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Abstract

Estimating dense visual correspondences between ob-
jects with intra-class variation, deformations and back-
ground clutter remains a challenging problem. Thanks to
the breakthrough of CNNs there are new powerful features
available. Despite their easy accessibility and great suc-
cess, existing semantic flow methods could not significantly
benefit from these without extensive additional training.
We introduce a novel method for semantic matching with
pre-trained CNN features which is based on convolutional
feature pyramids and activation guided feature selection.
For the final matching we propose a sparse graph match-
ing framework where each salient feature selects among a
small subset of nearest neighbors in the target image. To
improve our method in the unconstrained setting without
bounding box annotations we introduce novel object pro-
posal based matching constraints. Furthermore, we show
that the sparse matching can be transformed into a dense
correspondence field. Extensive experimental evaluations
on benchmark datasets show that our method significantly
outperforms existing semantic matching methods.

1. Introduction
Finding correspondences between images is a funda-

mental problem of computer vision and key to many ap-
plications like 3D reconstruction, video analysis, image re-
trieval and object recognition. Classical correspondence
methods like stereo matching [21] and optical flow [23, 35]
consider input images showing same objects or scenes from
different viewpoints. With the development of better fea-
tures which are more robust against deformations and ap-
pearance changes, researchers started to estimate corre-
spondences across different instances and scenes of the
same semantic category. In the literature this problem is
often denoted as semantic matching or semantic flow in the
case of dense correspondences.

Despite of the success of deep features in many fields
of computer vision, previous work on semantic matching

Figure 1: Overview of our approach for dense semantic
matching. After salient feature extraction we utilize a MRF
for finding sparse correspondences, which are used to esti-
mate a dense flow field using thin plate splines (TPS).

[20, 33] reported that pre-trained CNN features perform
similarly or even worse compared to hand-engineered fea-
tures such as SIFT [34] or HOG [12, 22]. In this work we
revisit deep semantic feature matching and propose an ef-
ficient algorithm specifically designed for this task, which
addresses the following main issues of previous approaches:

(1) Local structures are not robust against intra-class
variation and for finding semantic correspondences more
context is necessary. We extract particular context-sensitive
features by utilizing a deep feature pyramid representation
[19], where we encode image regions by aggregating re-
spective cells of the feature pyramid over two levels. This
provides more discriminative region descriptors compared
to methods where regions are just cropped, rescaled and



passed through the network [20, 50].
(2) Recently, Ham et al. [20] introduced a more gen-

eral task of semantic matching, namely to align two ob-
jects in real-world images without information about their
class, scale and location. In this unconstrained setting with
no bounding box annotations and severe background clut-
ter, matching approaches using grid-based feature sampling
[28, 31] or classical feature detectors like MSER [37] are
prone to incorrect correspondences. To focus on object like
structures, Ham et al. [20] utilize modern object proposal
methods [4, 36, 45, 51, 24]. But this does not address the
issue that convolutional filters learn in particular to respond
to image regions which are discriminative for the original
classification task. In contrast to approaches which learn la-
tent parts using a large set of instances of the same object
category [42, 3, 16, 40], we try to find well-encoded latent
structures using the convolutional filter responses of a sin-
gle image. Although, not the whole object is covered by
these regions, they guide weaker encoded regions towards
geometric consistent matches.

(3) Semantic matching of objects in real-world images
requires spatial regularization which is on the one hand ca-
pable to overcome the matching ambiguity and on the other
hand flexible enough to adjust to non-rigid deformations.
Therefore, we introduce a sparse MRF framework which
reduces matching ambiguities by enforcing geometric con-
sistency between all feature pairs. This is infeasible for
pixel-level approaches [28, 31] which estimate a continu-
ous displacement field. Moreover, our framework is ca-
pable of adjusting to more complex object deformations
compared to Hough Voting based approaches [20]. Fea-
ture detection is in particular not stable against intra-class
variation, meaning that detected features in one image may
not have a correspondence in the set of detected features in
the other image. Therefore, standard graph matching ap-
proaches [43, 9, 10] extract a large set of features in both
images and search for correspondences between these sets.
This leads to a large number of outliers and matching am-
biguities. In contrast, we use salient features as sliding-
window detectors and extract a small number of nearest
neighbors as matching candidates. In this way we simplify
our optimization problem and alleviate the combinatorially
difficult one-to-one matching constraint.

Contributions. The main contributions of this paper are
threefold: (1) We present an efficient MRF framework uti-
lizing deep feature pyramids [19] and convolutional activa-
tion guided feature selection for semantic matching. (2) In
the unconstrained setting of unknown object location, we
introducing new unary and pairwise terms for incorporat-
ing object proposals in our formulation. (3) We demon-
strate that the proposed method significantly outperforms
state-of-the-art semantic matching methods on challenging
benchmark datasets.

(a) (b) (c)

Figure 2: Visualization of our key feature extraction ap-
proach. Column (a) shows the rescaled cell entropy of the
first level of the feature pyramid, as defined in Equ. 1. Col-
umn (b) visualizes the pixel-wise object probability defined
in Equ. 11. And column (c) shows the selected key features
using non-maximum suppression on the combined entropy
and pixel-wise object probability maps.

2. Related work
Image alignment is a key problem of computer vision

and a large body of preliminary work exists. In the follow-
ing we will focus on the most relevant research in the field
of semantic matching and semantic flow.

First steps towards semantic matching was done by Liu
et al. with the development of SIFT Flow [31]. Inspired by
optical flow methods they densely sampled SIFT features
and formulated a discrete optimization problem for solving
a displacement field in a hierarchical scheme. Kim et al.
[28] extended this approach by incorporating links between
pyramid levels in the graph and defining matching costs of
nodes using multiple descriptors. Inspired by deep convo-
lutional neural networks Weinzaepefl et al. [39] estimated
dense correspondences by using a multi-layer architecture
of several layers interleaving convolutions and max pool-
ing. More recently, Bristow et al. [6] used the graphical
model of SIFT Flow and replaced the unary term with sim-
ilarities of pixel-wise LDA classifier for improving the ro-
bustness against intra-class variations. For the task of object
discovery and localization without any information about
input images Cho et al. [8] introduced a region matching
approach using off-the-shelf object proposals as candidate
regions and a probabilistic Hough voting scheme as a spa-
tial regularizer. Proposal Flow [20] extended the region-



matching idea by introducing a local Hough Voting based
on neighboring regions and estimated a dense flow field us-
ing region correspondences.

In recent years more and more deep learning based meth-
ods have been proposed. There are approaches using CNNs
as plain feature extractors without any taks specific design
or training. For example Fischer et al. [18] reported that
CNN features clearly outperform SIFT in the task of near-
est neighbor matching. Long et al. [33] studied the ca-
pabilities of deep features for semantic alignment by in-
vestigating a SIFT Flow version with CNN features of a
pre-trained classification network. But they achieved only
slightly better performance results compared to the origi-
nal SIFT Flow algorithm. Also Ham et al. [20] investi-
gated the impact of deep features on their approach without
any performance gain. Several deep learning based meth-
ods are utilizing specifically designed and trained architec-
tures. Most of these methods need additional ground truth
data for their learning procedure. For example, Kanazawa
et al. [25] use a pre-trained classification network in combi-
nation with thin plate splines extracted from segmentation
masks for learning a spatial correspondence prior. More-
over, they use additional ground truth segmentation masks
for their final ratio-test based matching. Additional data in
form of synthetic rendered 3D models are used by Zhou et
al. [48] for formulating a cycle constraint between images.
And Choy et al. [11] use ground truth correspondences for
optimizing a correspondence objective for semantic match-
ing. Our approach is in line of the first mentioned research
direction and uses pre-trained CNN features extracted from
a classification network without any additional data or train-
ing.

3. Proposed approach
In this chapter we present our semantic flow algorithm

which is based on pre-trained CNN features and sparse
MRF matching. It first builds a feature pyramid of each
image and selects salient features for matching on differ-
ent scales using informatic criterion on the cell activations
of the pyramid. For each selected feature a set of match-
ing candidates is extracted and the final assignment is ob-
tained by solving an energy minimization problem with an
unary appearance and a binary geometric term. Long-range
contextual relationships are preserved by a fully connected
graph. To improve results in real-world images without
bounding box annotations, additional unary and binary ob-
jectness potentials are introduced. Finally, we estimate a
dense flow field from the sparse correspondences using thin
plate splines (TPS) [5, 14].

3.1. Spatial feature pyramid

Since objects may occur at different scales our algorithm
is based on a multiple image resolution approach. In par-

(a)

(b)

(c)

Figure 3: Figure (a) shows the binary geometric potentials
of our basic formulation, (b) edges between two assign-
ments and (c) the additional binary potential of our object-
proposal guided matching.

ticular, we extract a spatial feature pyramid analogously to
Girshick et al. [19]. For each input image a pyramid of
8 levels with scaling factor 2−1/2 is generated. For the
first level the input image is padded and rescaled with-
out change of aspect ratio and fixing the largest dimen-
sion. Based on the image pyramid a feature pyramid is
generated, where each level consists of convolutional fea-
tures extracted from images with decreasing resolution. In
our experiments we use Conv 4 features of AlexNet [29]
pre-trained on ILSVRC2012 [13]. Each cell of the feature
pyramid has 384 channels and for each cell we associate
a squared region in the input image at the center of its re-
ceptive field. We set the size of these regions to the recep-
tive field stride, i.e. 16 pixels. To increase the descriptive-
ness we concatenate neighboring 5× 5 cells over two pyra-
mid levels and obtain an overall feature vector dimension of
19 ·103. The concatenated cells induce a grid of squared re-
gions with sizes between 64 up to 724 pixels in the original
image space. The receptive field sizes of these regions are
between 195 up to the full image size.

3.2. Key feature selection

We select salient features, which we will denote key fea-
tures in the following, based on the extracted pyramid fea-
ture maps. We introduce two criteria. Firstly, the overall
signal should be strong. We quantify this by computing the
cell-wise sum of activations over all feature map channels
and set a threshold. Secondly, the information contained
in the signal should be as high as possible. Therefore, we
use the entropy according to Shannon’s formula [41] as a



standard information theoretic-ranking criterion, i.e.

SH(ps) = −
Nc∑
c=1

fc(ps)log2(fc(ps)), (1)

where f(ps) are the normalized features at position ps and
feature pyramid level s. Based on the entropy maps over
several levels we select a fixed number of features using
non-maximum suppression, which leads to a good coverage
and key features of different scales. Since too large image
regions may lead to bad localization results we restrict the
feature selection to some of the first pyramid levels. Fig.
2 illustrates our key feature extraction approach in the un-
constraint setting, where we include the pixel-wise object
probabilities as additional criteria, which will be explained
in Sect. 3.4.

3.3. Key feature based matching

In general feature detection is not perfectly repeatable
[44], which means detected features in one image may not
have a correspondence in the set of detected features in the
other image. This holds in particular for semantic matching
and our feature extraction. Therefore, we directly search
for nearest neighbors as matching candidates in the oppo-
site image, where we use a sliding window approach over
several pyramid levels and the cosine similarity metric to
find them.

Matching energy function. The overall matching task
is to assign each key feature k ∈ K to its most consistent
matching candidate lk ∈ Hk, which can be formulated as
an energy minimization problem,

Es(l) =
∑
k∈K

ψk(lk) +
∑

(k,k′)∈K×K

ψk,k′(lk, lk′), (2)

where ψk models feature similarity and ψk,k′ geometric
compatibility of pairwise assignments. For simplicity, we
assume a fixed number H of matching candidates for all K
key features. In the following we explain the energy poten-
tials in more detail.

Unary appearance potential. The function ψk favors
correspondences between features with similar appearance,
which is defined as

ψk(lk) =

{
λf
(
e(1−sim(fk,flk ))

2/σ2
f − 1

)
, if lk 6= H + 1,

λocceocc , otherwise,
(3)

where fk, flk are respective feature descriptors as explained
in Sect. 3.1 and sim the cosine similarity. At this point, we
introduced an additional labelH+1 which accounts for the
possibility that features are not assigned to any candidate,
which imposes a constant penalty eocc . If the key feature
is assigned to a candidate we call the assignment as being
active.

Figure 4: Matching examples on the Proposal Flow dataset
[20] using our object proposal guided matching. The bot-
tom right example shows a failure case.

Binary geometric potential. The function ψk,k′ en-
forces spatial consistency between assignments and consists
of two terms,

ψk,k′(lk, lk′) = δ(k, k′, lk, lk′) · ψ̂k,k′(lk, lk′), (4)

where ψ̂k,k′ measures the geometric consistency and δ mod-
els the spatial range of this term, which will be described in
the next sub-point. Inspired by graph matching approaches
[43] we enforce geometric consistency between two active
assignments by the relative length difference and absolute
angle of corresponding edges, i.e.

ψ̂k,k′(lk, lk′) =
[

λd
(
e(d

2
k,k′ (lk,lk′ )/σ

2
d) − 1

)
+λγ

(
e(γ

2
k,k′ (lk,lk′ )/σ

2
γ) − 1

)]
,

(5)

where λd and λγ are scalar weights. See Fig. 3b for an
illustration of edges and the notation of feature locations.
The function dk,k′ measures the relative length difference
of edges between two assignments, i.e.

dk,k′(lk, lk′) =
∣∣∣‖xI1k − xI1k′‖/DI1 − ‖x

I2
k − x

I2
k′‖/DI2

∣∣∣ ,
(6)

where DI1 , DI2 are bounding box diagonals and xI1k , xI2k
feature locations of assignment k 7→ lk in image I1, I2,
respectively. If no bounding box annotations are given we
set term (6) to zero. The function γk,k′ in (5) measures the
absolute angle between two edges, i.e.

γk,k′(lk, lk′) = arccos

(
xI1k − x

I1
k′

‖xI1k − x
I1
k′‖
·
xI2k − x

I2
k′

‖xI2k − x
I2
k′‖

)
,

(7)
Geometric interaction range. Stronger geometric con-

straints help to overcome matching ambiguities and to find



consistent matches. Therefore, we consider a fully con-
nected graph which enforces geometric consistency be-
tween all feature pairs. But in the case of severe view-point
changes and object deformations this may lead to geomet-
ric inflexibilities. To balance this effect gracefully, we in-
clude a damping function δ(·) which reduces the influence
of the binary term if both feature pairs are far away from
each other. This is done by a sigmoid function, i.e.

δ(k, k′, lk, lk′) =
1

1 + e−(dmin−do)/σδ
, (8)

dmin := min(‖xI1k − x
I1
k′‖/DI1 , ‖x

I2
k − x

I2
k′‖/DI2), (9)

where do and σδ determines the offset and steepness. This
term depends on the object scale and we set it to one if no
bounding box information is available.

Model properties. Our model is invariant to translation
and scale but due to the use of absolute angles it is rotation
dependent. By setting pairwise costs of two assignments
with one identical feature to infinity, for example if two
key feature have the same matching candidate, our model
produces valid one-to-one matchings. But this occurs very
rarely and the overall influence of this constraint is very lim-
ited.

3.4. Object-proposal guided matching

In this section, we consider the unconstrained setting
of aligning objects without bounding box annotations and
background clutter. To reduce the resulting matching am-
biguities we utilize generic object proposal methods [45]
inspired by Ham et al. [20]. In particular we modify the
key feature extraction approach and introduce an additional
unary and binary term.

Unary objectness potential. For each image we assume
that one object proposal r̂ in the set of all extracted propos-
als R exists, which covers the object to be matched per-
fectly. Then we estimate the probability of a pixel x being
in r̂ with the following marginal probability over all region
proposals,

p(x|R) =
∑
r∈R

p(x|r)p(r|R) ≈
∑

r∈R({x})

p(r|R), (10)

where R(P) denotes object proposals containing all pixels
in the set P . Notice, the probability p(x|r) is zero if x /∈
r and in the other case we assume a uniform distribution,
since we do not consider restrictions regarding the object
position. We estimate the second probability with a Gibbs
distribution over the object proposal scores and obtain our
final pixel-wise object probability, which is given by

p(x|R) = 1

Z

∑
r∈R(x)

eβsobj (r), (11)

(a) (b) (c)

Figure 5: Thin plate spline transformation from source im-
age (a) to target image (b) using the estimated point corre-
spondences, where image (c) shows the warped result.

where Z is the partition function of the Gibbs distribution
and sobj (·) the region proposal score function. We utilize
this objectness prior in two ways. Firstly, we include this as
an additional unary term,

ψuok (lk) = −λuo
∑
j=1,2

log p
(
x
Ij
k |R

)
, (12)

in our energy function (2) with a weighting factor λuo. Sec-
ondly, we utilize the pixel-wise object probability as an ad-
ditional criterion for our key feature selection, such that our
selection approach focuses on regions where the probabil-
ity is high that the object is located there. In Fig. 2 some
examples of object probability maps are shown.

Binary objectness potential. Besides the unary term we
include an additional binary term. Given object proposal
sets R1, R2 in images I1, I2, respectively, we estimate the
probability that key features k, k′ are assigned to hypotheses
lk, lk′ and both are lying inside the dominant object, with
the marginal distribution

p (lk, lk′ |R,R′) =∑
r1∈R1(k,k

′)
r2∈R2(k,k

′)

p (lk, lk′ |r1, r2)p(r1, r2|R1,R2) , (13)

where Rj(k, k′) := Rj({x(j)k , x
(j)
k′ }). Again, the second

probability is zero if one of the assigned features is not lo-
cated in one of the object proposals. Since the dominant ob-
jects in both images belong to the same category we model
the second probability with a Gibbs distribution, which fa-
vors similar appearance and aspect ratio of proposals r1 and
r2. Regarding the first probability, we use the given ob-
ject proposals as reference frames and model it as a Gibbs
distribution favoring similar edge lengths ‖xI1k − x

I1
k′‖ and

‖xI2k − x
I2
k′‖ relative to the diagonals of r1 and r2. Analo-

gously to the unary prior, we include the probability (13) as
an additional binary term,

ψbok,k′(lk, lk′) = −λbo log p
(
lk, lk′ |R1,R2

)
, (14)

in our matching energy with a weighting factor λbo.



(a) Source. (b) Target. (c) DSP. (d) Ours. (e) Source. (f) Target. (g) DSP. (h) Ours.

Figure 6: Qualitative examples on the PASCAL-Part dataset [7]. Column (a), (b): Source and target image. Column (c), (d):
Warping results using DSP and our method. Column (e), (f): Annotated part segments for source and target image. Column
(g), (h): Predicted part correspondences using DSP and our method. (Best viewed in pdf.)

Methods aero bike boat bottle bus car chair table mbike sofa train tv Avg.
Ours 0.23 0.36 0.05 0.36 0.45 0.42 0.14 0.08 0.23 0.18 0.16 0.33 0.25
Ours (EB) 0.23 0.31 0.05 0.37 0.41 0.38 0.14 0.08 0.20 0.19 0.17 0.33 0.24
Ours (NN) 0.20 0.21 0.04 0.21 0.29 0.29 0.06 0.03 0.11 0.09 0.10 0.19 0.15
DSP [28] 0.17 0.3 0.05 0.19 0.33 0.34 0.09 0.03 0.17 0.12 0.12 0.18 0.17
Collection Flow [27] 0.16 0.17 0.04 0.31 0.25 0.16 0.09 0.02 0.08 0.07 0.06 0.09 0.12
RASL [38] 0.18 0.17 0.04 0.33 0.31 0.17 0.09 0.04 0.12 0.1 0.11 0.23 0.16
Congealing [30] 0.12 0.23 0.03 0.22 0.19 0.14 0.06 0.04 0.12 0.07 0.08 0.06 0.11
Flow Web [49] 0.29 0.41 0.04 0.34 0.54 0.5 0.14 0.04 0.21 0.15 0.15 0.33 0.26

Table 1: PCK on 12 rigid PASCAL-Part classes using FlowWeb [49] clusters (α = 0.05).

Methods IOU PCK
Ours 0.43 0.25
Proposal Flow [20] 0.41 0.17
Congealing [30] 0.38 0.11
RASL [38] 0.39 0.16
Collection Flow [27] 0.38 0.12
DSP [28] 0.39 0.17
Flow Web [49] 0.43 0.26

Table 2: Evaluation of dense flow field on the PASCAL-Part
dataset following the FlowWeb [49] evaluation protocol.

3.5. Inference

The discrete optimization problem in Equ. 2 is an In-
teger Quadratic Program (IQP) which is NP hard and opti-
mization methods with polynomial complexity do not exist.
Therefore, we have to use approximate inference methods.
For solving the optimization problem we use the discrete
graphical model library OpenGM [2] and use the fusion al-
gorithm from Kappes et al. [26] for inference, where we
choose Loopy Belief Propagation [17] as proposal generator
and Lazy Flipping of search depth 2 [1] as fusion operator.

3.6. Semantic flow field

Depending on the input image pair, our sparse graph
matching gives a set of 30-60 point correspondences, see
Fig. 4. In most cases, these are quite uniformly distributed
over the whole object and a standard TPS [5, 14] then gen-

eralizes this to a dense flow field, see Fig. 5.

4. Experimental evaluation
In this chapter we present comparative evaluations and

diagnostic experiments using the publicly available bench-
mark datasets of PASCAL-Part [7] and Proposal Flow [20].

4.1. Key feature based matching

Firstly, we evaluate our key feature based matching in
the setting of known object locations. We measure the ac-
curacy of transferred keypoints and segmentation masks by
following the evaluation protocol of FlowWeb [49]. The
dataset consists of representative viewpoint clusters of the
PASCAL-Part dataset [7]. In addition, body part masks and
keypoint annotations are provided [46].

Experimental details. We pad images by 24 pixels on
all sides and upscale them to 721 pixels maximum dimen-
sion. We set the number of key features K per image to
35 and the number of hypotheses H to 10. The key feature
selection is restricted to the first three pyramid levels. Since
object location and scale is given we utilize all MRF terms
introduced in Sect. 3.3. We determined the parameters of
our MRF using cross-validation on a small subset.

Part segment matching. We evaluate the quality of
estimated flow fields based on the transformation of part
segmentation masks. As quantitative measure, we use the
weighted intersection over union (IOU), where the weights
are determined by the area of each part. For classes without



Method car(S) car(G) car(M) duck(S) mot(S) mot(G) mot(M) win(w/o C) win(w/ C) win(M) Avg.
Ours 0.91 0.67 0.66 0.77 0.63 0.35 0.4 0.88 0.67 0.8 0.68
Ours (w/o BOP) 0.9 0.66 0.67 0.74 0.62 0.35 0.4 0.89 0.63 0.78 0.66
Ours (w/o BOP,UOP) 0.86 0.66 0.62 0.61 0.55 0.33 0.34 0.83 0.63 0.78 0.62
LOM [20] 1.0 0.59 0.51 0.65 0.47 0.27 0.27 0.91 0.41 0.67 0.56

Table 3: Detailed per class PCK comparison (α = 0.1) between Proposal flow [20] and our approach.

Method PCK
Ours 0.68
LOM [20] 0.56
GMK [15] 0.27
SIFT Flow [32] 0.38
DSP [28] 0.37

Table 4: PCK evaluation (α = 0.1) of dense flow field on
the PF dataset.

part annotations, object silhouettes are used. In Table 2 the
mean IOU value over all classes is provided. Our method
outperforms all other pairwise correspondence methods and
only Flow Web shows similar performance. Fig. 6 shows
two qualitative examples.

Keypoint matching. For measuring keypoint transfor-
mation accuracy we use the percentage of correct keypoints
(PCK) [47]. Each keypoint is transferred using the esti-
mated flow field and we determine whether the keypoint is
transferred correctly by measuring the Euclidean distance
between predicted and annotated ground-truth correspon-
dences. The predicted correspondence is correct if the Eu-
clidean distance is lower than α ·max(H,W ), whereH and
W are the image height and width. The mean PCK values
(α = 0.05) over all classes are reported in Tab. 2 and a more
detailed comparison per class in Tab. 1. Our method signifi-
cantly outperforms all methods except for Flow Web, which
is rather a post-processing method since it refines initial cor-
respondences using cycle constraints between several im-
ages. Notice, we also showed significant improvement over
DSP which is comparable to Long et al. [33].

Key feature selection. To demonstrate the influence of
our proposed key feature selection method we perform the
same experiment using the objectness score of EdgeBox
[51]. To do so we compute the scores for each patch which
belongs to a concatenation of 5× 5 cells within a given fea-
ture pyramid and apply non-maximum suppression to get a
good coverage of the image. The results are summarized
in Tab. 1, where (EB) denotes the EdgeBox based selec-
tion procedure. Our specific feature detection improves the
overall performance.

Nearest neighbour matching. We investigated the ef-
fect of nearest neighbor (NN) matching without any spatial

constraint, see Tab. 1. The drastic performance drop shows
the importance of our spatial regularization.

4.2. Object proposal guided matching

In this section, we evaluate our object proposal guided
matching and follow the evaluation protocol of the Pro-
posal Flow [20] benchmark. The dataset contains images
with background clutter, intra-class variations, viewpoint
changes and deformations. It consists of 4 main classes
with several sub-classes according to background clutter
and viewpoint changes 1.

Experimental details. We pad images by 64 pixels on
all sides and upscale them to 931 pixels maximum dimen-
sion. Wet set the number of key features K to 35 and num-
ber of candidate matches to 5. The key feature selection
is restricted to the first 4 pyramid levels. Since no bound-
ing box annotations are available we neglect the MRF terms
(6) and (8). Therefore, the only spatial regularization is en-
forced by the angle between edges. For the unary and binary
objectness potentials we extract around 1000 object propos-
als using Selective Search [45]. The similarity between ob-
ject proposals in Equ. 13 are determined using cosine sim-
ilarity of the associated cells in the feature pyramid, where
we use bilinear interpolation to get the same feature dimen-
sionality. We determine the parameters of the MRF using
cross-validation on a small subset. The time for inference
during testing (including terms (3), (4), (12),(14)) is about
10 seconds.

Keypoint matching. Considering the keypoint match-
ing accuracy, the variables H and W are now height and
width of the rectangle drawn by annotated keypoints. In
Tab. 4 we give a quantitative comparison with several se-
mantic flow methods for α = 0.1. Our approach signifi-
cantly outperforms all methods. In Tab. 3 we give a detailed
per class comparison with Proposal Flow [20]. Our method
shows superior results for all classes, except for cars from
the side and wine bottles without background clutter. For
these classes a translation with unequal scaling is sufficient
for getting a good alignment of keypoints. The table indi-
cates that the classes mot(S) and mot(M) are much more

1The abbreviations (S) and (G) stand for side and general viewpoints
and (C) for background clutter. The (M) indicates a mixture of images,
i.e. mixed viewpoints for the class cars and a mixture of images with and
without background clutter for the class wine bottles.



(a) Source (b) Target (c) SIFT Flow (d) DSP (e) PF (f) Ours (g) GT-TPS

Figure 7: Qualitative examples on the Proposal Flow dataset [20]. The source image (a) is warped to the target image (b)
using various methods: SIFT Flow [32] (c), DSP [28] (d), Proposal Flow [20] (with SS and HOG) (e), our method (f) and
TPS [5, 14] using annotated keypoints.

difficult compared to the rest. This is reasonable since a
lot of the motorbikes are tilted or turned sideways and our
model is not invariant against rotations. Fig. 7 gives some
qualitative examples. Overall our method is more robust
against view-point changes and background clutter.

Unary and binary objectness potentials. For evaluat-
ing the influence of the additional terms of our object pro-
posal guided matching, we perform the following ablation
studies. First we set the binary (w/o BOP) and then the
binary and unary (w/o BOP,UOP) terms in addition with
the modified key feature selection to zero and run our al-
gorithm again, see Tab. 3. The unary term has overall
more influence. This is reasonable since it guides assign-
ments towards object like structures. We also measured the
percentage of inlier correspondences between both objects.
Therefore, we manually labeled ground-truth boxes cover-
ing the whole object, and measured the percentage of cor-
respondences lying in both bounding boxes. By including
the unary and binary objectness potentials the percentage of
inliers increases from 60 to 88 percent.

5. Conclusion

We have presented a semantic matching algorithm using
standard pre-trained CNN features without additional data
or training. Our approach is based on a convolutional fea-
ture pyramid representation in combination with a salient
feature selection method for extracting discriminative de-
scriptors. Tailored to these descriptors we have proposed a
candidate driven MRF matching formulation which circum-
vents the combinatorically difficult one-to-one matching
constraint. Moreover, we have improved our method for the
challenging task of matching unknown objects across differ-
ent scenes by introducing new object-proposal based match-
ing constraints, which leads to the majority of sparse corre-
spondences are lying inside the unknown object bounding
boxes. Experiments have shown competitive performance
on standard semantic matching benchmark datasets.
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