
A new approach for defect detection in X-ray
CT images

Abstract. We introduce a novel method to automatically evaluate X-
ray computed tomography (CT) images for the purpose of detecting
material defects by evaluating the significance of features extracted by
first order derivative filters. We determine the noise characteristics of an
image using robust estimation methods and compute the noise of the
filtered image via error propagation. The significance of these features
can then be evaluated based on the signal-to-noise ratio in the filtered
image. The major benefit of that procedure is, that a sample-independent
threshold on the signal-to-noise ratio can be chosen. The results are
demonstrated on parts drawn from an industrial manufacturing line.

1 Introduction

X-ray computed tomography (CT) enjoys a growing interest in industrial quality
control as it can be used on a wide range of products and provides detailed
information about otherwise unaccessible features. Major application areas are
the inspection of castings, the detection of gas bubbles or inclusions and cracks.
Image processing algorithms should be robust to cope with the noise and poor
contrast characteristic of X-ray images.

1.1 Review of related work

An overview of methods for flaw detection in castings is given in [1]. In early
methods, the image data are compared to data obtained from a reference object.
This approach requires either exact repositioning of the probes or a matching of
the image data, which is non-trivial and computationally expensive. Also, these
methods cannot allow for tolerances in the manufacturing process. In the case
of castings it is not even possible to produce a reference part that is totally free
of defects. Here, the question is rather whether or not these defects are critical.
An alternative strategy is to generate a reference object from the image data
themselves. Several such methods have been proposed, most of which are based
on modifications of median filtering techniques [2,3,4,5,6]. They basically differ
in the way the filter masks are adapted to the structure of the object and the
choice of threshold value for fault detection. However, these methods have diffi-
culty in detecting small low-contrast defects such as cracks. Also, the threshold
values are chosen either empirically or based on rarely justified assumptions such
as two-mode histograms.
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In another approach, local areas are analyzed for defects based on their
Fourier transform [7]. This technique, however, does not distinguish between
defects and noise. Multi-resolution image analysis [8] has similar drawbacks, i.e.
poor performance on low-contrast noisy images.

This paper suggests a solution to both, the challenge to detect coherent
structures in noisy images, and the issue of systematically choosing the proper
threshold for detection.

2 Modeling and descriptive statistics of the image

We model the absorption g(x) of an intact object as locally homogeneous with
added correlated isotropic normal noise. In other words, we interpret the data
as realization of a stochastic process with drift (the mean is only locally con-
stant). The covariance structure is assumed constant throughout the random
field (homoscedasticity), and it is estimated based on a homogeneous training
region (see fig. 2a). The probability of a voxel being intact can then be estimated
using statistical tests at a chosen significance level. If a moderate significance
level is chosen to reduce errors of the second kind1, a large number of pseudo
errors result — at a significance level of 95%, for instance, (1− 0.95) · 103 = 50
pixels will be marked as defect in an intact cube with a length of 10 pixels. We
therefore need to apply techniques that smooth out the noise and enhance the
defects (section 3). If we still wish to calculate probabilities, we need to see what
happens to the noise under the filtering operations, see section 4.

3 Defect Enhancement

The key to defect enhancement is to detect oriented structures within the im-
age. Commonly used techniques are tensorial approaches, which are discussed
in [9,10,11,12]. These methods require eigenvalue computation for each pixel,
which results in a computationally expensive procedure. In addition they yield
equal responses to edges and to noise. As an alternative, we suggest to simply
take the square of locally averaged derivates as an edge detector.This suppresses
the noise and - add the same time - enhances pixels within areas of coherent
grey value structure. The corresponding operator looks like this:

F {g(x)} =
3∑
p=1

(∫
w(x− x′)∂g(x′)

∂xp
dx′
)2

(1)

where p runs over the spatial directions. Fig. 1 shows the result obtained on
an artificial image with a defect simulated as a vertical crack in the center. The
crack appears as a signal in front of the noisy background. The transformations
can be implemented discretely by applying x-,y- and z-derivative and smoothing
filters to the image g(x) and summing the square of these terms.

1 In this context, an error of the second kind means classifying a defect voxel as intact.
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Fig. 1: Artificial test image. Upper left: XY cross section through artificial volume
data with a planar crack parallel to the YZ plane. We added uncorrelated normal
noise (with standard deviation σ = 20) to the image and finally convolved it with
a binomial mask of size 5 to obtain correlated noise. Upper right: Test image after
filtering according to (1). Lower left: horizontal cross section through the upper
left image displayed as a signal. Lower right: horizontal cross section through
the processed image.

4 Error propagation

This section details how the transformation in (1) affects the noise. Differenti-
ation and smoothing are performed by a single filter f . This can be expressed
as

g′(i,j,k) =
r∑

{l,m,n}=−r

f(l,m,n)g(i−l,j−m,k−n) (2)

If the image is modeled as a random field as described in section 2, the
variance of g′(i,j,k) is

σ2
(i,j,k) = E

[(
g′(i,j,k) − E

[
g′(i,j,k)

])2
]
, (3)
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where E denotes expectation. We substitute (2) into (3), rearrange terms and
compute the expectation value term by term in order to obtain

σ2
(i,j,k) =

r∑
{l,m,n,o,p,q}=−r

f(l,m,n)f(o,p,q)

E
[(
g(i−l,j−m,k−n) − E

[
g(i−l,j−m,k−n)

]) (
g(i−o,j−p,k−q) − E

[
g(i−o,j−p,k−q)

])]
(4)

Eq. 4 can be rewritten as

σ2
(i,j,k) =

r∑
{l,m,n,o,p,q}=−r

f(l,m,n)f(o,p,q)Cov(i− l, j −m, k − n, i− o, j − p, k − q).

(5)
As mentioned above, we assume the covariance function to be constant over

space so that the variance at a pixel becomes

σ2 =
r∑

{l,m,n,o,p,q=−r}

f(l,m,n)f(o,p,q)Cov(l − o, n− p, n− q). (6)

The value of σ2 is determined based on a training region as shown in Fig. 2a.
The size of that region has to be at least 2 times the filter size in each direction,
so that all covariances in (6) can be accounted for. It might be larger for the
benefit of statistically more precise results at the cost of execution time. The
average grey value used in the covariance matrix corresponds to the arithmetic
mean within the training region. Fig. 2 illustrates that it is indeed necessary
to include the off-diagonal terms of the covariance function in (6): The noise is
highly correlated.

To compute the square of the random variables in (1) consider a Gaussian
random variable y with zero mean and variance σ2

y. The variance of y2 is by
definition

σ2
y2 = E[y4]− E[y2]2 (7)

and

E[y2]2 = σ4
y (8)

E[y4] = 3σ4
y (9)

Substituting (8) and (9) in (7) yields

σ2
y2 = 2σ4

y (10)
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Fig. 2: Analyzing the correlation of the noise in real data. Left: Homogenous
region within a real object; right: Autocovariance vs. distance for the image to
the left. The noise within that region is highly correlated, as can be seen from
the slowly decaying autocovariance function (note the scale on the vertical axis).

The last step of (1) consists in taking the sum of random variables. Even
though the derivatives of a random field are spatially correlated, the deriva-
tives with respect to different spatial directions taken at the same point are
uncorrelated in an isotropic random field. Assuming isotropy, the variance of
the sum in (1) is equal to the sum of the individual variances. Using that and
equations (6) and (10) we note that the variance σ2

F of the filtered image becomes

σ2
F = 6σ4 (11)

where σ2 is given by (6). We finally compute the signal-to-noise ratio:

SNRF =
F {g(x)}

σF
(12)

There is one drawback of this operator with respect to the purpose of de-
tecting cracks: Since it yields the strongest response in areas where there is a
predominating gradient direction across a local neighborhood, it will yield a
stronger response to edges than to cracks. We attempted to work around this
problem by subtracting the original image from the image obtained after a clos-
ing operation. While defects disappear after the closing, edges should remain
relatively unchanged. This worked on some data, but did not prove to be a re-
liable method in general. At this point, therefore, we merely have to exclude
regions close to the object boundary from consideration. In other words: We can
so far only detect defects in the interior of the object and label the remaining
part of the image as invalid. To determine the valid region we choose a global
threshold, which we determine dynamically from the histogram as described in
the following section.
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Fig. 3: Approximate segmentation of the data. Left: Cross section through a
CT-image of a massive steel part with a crack, that has to be detected; right:
Typical histogram of a one-component object after smoothing. The threshold
value is placed at the minimum between the two peaks

5 Excluding the boundary region

Fig. 3 shows a histogram typical for one-component CT-images with strong X-
ray absorption: It actually contains two major peaks, the right one of coming
from the material itself and the other one arising due to artefacts in the outer
region close to the object. Based on this grey value distribution, we perform
an approximate segmentation by choosing the minimum between the two major
peaks as a threshold. To ensure the uniqueness of this minimum, we apply an
iterative smoothing algorithm to the histogram, which works as follows: Smooth
the histogram with a (3× 1) binomial mask, count the total number of maxima
and repeat this procedure until we’re left with exactly two maxima. This strategy
allows an approximate distinction between object and background for one- as
well as for multiple-component images. We then define the interior region of the
object by eroding the binarized image. Defect detection will only be meaningful
within the thus obtained region.

6 Experimental Results

Fig. 4 summarizes the defect detection algorithm and quantifies the parameters
used. We apply the operator described by (12) to the original image and detect
defects by applying a threshold on the region of interest, that excludes areas close
to the object boundaries. The left picture of Fig. 5 shows the original image
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Fig. 5: Left: Data set shown in fig. 3 after filtering with f. 3D Image size:
511 × 511 × 280 pixels; center: the left image binarized at a threshold of 1;
right binarization at 13.

Fig. 4: Schematic summary of the image pro-
cessing procedure. Parameters: f: (5 × 5 × 5)
Gaussian convolved with (3× 3× 3) derivative
operator; number of components: 1; mask size
used for erosion: (5× 1) applied in each direc-
tion.

processed according to (12).
The center and right figures
show the processed image bi-
narized at a threshold value of
1 and 13 respectively. The fil-
ter f is generated by convolv-
ing a (5× 5× 5) Gaussian with
the (3× 3× 3×) derivative op-
erator [13], that has been opti-
mized for isotropy. The image
is filtered accordingly, whereby
we took advantage of filter sep-
arability, of course. The other
parameters are the number of
components - one in the ex-
ample - and the size of the
mask used for eroding the re-
gion that has been determined
to be the object region after
the histogram-based threshold-
ing explained in the previous
section. For faster processing
it is desirable to process the
image at a lower-than-original
resolution as the feature size
permits. In the example the
crack could still be detected
savely at half the original res-
olution.
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7 Conclusion

We proposed a rather general method to detect defects in CT-images as struc-
tural deviations from the local background. We demonstrated its effectiveness
on cracks, which are difficult to detect with other methods. Other than earlier
publications, we used linear filters together with neighborhoud information to
emphasize the defects, and - in addition - outlined a mechanism that allows for
a rather systematic than heuristic choice of the detection threshold. We intend
to apply the framework to other types of faults by adapting the linear filter used
for defect enhancement.
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