] which perform estimation of pharmacokiitet such DE model by exploiting spatial information.
parameters for each voxel individually. Such single-voxel For the present work the two-compartment model by Brix
approaches can only emplsingle-voxel prior knowledgée. et al [16] has been used, an instance of the GKM [14]. Unlike
prior knowledge that concerns parameters at a single voxtie¢ improved model presented in [12], this model allows for
only. To the best of our knowledge, apart from our previous lower temporal resolutionXT" > 10s) and hence it allows
work [22], only Schmid et al. [19] have examined using spati& acquire DCE-MRI at a higher spatial resolution. This is
prior knowledge for the processing of DCE-MRI beforeparticularly important for prostate screening where theleh
However, Schmid et al. have chosen a fully Bayesian approawigan is to be mapped [1], [4], [5]. Note that, although the
which requires the specification of prior distributions fll  proposed approach could be applied to any other parametric
unknown parameters as well as additional hyper-parametd?& model as well, its benefits would have to be assessed
Also, [19] relies on Markov chain Monte Carlo (MCMC)anew. For convenience, we briefly review the model derived
simulations for parameter estimation. As compared to thén, [16] using the standardized notation of [14]. According t
our approach makes fewer assumptions on the underlyithg GKM, the Gd-DTPA concentration in the tissdg(t)
distributions and, like the conventional NLS approach,suseéesponds as a first-order dynamic system to concentration
an iterative optimization method. In the present work, vemal changes in the arterial blood plasrag(t) (the arterial input
provide a detailed bias-variance analysis which was missifunction). Hence,
in both, [22] and [19]. dc, trans
The paper is organized as follows. In section Il we briefly F(t) + kepCi(t) = K Cp(2), )
des_cnbe the employ_ed pharmacokinetic model. Sect_|on .\IIUhereKtrans is the volume transfer constant between plasma
reviews the conventional approach to parameter estimatign 4 extravascular extracellular space (E — ftrans |
and associated problems and introduces the GGMRF pr%nr ex P B3). Ve
- . IS the rate constant between EES and plasma and the frdctiona
followed by a description of the Block-ICM algorithm. Dat . . .
- . A - ES volumev, = V. /V; is defined as the ratio between total
simulation and acquisition parameters as well as algorﬁhn]EES volumeV,, and tissue volumd; [3], [14]
hyperparameters for the conducted experimental evaluat® N . b=l A .
. . : : For the model by Brixet al. [16] a particular AIFC),(t) is
described in section 1V. We then present results for smdlatused It is assumed that the CM is administered at a constant
DCE-MRI data as well as patient DCE-MRI data from g )

. . . . rate K;, over a time-spanm and is eliminated from the plasma
prostate study in section V. After a general discussion in " P b

. . . . compartment with first-order dynamics (elimination ratg):
section VI we conclude with a summary in section VII. P y ( t6)

SO +RC) = T ) =ht=7) @)

Il. DYNAMIC ENHANCEMENT MODEL
whereV, is the volume of the plasma compartment &r{d)

Various dynamic enhancement (DE) models that attempt, ', -viside step function. Using the AIF in Egn. (2), an

to capture the pharmacokinetic behavior of the imagedeissgx licit expression for the tissue Gd-DTPA concentrati
i - an c
in DCE-MRI have been proposed,g [12], [13], [15], [16]. bepderivedp(cf. appendix). In particular
The Generalized Kinetic Model (GKM) described by Tofts '
Kin 8k (t) — 8k, ()

et al. [14] is a standard two-compartment model that unifies

trans
many of the previously defined pharmacokinetic models. By Cilt) = K Vi kep — kel )
using a particular arterial input function (AlFg.g biexpo-  wn
nential [17], [23], sum of Gaussians [24] or model-free [12] exp(kt') — 1
various model functions for the intensity-time curves can b g (t) = SpR) — 2 (4)
derived from the GKM. kexp(kt)

One major objective in pharmacokinetic modeling is thetheret¢ = ¢ for 0 < ¢+ < 7 and¢ = 7 for¢t > 7.
absolute quantification of physiological parameters ireotd Furthermore, an affine relationship between tissue Gd-DTPA
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700 et ] called thesolution locug25]. Its tangent space is spanned by
A i the columns of the: x p Jacobian matri®/ (6,) with elements
2 600 ,/f | Vi; = 0f;/06;. Under this geometrical interpretation, the
£ 500 / ] maximum likelihoodestimate @, parametrizes the point on
E 400 f/ﬁ“”é‘xﬂy\kﬁu{’ ] the solution locusf(6;) closest to the observatiop,. It
" 300 | ++/j’ me%ﬁ%% is obtained as solution to a nonlinear least squares (NLS)
200 i ] problem,i.e. by minimizing the sum of squares of residuals
poodoe? , \
o1 2 3 a4 J(8s) = €(0:)]" = lly, — F(O:)I"- 8)
Time [min]

For largen the maximum likelihood estimat®, is consistent

Fig. 1. Three examples for the employed pharmacokineticeinfsdm [16] (unbiased), efficient (minimum variance) and it is normally

s . . -1
fitted to measured T1 intensity-time curves from a prostatta det. After distributed with covarianck = o (VTV) [26]. The usual
a few baseline scans the contrast medium is administeredstarts t©0 astimator ofg? is
accumulate in the tissue. The accumulation rate, the amdpliand the wash-
; ; ; ) ; 9 N
out behavior characterize the microvascular structurehefitnaged tissue. 62 =J(0,)/(n—p). (9)

B. Problems in NLS fitting of DE models

It is known that the maximum likelihood estimator can

Oﬂglld biased parameter estimates for smal[27], [28]. An

approximate expression for thmarameter biasthe expected

So(t) _{ So t <t ) difference between estimated and true parameter, can be
So (L + F C(t —to)) t>to derived as

where S is the signal intensity obtained without CM angl <(§S _ 92> ~b=(VIV)1Vv7q, (10)
is the the lag time of the CM (also arrival or onset time). The
constant/” depends on several tissue properties and sequepgg) the n-vector d = —%Q(trace[(VTV)_IHi])T where
parameters [16]. Since the factafsand K*"*"* K, /V,, from  the H; are p x p Hessian matrices with elemenfs;;, =
Eqn. (3) cannot be distinguished based on the measu@d; /00,00, [27], [28]. The bias not only vanishes for large
intensity-time curves only, these are summarized in the ep-and for linear models for whict;;x = 0, but also ifd is
hancement amplitude orthogonal to the tangent spa¥e In a more detailed analysis,
A=F K"K, IV, (6) Bates and Watts [25], Qistinguish the orthogotiratrinsic
curvatureand the tangentiglarameter-effects curvatuaf the
In summary, five parameters of the described enhancemeslution locus [26, Ch.4]. They show that the parameter bias
model have to be estimated given an observed intensity-titggly depends on the parameter-effects curvature which can,
curve. For convenience these are summarized in the panamgieprinciple, be annihilated by a suitable reparametrizati
vectord = (So, A, kel, kep, to) in the following. The duration g(«9) of the model function. Unfortunately, finding such a
7 of the CM injection is known and fixed t80s. Both Sy reparametrization is usually difficult [29], [30], [25, Risssion
and A describe intensity values without unit. If not indicategy Dr. Beale].
otherwise, the unit for time is one fram@T = 11.25s) In nonlinear least squares also the residuals can be biased i

which means that the values ferandz, have to be multiplied the sense that the expectation of the residuals is nonz@p [2
by AT whereas the exchange rateg and k., have to be in particular

divided by AT in order to obtain entities with units. Some R

examples of the model function fitted to patient data are show <6(05)> ~(I-V(VTV)"'vhd. (11)

in Fig. 1.

concentratiorC; (t) and enhanced signép(t) can be assumed

for the T1-intensity-time curves is

Unlike the parameter bias, thresidual biasonly depends on
the intrinsic curvature and can therefore not be reduced by
] reparametrization [26].
A. Nonlinear Least Squares Apart from the parameter bias, determining the minimizer
Given the observed signal intensitigs = (y;)7 for a of the possibly non-convex objective functioifd,) can also
certain voxels at n discrete time points; the standard be difficult [18], [21]. Since for the employed pharmacokioe
nonlinear regression model is model, J(0;) in fact exhibits multiple local optima and long,
s . narrow and curved valleys, an iterative optimization noeti
vi = Se.(ti) + € i=12....m (7) may stop before reachinyg the real minimI?Jm. The existence
wheree; are independent, identically distributed normal raref such valleys is an indication that for some configurations
dom variables with mean 0 and variangé. The vector, at least two of the parameters have a similar effect on the
summarizes the = 5 unknown parameters with true valueobjective function (ill-conditioning). More details on dake
0. general problems can be found in [26, Ch.3].
Then, then-vector f(6s) = (Se.(t;))” describes ap- In order to give some insight into the non-convexity of
dimensional surface in the sample spate- R™ which is the NLS objective function for the DE model used in the

I1l. PARAMETER ESTIMATION
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present work, Fig. 2 shows a contour plot ¢fA,t;) = C. GGMRF: A Generalized Gaussian Markov Random Field
ming, k. k., J(0s) which visualizes the smallest attainablePrior

objective function for a certain amplitudé and lag timet,. The generalized Gaussian Markov random field [31] is a
Depending on the initialization, the iterative optimizeMarkov random field [32], [33] with particular compatibifit

converges to different points on the energy landscape, b@ffactions (the logarithms of which are known as potentials)

different from the actual optimum which is only reached gsinEvery voxel in the region of interest is represented by assite

a very close initial guess. Certainly, prior knowledgestéliat g which is associated with the vector-valued random variable

negative lag times are impossible which should be considerg,. Like in the single-voxel case, the observation likeliha®d

by using the parametric constraift > 0. Gaussian. Imposing the spatial GGMRF prior on the parameter
Different kinds of problems are demonstrated with theapse yields a joint distribution ovey and@ in the form of

projection f(kel, kep) = ming, a,.,J(0s) in Fig. 3. In this the Gibbs distribution:

example two local optima exist fok., and k. which are 1
connected through a steep curved valley (ill-conditiohifitpe Pr(0,y) =~ [Tw6..0)]] 26, v,). (12)
model functions in this valley all look very alike. For exal@p st s

the model functions in the right part of Fig. 3 that corresponwvherey and @ are vector variables obtained by stacking the
to the points marked with circle and star in the left part arsite vector variabley, and ;. Z is the global normalizer
hardly different which makes parameter estimation difficul(partition function) ands ~ ¢ denotes pairs of neighboring
Even worse, the two optima marked by a cross and a skites according to the employed neighborhood system. The
seem to yielddenticalcurves. In fact, an analysis of Eqn. (3)compatibility functions®(8,,y.) and ¥ (8, 6;) are defined

(or Eqgn. (25)) shows that the two parametigsandk., can by the potentials

always be exchanged, yielding an identifiability problerheT

. . L 1
latter can be avoided by assuming that the elimination rate log®(0s,y,) = ~ 552 ly. — £(0)]° (13)
ko1 is always smaller than the exchange ratg, however, the Of »
ill-conditioning problem remains. log W(6s,8¢) = —5 [|[W(Bs — 04)]], (14)

In summary, the encountered statistical problems are: with the spatial coupling factor > 0 and thep-norm ||'Hp

« estimation variance: ill-conditioning and identifiabjlit (1 < p < 2) [31]. Note thatp = 1 is excluded since the

« estimation bias: high parameter-effects curvature alohg-norm is not differentiable at the origilV is a diagonal

with small sample sizes. weighting matrix which accounts for the different scalesl an

« existence of non-global optima. variability of the parameters ifl; and which can be used to

adjust the smoothness of individual parameter maps.

Al t_hese p_roblems depgnd on the model as well as on theThe application of a GGMRF allows to vary continuously
sampl_lng pointst;. Choosing both_ optimally is the aim (_)fbetween a smoothing Gaussian MRF pripr£ 2) and an
experlmental desigf6]. But even if a mode_l was derived 'nedge-preserving MREp(— 1) with properties comparable
the optimal way, some problems may persist. to a weighted median filter [31]. Furthermore, the GGMRF

Although we have demonstrated problems only for theotential defined by (14) is convex and, as opposed to robust
particular DE model proposed in [16], they are not unusual f@jternatives such as the Huber potential [34], [35], it does
this class of models. Using the model by Toédtsal. [15], for have an extra threshold parameter. Connections betweastrob

example, Ortoret al [18] encounter similar problems in theirstatistics and edge-preservation of different priors hasen
work and present an example with two local optima. Furth@kplored in [36].

evidence is provided by Aheapt al. [21] as well as Schmid
et al. [19]. Finally, more complex (multi-compartment) models N
with higher-order dynamics cannot be expected to lead & Block Iterated Conditional Modes
more well-behaved objective functions since models with Given an observed DCE-MRI sequenge = (y,), the
exponentially decaying signal components are know to Ieaximum a posteriori (MAP) estimaté is then found by
problematic (cf. [26, Ch.8]). Simply increasing tempomdo- minimizing
lution does not always help, either. An identifiability pteim, )
for example, could not be resolved by increasing the numbeF(8) = _ lly, — F(8.)]* + 0%a > _ [W (6, — 6,)| 2 (15)
of sampling points (cf. example in Fig. 3). s€S st

A complementary approach is needed. As seen above, piighen comparing this objective function to Eqgn. (8) it beceme
knowledge is very valuable and should be used to avoiident that a trade-off between tdata term(first sum) and
problematic regions of the parameter space. In additiohito tthe prior term (second sum) is sought this way.
single-voxel prior knowledgevhich can be applied for every Minimizing Eqn. (15) is a challenging optimization problem
voxel independently, we propose to incorporgpatial prior since, for example, a DCE-MR image @00 x 100 voxels
knowledgeby using a spatial smoothness prior in a form ofvould already yield a parameter vec#@mwith 5 - 10* entries
a generalized Gaussian Markov random field (GGMRF) [314nd thus an optimization problem in a 50,000-dimensional
Then, the model fit in each voxel is additionally supported Igpace. However, the problem is sparse in the sense that most o
data from its local neighborhood. the 8, are not directly coupled. The MRF framework provides
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Fig. 2. Left Projected NLS objectivef(A,to) = mingg k. k.,/(6) for an example from the prostate data set. When initializeth Wo =
(S0, A, ke, kep, to) = (100, 0.3,0.01 min~—!,2min~', 1 min) the iterative optimization routine converges to the poirarked with a square (“Change
in the residual smaller than the specified tolerance”, To)Fand when initialized with@y = (250,0.3,0.01 min~!, 5min~!, 1 min) it converges
to the point marked with a circle (“Change in X smaller thare thpecified tolerance”, TolX). The cross marks the point @& true minimum
6 = (244.174,0.124,0.0958 min~1, 1.807 min—!, 1.082 min). Right Original data along with the three model fits that corresptmthe points marked
in the left figure.
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Fig. 3. Left Projected NLS objectivef (e, kep) = ming,, a,¢,J(0) S.t. kep > 0 andk > 0 for another example from the prostate data Reght The
corresponding data fits reveal that the two optima (crossstem) yield the same model curve which reflects that the eyeplanodel is not identifiable.

special algorithms that can exploit this sparsity such &s th +o’a Z W05 -6l

ICM (iterated conditional modes) algorithm [32]. st
Here, we use a generalized ICM algorithm which will be s1es
shown to converge faster than the standard ICM approach. 2 HW (0 B 0(1@))HP 17
As the algorithm considers collections of sites instead of ot ; * t p (7)
single sites at each step, we call this approBdick-ICM s€S.
teodsS

Given an arbitrary subset of sitésC S, it follows from the
Hammersley-Clifford theorem [33] that the posterior disir
tion Pr(0 |y) = Pr(0s|y) can be factored as

The Block-ICM algorithm can also be viewed as an iterative
coordinate descent approach in which the potentially inter
secting subset§(*) redefine generalized coordinaﬁg) for

every descent step. Also, it suffices to find a realizaﬂgﬁl)
which decreases the objective (17) instead of finding thetexa
minimum in every descent step. The proposed procedure still
converges to a local minimum.

Shape, size and update sequence of the subsats design
arameters of the Block-ICM algorithm and should be chosen
SQ as to trade off the problem size in each step against the
number of sweeps required for convergence. If, for example,
each of the subset&*) contains only one site, the standard
ICM algorithm is recovered [32] which is known to often
converge rather slowly. If, on the other hand, only one (seib)

S = S is chosen, the entire MAP problem (15) is obtained.

Pr(0s|y) =Pr(05|0,5.y) Pr(055ly)  (16)
wheredS = {t:t € S\ S, t ~ s, s € S} is the border
of S. Increasing the first factoPr(85 | 0,3,y) with respect
to 6 certainly cannot decreader(fs |y) since the second
factor Pr(6 4, 5 |y) does not depend on any of the variables
in 85. Hence, the MAP problem (15) can be solved iterativel
by solving a series of smaller MAP problems over subsets
sites

0(;“) = argmin Z Hys - f(05)|‘2
05 565'
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Hence, small subsets of sites should be chosen depending on
the size of the local neighborhood and the strength of the
mutual influence. Because of the locality of this influence,
the size of the subsets does not have to be increased with
growing lattices, yielding an algorithm which is linear imet
number of sites. The Block-ICM approach is very similar to
domain decomposition methods [37] which are often used
in combination with multigrid methods for solving partial

differential equations or associated variational proldg88]. Fig. 4. Scheme of blocks and update schedule used for thek-BRid
algorithm. In every odd sweep, square blocksx(6 sites in the figure) are
visited following the pattern indicated by the numberindneTeven sweeps
IV. EXPERIMENTAL SETUP are performed in the same way but shifted by half a block (@dsguares).

INNNNN

A. Data Sets

1) Patient Data: Patient data from an ongoing prostatg' Optimization Details
study have been collected at the German Cancer ResearcRarameter estimates have been calculated with the single
Center (Heidelberg, Germany). The data were acquired orvéxel as well as two versions of the GGMRF approach, the
clinical 1.5T scanner (Magnetom Symphony; Siemens HealtBGMRF-L2 with an L2-norm# = 2) and the GGMRF-L1
care, Erlangen, Germany) with a disposable endorectal ogith p = 1.01. All calculations have been performed on a
(MRInnervu; Medrad Inc., Indianola, PA, USA). dual core 2.4GHz Intel PC with 2GB of main memory. The

For the DCE-MR data, 10 transverse slices have bealgorithms have been implemented with Matlab R2006b using
defined (FOV200 mm x 125 mm, slice thicknes§ mm, 1 mm interior trust region methods from the Matlab optimization
gap) from which 25 dynamic image data sets were measutedlbox [39].
with a temporal resolution oAT = 11.25s using an op-  In all approaches, box constraints have been enforggd:
timized 2D FLASH sequence (TR/TE25ms/3.11ms, fip 0, A > 0, kep > ke > 0 and3 < to/AT < n. The same
angle 90 °, matrix size128 x 60, sample percentages%). initialization scheme has been used for all experiments and
Subsequent interpolation finally yielded image slices withoxels. The mean of the first three DCE-MR images has been
256 x 160 voxels. After 33.75s a total dose of0.1 mmol used as the starting value for the unenhanced T1-intefigity
Gadolinium-DTPA per kg body weight was administered The other parameters have been initialized witk= 0.3, ke =
intravenously by constant rate infusion within= 30s. From  0.003/AT, ke, = 0.4/AT andt, = 5.5AT, respectively.
the 37 patients which have been available for the presedly;stu  For the single voxel approach the Matlab function “Isqnon-
regions of about00 x 100 voxels have been selected in slicefin” with analytically derived Jacobian has been used. A
that contained suspicious tissue as determined from T1-MRaximum number of 500 iterations per voxel was allowed
and MR spectroscopic imaging. for (“Maxlter”) and the termination tolerances on the fuoat

2) Simulation StudiesA Monte-Carlo study has been convalue (“TolFun”) as well as on the parameters (“TolX") were
ducted using two sets of simulated DCE-MR images allowirget to10~?. Usually, the optimizer converged within less than
for a detailed analysis of estimation errors and the infleen¢00 iterations.
of hyper parameters. The GGMRF approaches have been used based on a 2D

In analogy to the “wedding cake” example used in [36}egular lattice with first-order neighborhood system (foear-
ground truth maps with60 x 60 voxels based on threeest neighbors) [40]. For the Block-ICM algorithm, the whole
sets of parameters have been created for the first &sitice was subdivided into two sets of square blocks such
of simulations (cf. Fig. 5). For the innermost squarehat the second set had a horizontal and vertical displasceme
61 = (200,0.50,0.001,0.7,5.2), for the middle part of three voxels (the dashed squares in Fig. 4). In every odd
6> = (100,0.25,0.050,0.3,4.6) and for the borde; = sweep, the blocks in the first set were visited in a doubly-
(150,0.76,0.008,1.2,5.5) has been used. Sequencesnof= quincunx pattern as indicated by the numbering in Fig. 4.
25 DCE-MR images at intervals oA7" = 11.25s have been In every even sweep, the same procedure was performed on
generated based on the model function in Egn. (5)= 5 the second, shifted set of blocks. A total of 14 sweeps were
repetitions of the data have been stored after adding imdepperformed. Each block was optimized using the “Isgnonlin”
dent Gaussian noise with mean zero and standard deviatianction with Jacobian for the GGMRF-L2 and the “fmincon”
o = 20 which reflects an upper noise level encountered in tlignction with supplied gradient for the GGMRF-L1 prior.
patient data. Since the subproblems in the Block-ICM approach still eithib

In order to obtain a more realistic spatial distribution, aome sparsity, the sparse arithmetic capabilities of Matla
second set of data has been simulated based on a detail feord the optimization toolbox have been exploited in additio
a real prostate DCE-MR image with particularly low noisdo prevent premature convergence to a local minimum, the
(“real detail”, cf. Fig. 7). The single voxel fit to the origth maximum number of allowed optimization iteration has been
data has been used as “ground truth” dhe- 100 repetitions confined in the first few sweeps. In particular, the schedaile (
of simulated data have been generated by adding Gaus$anio, 10, 30, 30, 100, 100, 100, 100, 500, 500, 500, 500) has
noise with standard deviation = 10. been used. The termination tolerances were again Se€ttd
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single voxel GGMRF L2 (a=1) GGMRF L1 (a=1) ground truth
C. Hyperparameters i~ . .

£ P | (SR

The GGMRF model defines three hyperparameters. Tif : , 10
standard deviation of the signal noise, the parameter weight- g 4
ing matrix W and the spatial coupling factar. All these ; 5
parameters have been determined once for the prostate e o
the simulated data respectively and have subsequently been
used for all examples. Fig. 5. Comparison oke, [ min—!] estimates on the simulated “wedding

Equaton (15) reveals that the signal noisand the spatial S5, 1 S0 P, 1 S i s phe nosy e
coupling factora could in fact be summarized in @ COMMON 1 norm ¢ — 1.01, a = 1) improves the results considerably.

factor which again could be absorbed if¥. Nevertheless,

it is convenient to distinguish the three hyperparametarses GGMRFL2 GOMRF-LL
all of them have a different meaning. RMSE

For the prostate data, has been determined from the singl e
voxel solution of a representative example using Eqn. (8). F . IMRE|

10

ep

the simulated data, the true standard deviation of the sitad|
Gaussian noises(= 20) has been used.

The diagonal of the parameter weighting matNX has g ] Pl
been determined based on the normalizing assumption 1 o T -
equal weight is given to each parameie,

% of k
\
\

0 1 2 3 4 5 6 0 1 2 3 4 5 6

W 95 Ht 2 _% . 1 18 coupling factor a coupling factor o
= <(1— 1) >Pr(0|y) i=1...p (18)

Fig. 6. Root mean square error (RMSE), absolute bias andatdmleviation

- : - he kcp estimates for the “wedding cake” data (Fig. 5) and absolutarm
where the expectation is taken with respect to the posterfé idual bias. (MRB) using COMRELS (et an((j gG,\ZIRF_Ll i A

parameter distribution. Assuming that this expectatiothes compared to the single voxel approach (coupling factor 0) both spatial
same for all pail’SS‘ andt and can be replaced by a spatiapriors can reduce bias as well as standard deviation of th® fihe data.

- . . . While the standard deviation keeps decreasing with ingrgas, the bias
average (Statlonamy and ergodlclty, [41W can be estimated reascends after an initial reduction, reflecting oversimiagt at the sharp

from the posterior parameter m#pobtained with the single edges. The MRB behaves very similar to the bias and is minirfarmabout
voxel approach_ the same value of. In the limit @ — oo the bias, stdev and RMSE are

In particular, we analyzed robust mean values of the squarg, 127 M4 0L respechel, Thus, e KNSE teaseecs 1
parameter difference®; — 6?)? from a single voxel solution. against bias.
Based on this analysis, we have choggg, = 0.01, W4 = 2,
Wi, = 20, Wy, = 1 andW;, = 1 for the prostate data as
well as for the simulated data. (RMSE) is depicted in Fig. 6. These have been calculated, in
The influence of the spatial coupling factar has been steps ofAa = 0.5, from the middle part of the estimated

examined on the simulated data. Based on these results &gdmaps according to

some preliminary experiments with patient data, a suitable 100% / /-

value for a has been chosen for the prostate data set. The bias = = (</€ep>N - k:p) (19)

respective values ol employed for each of the experiments P

o ; - - 2

are specified in the following. shdey — 100% \/< (kep 3 <kep> ) > (20)

k:p N N
V. RESULTS 100% 3

A. Simulation Studies RMSE = — 2 <(kp - k;p) > . (21)

kép N

The exchange raté., is an important parameter for the
identification of tumor tissue and has therefore been prefier The expectations are taken with respect to the empirical
for the evaluation. In Fig. 5, three estimates for an examplistribution such that(-)y, = £ >°;_,- where N is the
of the simulated “wedding cake” data along with the groungumber of examples used for the estimate. Note that bias and
truth ke,-map are shown. The single voxel estimate exhibiggandard deviation provide a decomposition of the RMSE in
many voxels for which a poor solution was found. 'rk@_ the sense thélMSEQ = bias +stdev .In add|t|0n, themean
map appears rather noisy and speckled, in particular in t@sidual biashas been estimated as
middle ring. The corresponding estimates using a GGMRF-L2 1 .
prior with & = 1 and a GGMRF-L1 prior withh = 1 show MRB = <ﬁ Zei(0)> (22)
visible improvements. Slight tendencies for edge blurrireg @ N
oversmoothing, can be observed when using the GGMRWKith ¢ as defined in Egn. (8). Figure 6 shows
L2 prior. The GGMRF-L1 solutiond = 1) yields the best MRB(«a)/MRB(0), i.e. the mean residual bias of the
reconstruction of the ground truth. GGMRF approaches relative to the SV approach.

The influence of the spatial coupling facteron the abso- In Fig. 6, the standard deviation improves more and more
lute bias, the standard deviation and the root mean squame ewith increasinga for both GGMRF priors. The bias initially
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single voxel GGMRF L2 (0=1) GGMRF L1 (0=4) ground truth |bias| of kep [%] stdev of kep [%] RMSE of kep [%]

T AT LA R

150

"
- o
ol

single voxel

= . - 0

Fig. 7. Comparison ofkep [min—!] estimates on the simulated “real
detail” data. Again, the single voxel approach producesceable speckles.
Although, using a GGMRF prior with L2 or L1 norm clearly undstimates
the kep values in the dark elongated enhancement area, it revesalsritinal
structure of thekep ground truth map which is obscured in the single voxe
solution.

LI} "] —‘ 100

:1)

GGMRF L2 (a

F150

reduces but then, beyond a certain value.pfeascends again.
For the GGMRF-L2 this critical value is abowt= 1 while for
the GGMRF-L1 it is abouty = 0.5. Limit values fora — oo
are obtained from the optimum constant parameter maps ¢
are a bias ofl54.32%, a standard deviation aof.85% and a
RMSE of 154.33%. Uo
Figure 7 shows the grou_nd trukiap-map and three eStImateSFig. 8. Absolute bias, standard deviation (stdev) and roeammsquare
for an example of the simulated “real detail” data. In thgror RMSE) ofkep estimates obtained fronf2 = 100 repetitions of the
single voxel estimate the original spatial structure isdht@r simulated “real detail” data. While both spatial priors seuwconsiderable bias
recognize while it s learly evealed in the GGMRF solusion 1 It Series siancencrl e e snof vore s s
However, thek.,, values in the elongated enhancement arggyeis, Fig. 9 shows a histogram of tlie,, estimates allowing for a more
are all underestimated using the spatial priors. The biafstailed analysis.
variance decomposition presented in Fig. 8 also shows th=
increased bias for the GGMRF approaches while low an single voxel GGMRF L2 (a=1) GGMRF L1 (a=4)
homogeneous standard deviations are observed in all argg
of the estimatedk.,-maps. For the single voxel estimates,
huge bias as well as standard deviation is obtained in ti g
elongated enhancement area (first row Fig. 8). The histagrat
of estimates from a voxel within this area in Fig. 9 revea 0
that this is caused by severe outliers. Unlike the GGMRF e © z[r?]mﬂ] 40 e [mirfil] 453 [mSi-r?l]G
timates which are symmetrically Gaussian-like distribythe ® & &
smglg voxel estlmat_es are heavily ske_wed. Ignoring onstlie Fig. 9.  Histograms ofkep-estimates for a voxel from the elongated
the single voxel estimates are less biased than the GGMRihancement area of the simulated “real detail” data (cf. 8 with ground

estimates but still tend to underestimate the ground trathey truth valueke, = 12.0 min~! (vertical line). From the single voxel histogram
of ko — 12.0 min ! 22 outliers withkep > 50 min~! have been excluded. Ignoring outliers, the

ep — -4 : single voxel estimates are less biased than the GGMRF astnadbeit a
tendency for systematic underestimation is observed.

:4)
h

GGMRF L1 (o

B. Patient Data

In Fig. 10, k.,-maps from several patients are shownlable I. Only voxels within the prostate gland have been con-
They allow for a qualitative comparison of the voxel-wissidered. For each of the 37 patients, the GGMRF approaches
(left column) and the GGMRF approaches (middle and riglgtelded a significantly smaller (absolut®)RB than the SV
column). The depicted range of values faf, was set to the approach.
interval betweer-0.05 min~! (white) and29.3 min ! (black) Also, computation times have been recorded for the SV
for all images. Furthermore, the outline of the prostatengla approachsy) as well as the GGMRF approaches( t1.2).
is indicated by the red contour. For all patients the noise The SV approach took abot0 ms per voxel on average;
visibly reduced in the bright areas (loi,) when using a total computation times varied betwedn6lh and 2.81h
spatial prior. Although no radical changes in thg-maps are (1.79h+0.49h on average). The GGMRF approach with L2
observed, using a spatial prior gives a much clearer pictuggior took about871 ms per voxel which is only a factor of
In the upper left corner of patient P30, for example, the S&bout 1.18 slower than the SV approach. In total, computatio
solution shows an area which could easily be mistaken for ook between0.76h and 3.41h (2.08h £ 0.57h). Notably,
area of increased., values, an indication for tumor. Usingthe GGMRF-L2 approach ran faster than the SV approach in
a spatial prior resolves this issue. Several similar bus le5 cases. The factot,/tsyv ranged between 0.65 (P7) and
extreme examples can be found in the other patients in Fig. 1044 (P19) which means that computations took at most 1.44

Average mean residual biaseelRB) for the the SV and times longer than with the SV approach. Using the GGMRF-
GGMRF approaches as well as standard deviations are listed.1 prior, an average computation time of abadut2s per
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P3

P9

P20

P30

P31

P33

single voxel

Fig. 10. Comparison ok.p-maps estimated with the single voxel, the GGMRF-ldl £ 4) and the GGMRF-L2 ¢ = 1) approaches. The parameter
estimates obtained with the single voxel approach appiéarjr the simulation study, very noisy and speckled. BothM&&- approaches (L1 and L2) can
reduce estimation noise and allow for an easier interpoetaif the kep-map. Structures that are present in the single voxel soludre preserved without
blurring by both of the GGMRF priors.

MEAN RESIDUAL BIASES(MRB) AND COMPUTATION TIMES FOR
SINGLE-VOXEL AND GGMRFESTIMATES BASED ON37 PATIENTS.

TABLE |

average standard deviation
MRBgv —0.2492 0.1287
MRBy,, | 7.24 x 107% 8.74 x 10~
MRB; | —9.60 x 1073 1.67 x 1072
tsv 739.63 ms 82.21 ms
tro 871.17ms 152.73 ms
tLa 1119.81 ms 261.98 ms

voxel was obtained, a factor of about 1.51. Total computatio
times ranged fron.82h t0 5.13h (2.76 h+1.07 h). In several
cases computations took more than twice (up to 2.62 times) as
long as with the SV approach. An explanation for this behavio
is deferred to the later discussion.

A more detailed analysis of the resulting model fits was
performed based on patient P1. Figure 11 shows all but the
So parameter map of this patient for the three compared ap-
proaches. Thé&, maps have been omitted since no differences
between the three versions could be observed. FEhanaps
for patient P1 show the same improvements as those of the
other patients shown in Fig. 10. Also, the SV parameter maps
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/ 1/ model function evaluations x10°
a /’
iald T Fig. 13. Convergence behavior of ICM % 1) and Block-ICM for different
choices of block sizes. Block-ICM clearly outperforms themenon ICM
Fig. 12. Model fits using the single voxel, the GGMRF-L1 anc th algorithm (1 x 1). Very similar performance is obtained for the block sizes

GGMRF-L2 approaches for the voxels within the red squareign EL. The 4x4,6x6and9 x9.

GGMRF approaches yield indistinguishable curves in allelexReasonable
but different results are obtained using the single voxeraach. Except for
the lower left voxel, the parameter estimates kgp, A and alsotq differ
significantly between the single voxel and the GGMRF sohgidn the upper
left voxel, both amplituded and exchange rate., even differ by a factor of
two. The upper right voxel demonstrates that clearly défféparametrizations
may vyield very similar curves (very much like for the exangpkhown in
Fig. 2 and Fig. 3).

VI. DISCUSSION

A. Variance, Bias and Multiple Optima

Three problems in the estimation of DE model parameters
have been pointed out in section 1lI-B: high estimation vari
ance, bias and the problem of multiple optima. Using a spatia
prior has a different effect on each of these problems:
for A, k. andt exhibit a lot of noise which is removed using a) Variance: The results depicted in Fig. 6 show that
the spatial priors. Apart from that, an interaction betwé® he standard deviation of the estimates continuously rsluc
parameter maps is visible in the SV solution, meaning th@fih increasing spatial coupling. This reduction is refett
speckles or groups of speckles are visible in multiple mapg, parameter maps with less noise which can be observed
for example in thed and k. maps. when using spatial prior knowledge on the prostate data, for

Figure 12 shows the intensity-time curves from the fousxample in Fig. 11. One way of explaining the reduction of
adjacent voxels marked with a square in Fig. 11 together wigtimation variance when using a spatial prior is the usage
the parameter estimates and the corresponding model cur¢#san increased amount of data for the estimation at each
Four voxels have been chosen that are located at an edg&d¥el. Another way of explaining the gain is by noting
the k., and A parameter maps and thus show curve fits ithat ill-conditioning, which usually leads to high estinoat
different regions of the parameter space. The results médai variance, only occurs in particular regions of the paramete
with the GGMRF approaches are virtually identical in terrhs gpace. Therefore, ill-conditioning is addressed besteftthie
the fitted curve as well as in the estimated parameters. The Sdfameters of neighboring voxels differ slightly.
solutions look reasonable and only appear suboptimal when p) Bjas: The results on the simulated “real detail” data
contrasted with the GGMRF solutions which seem to have |e§§OWed that considerable bias can occur when using a spa-
correlated residuals. This is particularly true for the epleft i) prior on very noisy data (cf. Fig. 8). Surprisingly, the
voxel where the parameter estimates for the amplitdcend  simulation studies also showed that in certain regions of
the exchange rate.;, differ by a factor of about two betweenthe parameter space and for small values of the coupling
the SV and the GGMRF solutions. Also the estimates for thgctor a, the parameter bias can actua”y be reduced (F|g 8,
lag timet, are clearly different. In the lower right voxel, theFig, 6). This is explained by observing that the parametas bi
SV curve is hardly different from the GGMRF curves and alSR:f_ Eqn (10)) reduces with an increasing number of Sampies
the parameter estimates are quite similar for all threeti®oils. |n an extreme form of spatial smoothness { o), two
Thus, the four adjacent voxels Iylng in different areas & th‘ie|ghbor|ng r:);_;llr{;lrrie'[ereS and @, would have to be equail
parameters space are not equally difficult to fit. Then, the measurement at voxelcould be regarded as a

Finally, Fig. 13 provides convergence results that show thepetition of the measurement at voxel Using Eqn. (10)
influence of using different block sizes in the proposed Blocand Eqn. (11) it is not difficult to show that this would halve
ICM algorithm. The special case aof x 1 blocks results the parameter bias as well as the mean residual bias. In the
in the conventional single-site ICM algorithm which clgarl GGMRF approach, not only the direct neighbors but a whole
converges much slower than Block-ICM using bigger block&cal neighborhood around every voxel supports the local fit
Hardly any difference in convergence speed is observed B#e size of the influencing neighborhood can continuously be
tween the block sizes of x 4, 6 x 6 and9 x 9. increased using the spatial coupling factor
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GGMRF-L1 GGMRF-L2

single voxel

Fig. 11. Comparison of parameter maps from patient P1 odamith the single voxel approach (last row) and using a GGMRIE1 prior (first/second
row). Like for the simulations, results improve visibly whesing the GGMRF priors.

c) Multiple Optima: Despite the convexity of the there is a trade-off to consider among MR imaging parameters
GGMREF priors, the problem of multiple (local) optima is noand the strength of the spatial smoothness prie ¢). A
addressed in a principled way using the proposed approadéatailed experimental analysis of this trade-off, howgigr
Even for very large spatial coupling factors the objectiveeyond the scope of the present paper.
function Eqgn. (15) is not guaranteed to be convex. This canBased on the results presented above, we recommend using
be seen by noting that for — oo an equivalent problem a spatial prior with small in any case. The obtained estimates
is obtained by omitting the spatial terms in Eqgn. (15) anare usually improved for the following four reasons:
introducing the constraint of al?, being equal. The resulting First, since a weak spatigkior is applied it can only exert
sum of nonconvex functions does not yield a convex functionfluence if the single-voxel evidence is weak. As an examnple
in general. Empirically, however, the problem of multipleconsider unenhancing tissue surrounding the prostatehwhic
optima is alleviated when using the spatial prior. The GGMRFields a pure noise signal. For a small amplitudesuch a
L2 prior, for example, yields the same results with and witho signal admits any value fdk.,, k., andt, and a spatial prior
the constraintte; > k., Whereas the SV solution arbitrarilywould therefore not impose constraints on these paramieters
exchangeg.,, andk.; values which leads to notable specklethe neighboring voxels. The other way round, if the single-
in the parameter maps [22]. This is also an example wherexel evidence for a particular parameter set is stroegijts
the spatial prior can replace single-voxel prior knowledgékelihood is much higher than that of any other, a weak spati
Furthermore, we noticed that the GGMRF-L1 prior is lesgrior would hardly change this estimate.
effective in resolving such ambiguities since it is desijne Second, as compared to linear least squares, for which
to allow for sudden spatial parameter changes, edges. Similar spatial priors have been studied [35], [36], noedin
Certainly, using a spatial prior together with the BlockMC regression potentially profits much more. Due to the exesten
algorithm yields a different trajectory through paramesgace of local optima in the latter case, the parameter estirate
as compared to optimizing the SV objective. Thus, runnirig not necessarily a continuous functionaf Therefore, only
into a different optimum is not surprising. slight shifts in the likelihood of the parameter configuras,
as induced by a weak spatial prior (sma), may yield very
different solutions. This explains why the GGMRF prior help
remove speckles as shown in figures 10, 7 and 11.

The basic assumption in using the GGMRF prior is the Third, the simulation studies show that even parameter bias
spatial smoothness of the true parameter maps. While tbin be reduced for small coupling factors. This is true until
is certainly valid within homogeneous tissue regions, thtte bias produced at edges outweighs the gain obtained in
assumption is violated at tissue borders where sudden eBanigomogeneous regions. Interestingly, the MRB, which can be
may occur. An edge-preserving smoothness prior such as tfadculated without access to ground truth informationsrea
GGMRF-L1 is designed to handle this by limiting the influcends at approximately the same valuexofis the parameter
ence of voxels across edges [36]. Still, cases are condeiirab bhias does.
which an individual voxel is erroneously smoothed away with Fourth, the reduction of the MRB for all patients in the
the GGMRF-L1 prior. Hence, using a spatial prior commonlyrostate data set (cf. Table I) indicates that the sametsffec
leads to a loss in resolution on the one hand. On the otlee obtained as in the simulation study.
hand, signals with lower SNR can be processed which allowsThe question remains as to whipinorm should be chosen
for acquiring MR data at higher physical resolutions. Qigar for the GGMRF prior. On the simulated “wedding cake” data,

B. Spatial Smoothness



12 IEEE TRANSACTIONS ON MEDICAL IMAGING

best results were obtained with= 1.01 . However, since the spatial prior, improved parameter estimates can be oltaine
edge-preserving L1 prior is particularly suitable for datigh  without blurring the resulting parameter maps. The progose
sharp edges it is not clear whether the GGMRF-L1 prior Block-ICM procedure provides means to tackle the resulting
also best on natural data. For smooth ground truth images aaey high-dimensional optimization problem efficientlysig
would expect the GGMRF-L2 prior to perform better. On ththe GGMRF prior only resulted in a moderate increase in
patient data (Fig. 11, Fig. 10) as well as the simulated “reebmputation time. Future work should investigate ways of
detail” data (Fig. 7) hardly any difference between the L#l arestimating the hyperparameters W, and o2 automatically

L2 norms is observed. However, considering that the GGMRfrom the examined DCE-MRI data. Also the question of which
L2 approach can be calculated more efficiently, preferengesiorm to use requires further consideration.

might be given to the L2 norm.

APPENDIX
C. Block-ICM AN ANALYTICAL GKM SOLUTION FOR THE FIRST-ORDER
Despite its favorable properties, using the GGMRF prior ELIMINATION MODEL

certainly makes parameter estimation computationallyemor Using the Generalized Kinetic Model from Egn. (1) and
demanding. Without a specialized optimization strategyhsUihe arterial input function from Eqn. (2) an explicit sobui

as ICM which can exploit the inherent sparseness of the MAF the system of ordinary linear differential equations is
problem, the GGMRF prior would not be applicable. Blockzonyeniently derived using Laplace transforms [42]. In the

ICM can speed up convergence significantly and does not sefBYuency domain, Egns. (1) and (2) read
to be very sensitive to the choice of block size (as long as it

does not reduce to conventional ICM). 5 Ci() + kep Ci(s) = K205 C,(s) (23)
Overall, the computational cost of using the GGMRF prior . . Ky, (1 e 7
is only moderately higher than computing the SV solution s Cp(s) + kel Cp(s) = v (; - ) (24)

as shown in Table I. This can be explained by two aspects.
First, using a spatial prior changes the energy landscape iwhere s is the complex frequency anfj(s) = L{f()} the
way that allows the optimizer to converge more rapidly. Theaplace transform of the functiofi(t). Thus, the solution in
demonstrated reduction in standard deviation of the paemethe frequency domain is
estimates indicates that the Hessian at the optimum becomes
more positive definite which again has a positive influence Cils) = fetrans fin I—e™ (25)
on the speed of convergence. Second, using a small coupling Vo (s + kep)(s + ket)
factor o, the effort of minimizing the data term dominates th
spatial compensation.

For largea: we have observed much slower convergence and 1 __u v + v—u (26)
sometimes block-shaped artefacts in the estimated pagamet s(s+ kep)(s+ ket) S+ kep S+ kel S
maps. Thus, the Block-ICM approach is not recommended
if the spatial smoothing term dominates. In that case, oP’]‘é"er_e“_1 = kep(kep — ke1) and v™! = kei(kep — ker), and
should better resort to more complex, related methods badB@ time shift theorem of the Laplace transform [42]
on domain decomposition and multigrid [38]. For smalls 0 e
we recommend for the estimation of kinetic parameter maps, £ { € f(s)} =h(t=7)f{t =), (27)
however, the proposed Block-ICM algorithm provides a senp
approach to tackle the high-dimensional optimization prob
efficiently. K; {Of (t) foro<t<r

C.(t :Ktransl
) V, LCr(t) fort>r

%Jsing the partial fraction expansion

khe inverse transform of (25) and sought solution becomes

(28)

VIl. CONCLUSION
ereCY(t) = u e Fert — oy ekl 4 —y and C7 (t) =
ekt — @ 7hen(t=7)) g ((e7hait — e=halt=7)) which is

The application of spatial prior knowledge in the form ofLVh
5<ual to Egn. (3).

a generalized Gaussian Markov random field prior has beg
proposed to improve the estimation of kinetic parameteramap
from DCE-MRI. The nonlinear regression problem that needs
to be solved to determine pharmacokinetic parameters #gxhib ACKNOWLEDGEMENT
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