
Casting Random Forests as Artificial Neural
Networks (and Profiting from It)

Johannes Welbl

Heidelberg Collaboratory for Image Processing

While Artificial Neural Networks (ANNs) are highly expressive models, they
are hard to train from limited data. Formalizing a connection between Random
Forests (RFs) and ANNs allows exploiting the former to initialize the latter.
Further parameter optimization within the ANN framework yields models that
are intermediate between RF and ANN, and achieve performance better than
RF and ANN on the majority of the UCI datasets used for benchmarking.?

1 Introduction

In supervised machine learning, both RF [1] classifiers and feedforward ANNs
[2] are in widespread use for tackling classification problems. In this work, it will
be demonstrated that the predictive behaviour of RFs can equally be transferred
into the framework of two-layer ANNs, where it can serve as an initialization for
training. This transferrability allows for a new functional interpretation of the
RF model as special limit case of the general sigmoid ANN model.

ANNs are universal approximators [3], and with their many free parameters
they are expressively very rich. However, their expressive power comes with the
downside of increased overfitting risk, especially on small datasets. Conversely,
RFs generalize well, but with their greedy tree construction process they yield
fine, but often suboptimal classification performance.

Harnessing the novel RF-reformulation, a major practical intention is to ex-
ploit the benefits of RF and ANN models to overcome the shortcomings of the
other. The novel network initialization allows for an optimization of RF predic-
tions within the ANN framework and can possibly help ANNs to reduce their
overfitting risk. The approach is developed in theoretical detail, later different
training schemes are experimentally evaluated on various classification datasets.

Random forests In this section some notation will briefly be introduced. RFs
are ensembles of decision trees [4] Ti, i = 1, . . . , NTrees, (with NTrees being
the number of trees) which consist of both inner nodes N Inner

i and leaf nodes

NLeaf
i . For RFs using paraxial node splits, the split rule for n ∈ N Inner

i and
samples x ∈ n is

x ∈ cl(n) ⇐⇒ xfn < θn and x ∈ cr(n) ⇐⇒ xfn ≥ θn (1)

? recommended for submission to the YRF2014 by Prof. Fred Hamprecht and Dr.
Ullrich Köthe. The final publication is available at:
link.springer.com/chapter/10.1007%2F978-3-319-11752-2 66



2 Johannes Welbl

with fn being the split feature of n, θn the threshold value, and cl(n) and cr(n)
being the left and right child node of n.
For a tree leaf L ∈ NLeaf

i the ratio vote is yL = (yL1 , . . . , y
L
NLabels

) with yLl ∈ [0, 1]

∀l = 1, . . . , NLabels, and
∑NLabels

l=1 yLl = 1, where NLabels is the number of labels.
Finally, the path P(L) to a leaf L will be the sequence of inner split nodes

that has to be passed on the way from the tree root node n0 to L:

P(L) = (n0, . . . , nd) with n0, . . . , nd ∈ N Inner
i and L ⊂ nd ⊂ · · · ⊂ n0 (2)

Thus, leaf membership is expressed in terms of conditions satisfied along P(L):

x ∈ L ⇐⇒ ∀nj ∈ P(L) :

{
xfnj

< θnj
if L ⊆ cl(nj)

xfnj
≥ θnj if L ⊆ cr(nj)

(3)

Artificial neural networks The ANNs chosen here are feedforward networks
with two hidden layers (HLs). They use a tanh activation function in the HLs,
and softmax activation for the output neurons, which allows for a probabilis-
tic interpretation of the network output. During training, wrong predictions
are backpropagated [5], and stochastic gradient descent (SGD) [6] is applied to
maximize the likelihood of predicting true labels on randomized minibatches of
training data.

2 Reformulating the RF as ANN

In this chapter, it will be described how a given pretrained RF can be reformu-
lated as a two-layer ANN with the same predictive behaviour.

Both the RF and the ANN model rely on linear separation. In the RF any n ∈
N Inner

i is linearly divided into cl(n) and cr(n). In ANNs with sigmoid activity
the neurons linearly split their input space into two halfspaces of either positive
or negative activity. This common characteristic of the two classifiers enables
the transfer from RF to ANN, which will first be described for a single decision
tree Ti and later be extended to a whole RF. There will be three functionally
different parts in the resulting ANN architecture (also visualized in Figure 1):

1. In the first hidden layer (HL1) the neurons compute all tree split decisions
∀n ∈ N Inner

i and indicate the split directions for a given input sample.
2. In the second hidden layer (HL2) the information from HL1 is combined to

indicate if x ∈ L, ∀L ∈ NLeaf
i .

3. The weights from HL2 to the output layer are set proportional to the ratio
votes, effectively mimicing the RF voting system.

2.1 Designing the first hidden layer

The first HL is designed to indicate tree split directions of given network inputs
x, i.e. ∀n ∈ N Inner

i one dedicated HL1-neuron will encode if xfn ≥ θn or not.



Casting RFs as ANNs (and Profiting from It) 3

Fig. 1. A single decision tree (left) and its corresponding network structure (right).
The circle nodes in the tree belong to N Inner

i and the square nodes to NLeaf
i . The

path to the red shaded leaf (6) consists of all light green nodes (0, 1, 5). Numbers
in neurons correspond to numbers in tree nodes. The highlighted connections in the
network are those relevant for the activity of the red neuron and its output vote.

Therefore, ∀n ∈ N Inner
i one HL1-neuron is created, named HL1(n), and then

connected to input fn. The corresponding weight and bias of HL1(n) are set to

wfn,HL1(n) = str01 and bHL1(n) = −str01 · θn (4)

with str01 � 0 a global linear scaling hyperparameter. No other connections
between input layer and HL1 are established, so the connectivity is sparse. With
this choice of weights and biases, the following statements are equivalent

x ∈ cr(n)
(1)⇐⇒ xfn ≥ θn

(4)⇐⇒ wfn,HL1(n) · xfn ≥ −bHL1(n)

⇐⇒ tanh(wfn,HL1(n) · xfn + bHL1(n)) ≥ 0

⇐⇒ activity(HL1(n)) ≥ 0

and likewise for cl(n). Hence, for a given input x positive activities of HL1-
neurons encode tree splits to the right, and negative activities tree splits to the
left. This allows to rewrite leaf membership from (3) in terms ofHL1-activations:

x ∈ L ⇐⇒ ∀nj ∈ P(L) :

{
activity(HL1(nj)) < 0 if L ⊆ cl(nj)

activity(HL1(nj)) ≥ 0 if L ⊆ cr(nj)
(5)

The strength-hyperparameter str01 determines the contrast of the tanh activa-
tions: the larger str01 the sharper the transition from −1 to +1, and as str01
approaches infinity, the continuous tanh activation function converges to a bi-
nary step function. So when choosing str01 large, all HL1-activations are close
to either −1 or +1. This allows to operate with a differentiable approximation
of a discontinous step activation function with nonzero gradient (important for



4 Johannes Welbl

network training), and later permits a relaxation of crisp tree node membership.
This setup is equally applicable for RFs with oblique splits [7], but then HL1(n)
must be connected to several features with weights according to the split tilt.

2.2 Designing the second hidden layer

HL2 is designed to the end that ∀L ∈ NLeaf
i there is one neuron that indicates

whether x ∈ L. Therefore, ∀L ∈ NLeaf
i one HL2-neuron is created and named

HL2(L). It is connected to all HL1-neurons HL1(nj) with nj ∈ P(L) and not
connected to the other neurons in HL1. HL2(L) combines the split information
from the activations of all HL1(nj), and for determining whether all conditions
from (5) are satisfied, HL2(L) computes a softAND function of the HL1(nj)
activities. For this the incoming weights of HL2(L) are set according to the
direction that P(L) takes at each nj :

wHL1(nj),HL2(L) =

{
−str12 if L ⊆ cl(nj)

+str12 if L ⊆ cr(nj)
, str12 > 0 (6)

Assuming str01 large ⇒ HL1(nj)-activations approximate either −1 or +1,
so the incoming weights (6) act as a matched filter for the specific HL1(nj)-
activation pattern (5) which appears iff x ∈ L. For fixed str12 this maximizes
the activation response of HL2(L) if the HL1-pattern (5) is present.

Note that for large str01 all datapoints x are mapped into the very corners
of the hypercube of all HL1-activations. Also the datapoints in the orthant
defined by (5) (case x ∈ L) are located in one hypercube corner and are linearly
separable from the other datapoints (x /∈ L) in other hypercube corners. The
bias determines the threshold of the softAND function to separate the cases:

bHL2(L) = −str12 · [len(P(L))− 1] (7)

with len(P(L)) the number of tree nodes nj on P(L). In case of infinite str01
where ∀nj : activity(HL1(nj)) ∈ {−1, 1} this bias choice maximizes the margin
between the different HL1-activation patterns appearing in the two cases x ∈ L
and x /∈ L. Thus for large str01 the activity of HL2(L) effectively distinguishes
the two cases and indicates if x ∈ L. Again, choosing a large global scaling
hyperparameter (str12 � 0) makes the activities in HL2 more contrastive.

2.3 Transferring the RF voting system

So now, ∀L ∈ NLeaf
i there is one HL2-neuron which indicates whether x ∈ L.

Next, all activities of HL2 are linearly rescaled from [−1, 1] to [0, 1] and HL2(L)
is connected to all outputs l, setting the weights proportional to the ratio vote:

wHL2(L),l = yLl · str23 (8)

with yLl the vote of L for label l, and str23 > 0 another scaling hyperparameter.



Casting RFs as ANNs (and Profiting from It) 5

This concludes the ANN-reformulation of a single decision tree. For a com-
plete RF, the HLs of several network structures are concatenated, so that the
votes of all trees are expressed in the connections to the output neurons, effec-
tively averaging the votes of the whole tree ensemble.

3 Training schemes and relaxations

The resulting network is now ready for training for which three approaches will
be investigated. The sparse training scheme consists of the application of a stan-
dard network optimization algorithm (here: SGD) on the sparsely connected
network. The relaxed training scheme has two differences to the sparse: (i) Al-
low for full connectivity between subsequent layers. While still initializing the
previously non-existent connections close to 0, they will be free to change during
network optimization, and hence establish cross-connections between function-
ally unrelated RF modules. Possibly more complex interactions between different
RF elements can be captured this way. (ii) Decrease the global strength hyper-
parameters str01 and str12 to make the sigmoid activations less contrastive.
This can be interpreted as a relaxation of crisp to fuzzy tree node membership.
Samples not merely fall into one direction per split and one final leaf but simul-
taneously into several tree branches and leaves. Finally, the vote training scheme
restricts network optimization to only weights of the last layer. While maintain-
ing pure tree structure in the layers before, merely the RF votes will collectively
be optimized. After training, this scheme enables a retransfer of the network into
a classical RF with an altered (and possibly enhanced) voting system.

4 Experimental evaluation

Next, several experiments are performed to investigate the novel initialization
and different training schemes on classification datasets from UCI Machine
Learning Repository [8] (Breast Cancer Wisconsin (Diagnostic), Ionosphere,
Sonar, Landsat, Pima Indians Diabetes, Heart Disease and German Credit).
The continuous feature dimensions of these datasets are in a generic prepro-
cessing step linearly scaled to [−1, 1]. For each of the datasets the novel ANN
initializations are examined with the three introduced training schemes, and for
comparison also RFs and randomly initialized ANNs are tested. Each experi-
mental setup is repeated 30 times on a randomly permuted separation into 3/4
training data and 1/4 test data (if training/test data not prespecified). Samples
with missing values are discarded. The trees in the RF are grown applying the
entropy criterium until a minimum number of 10 samples per node is reached.
The best split feature is chosen among

√
M random features, with M the input

dimensionality. All RFs possess NTrees = 200 trees (50 for Landsat). To account
for the random number of nodes in RFs and transcoded RFs, randomly initialized
2-layer networks with different sizes of 40 to 3500 neurons per HL are trained,
and the best result is chosen. All randomly initialized ANNs are initialized with
biases 0 and weights following a narrow Gaussian N (0, σ2), σ = 0.01.



6 Johannes Welbl

Hyperparameters are set to str01 = 1000, str12 = 1000 and str23 = 0.1. For
the relaxation str12 is decreased to 10, which is chosen as the lowest feasible value
while evaluating the congruence of predictions of RFs and transcoded RFs on an
exponentially scaled hyperparameter grid. SGD network training is applied using
a batchsize of 100 and a momentum of 0.99. Learning rate is manually selected for
each dataset so that training convergence is guaranteed. All networks are trained
until convergence. To harness the power of parallelized GPU-computation the
python package theano [9] is used. For all datasets RF construction and network
training to convergence happens within seconds to minutes on a custom GPU.
Table 1 shows the final test perfomances for all experimental setups.

5 Discussion of results and conclusion

A trivial result is that RF-initialized networks yield better test error at the start
of training than randomly initialized networks, effectively giving the network a
warmstart at the prediction level of the RF.

Comparing the performances of RFs with randomly initialized ANNs, it be-
comes apparent that the latter at times overfit (where RF performance is better
than ANN), and that overfitting is mitigated by the novel network initialization
as transcoded RF.

On the other hand, RF predictions are often improved by SGD-optimization
within the ANN framework. The sparse scheme outperforms both ANN and RF
in most cases. The vote optimization training (which allows for a retransfer into
a classical RF) is not as competitive but still improves the RF predictions for
several datasets. Relaxed training yields similar results to sparse training, hence
the benefits of RF-initialization are not limited to sparsely connected networks
but are equally available for the more widespreadly used fully connected ANNs.

In conclusion, the newfound theoretical link between RFs and ANNs can
fruitfully be exploited to enhance both classifiers in practice. Optimizing RFs
within the ANN framework often improves the predictive performance of the two
original models. The benefits of both can be united in one novel hybrid classifier.

RF ANN sparse relaxed vote

Wisconsin 4.8 (1.7) 3.4 (1.7) 2.9 (1.3) 3.5 (1.9) 4.1 (1.8)
Ionosphere 6.5 (2.2) 11.0 (3.3) 6.2 (2.0) 6.9 (2.7) 6.7 (1.9)
Sonar 21.5 (5.1) 18.0 (5.5) 14.4 (4.8) 16.0 (5.2) 14.8 (4.1)
Landsat 10.9 (0.3) 10.1 (0.4) 9.1 (0.3) 9.1 (0.4) 9.0 (0.4)
Pima 24.5 (2.1) 28.9 (3.0) 26.8 (3.1) 26.4 (2.3) 26.6 (2.6)
Heart 16.3 (4.4) 21.8 (4.3) 19.5 (4.1) 19.5 (4.3) 19.0 (4.1)
Credit 25.6 (2.2) 28.3 (2.7) 24.6 (1.8) 24.7 (2.9) 25.3 (2.7)

Table 1. Predictive performance on test data for different classifiers and training
schemes across seven datasets. Table entries are the empirical mean test error with
standard deviation in parentheses. Bold writing highlights the winning classifier.



Casting RFs as ANNs (and Profiting from It) 7

References

1. Breiman, L.: Random forests. Mach. Learn. 45(1) (October 2001) 5–32
2. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Mathemat-

ics of Control, Signals, and Systems 2 (1989) 303–314
3. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-

versal approximators. Neural Netw. 2(5) (July 1989) 359–366
4. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression

Trees. Wadsworth and Brooks, Monterey, CA (1984)
5. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Parallel distributed processing:

Explorations in the microstructure of cognition, vol. 1. MIT Press, Cambridge,
MA, USA (1986) 318–362

6. Bottou, L.: Online learning and stochastic approximations (1998)
7. Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision

trees. Journal of Artificial Intelligence Research 2 (1994) 1–32
8. Bache, K., Lichman, M.: UCI machine learning repository (2013)
9. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G.,

Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expres-
sion compiler. In: Proceedings of the Python for Scientific Computing Conference
(SciPy). (June 2010) Oral Presentation.


