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Abstract. We address a current problem in industrial quality control, the detec-
tion of defects in a laser welding process. The process is observed by means of a
high-speed camera, and the task is complicated by the fact that very high sensi-
tivity is required in spite of a highly dynamic / noisy background and that large
amounts of data need to be processed online. In a first stage, individual images are
rated and these results are then aggregated in a second stage to come to an overall
decision concerning the entire sequence. Classification of individual images is by
means of a polynomial classifier, and both its parameters and the optimal subset
of features extracted from the images are optimized jointly in the framework of a
wrapper optimization. The search for an optimal subset of features is performed
using a range of different sequential and parallel search strategies including genetic
algorithms.

1 Introduction

Techniques from data mining have gained much importance in industrial ap-
plications in recent years. The reasons are increasing requirements of quality,
speed and cost minimization and the automation of high-level tasks previ-
ously performed by human operators, especially in image processing. Since
the data streams acquired by modern sensors grow at least as fast as the pro-
cessing power of computers, more efficient algorithms are required in spite of
Moor’s law.

The industrial application introduced here is an automated supervision
of a laser welding process. A HDRC (High-Dynamic-Range-CMOS) sensor
records a welding process on an injection valve. It acquires over 1000 frames
with a resolution of 64×64 pixels per second. The aim is to detect welding
processes which are characterized by sputter, i.e. the ejection of metal par-
ticles from the keyhole, see Fig. 1. These events are rare and occur at most
once in a batch of 1000 valves. Potential follow-up costs of a missed detection
are high and thus a detection with high sensitivity is imperative, while a
specificity below 100% is tolerable.

The online handling and processing of the large amounts of raw data is
particularly difficult; an analysis becomes possible if appropriate features are
extracted which can represent the process. Of the large set of all conceivable
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Fig. 1. Top row, left: original frame (64 × 64) from laser welding process, show-
ing a harmless perturbation which should not be detected. Middle: image of the
estimated pixel-wise standard deviations, illustrating in which areas the keyhole is
most dynamic. Right: pixels which exceed the expected deviation from the mean are
marked. Large aggregations of marked pixels are merged to an “object hypothesis”.
Bottom row: as above, but for original image showing a few sputter that should be
detected.

features, we should choose the ones that maximize the classification perfor-
mance on an entire sequence of images. An exhaustive evaluation of all possi-
ble combinations of both features and classifiers is usually too expensive. On
the other hand, the recognition performance using a manually chosen feature
set is not sufficient in most cases. An intermediate strategy is desired and
proposed here: section 2 introduces a two-stage classification system which is
optimized using the wrapper approach (section 3) while experimental results
are given in section 4.

2 Two-stage classification

2.1 Motivation

While the task is to evaluate the entire sequence of images, we have im-
plemented a divide-and-conquer strategy which focuses on individual images
first. In particular, we use a very conservative classifier on individual im-
ages: even if there is only a weak indication of an abnormality, the presumed
sputter is segmented from the background and stored as an object hypothesis.
Evidence for a sputter is substantiated only if several such hypotheses appear
in consecutive frames.

The advantage of a simple classification in the first stage is the fast evalu-
ation and adaptation of the classifier. The second stage aggregates classifica-
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tions derived from individual images into an overall decision with increased
reliability.

2.2 First stage – object classification

In the first stage, object hypotheses from single images are extracted and
classified.

In particular, an image of pixel-wise means and an image of pixel-wise
standard deviations are computed from the entire sequence. Deviations from
the mean, which are larger than a constant (e.g. ∈ [2.0, 4.0]) times the stan-
dard deviation at that pixel are marked as suspicious (Brocke (2002), Hader
(2003)). Sufficiently large agglomerations of suspicious pixels then become an
object hypothesis Ot,i with indices for time t and object number i. Next, fea-
tures such as area, eccentricity, intensity, etc. (Teague (1980)) are computed
for all object hypotheses.1 Based on these features, we compute (see section
2.4) an index d(Ot,i) ∈ [0, 1] for membership of object hypothesis Ot,i in class
“sputter”.

2.3 Second stage – image sequence classification

The first stage leaves us with a number of object hypotheses and their class
membership indices. Sputters appear in more than one consecutive frame,
whereas random fluctuations have less temporal correlation. The second stage
exploits this temporal information by aggregating the membership indices
into a single decision for the entire sequence as follows: for each frame, we
retain only the highest membership index: dt := maxi d(Ot,i). If there is no
hypothesis in a frame, the value is set to 0. The dt can be aggregated using
a variety of functions. We use a sliding window located at time t, and apply
the

∑
,
∏

,min operators to the indices dt, . . . , dt+w−1 to obtain aggregating
functions aw(t). The length of the time window w is arbitrary, but should
be no longer than the shortest sputter event in the training database. The
largest value of the aggregate function then gives the decision index for the
entire sequence,

dsequence = max
t∈T

aw(t) (1)

If dsequence exceeds a threshold Θ, the entire sequence is classified as defective,
otherwise as faultless. The optimum value for the threshold Θ depends on
the loss function, see section 3.

1 This list of features is arbitrarily expandable and previous knowledge on which
(subset of) features are useful is not necessary, see section 3.1.
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2.4 Polynomial classifier

The choice of the classifier used in the first stage is arbitrary. We use the
polynomial classifier (PC, Schürmann (1996)) which offers a high degree of
flexibility if sufficiently high degrees are used. Since it performs a least-squares
minimization, the optimization problem is convex and its solution unique.
Training is by solving linear system of equations and is faster than that of
classifiers like multilayer perceptrons or support vector machines (LeCun et
al. (1995)), which is important in case the training is performed repeatedly
such as a wrapper optimization (section 3.1). PCs have essentially only one
free parameter, the polynomial degree.

In the development stage, a tedious manual labeling of image sequences
is required to assemble a training set. Based on an initial training set and
the resultant classifier, further sequences can be investigated. The variance
of predictions for single object hypotheses can be estimated and those for
which a large variance is found can be assumed to be different from the ones
already in the training set and added to it. In particular, under a number
of assumptions (uncorrelated residuals with zero mean and variance σ2) the
variance of a prediction can be estimated by σ2xT (XT X)−1x where X is
the matrix of all explanatory variables (features and monomials formed from
these) for all observations in the training set, and x is the new observation
(Seeber and Lee (2003)).

3 System optimization

As stated above, sensitivity is of utmost importance in our application, while
an imperfect specificity can be afforded. These requirements are met by opti-
mizing the detection threshold Θ such that the overall cost is minimized. The
losses incurred by missed detections or false positives are given by LNIO,IO

and LIO,NIO, respectively, with the former much larger than the latter.
It is customary to arrange the loss function in a matrix as shown below:

L =
∣∣∣∣

LIO,IO LIO,NIO

LNIO,IO LNIO,NIO

∣∣∣∣ , LIO,IO = LNIO,NIO = 0, LIO,NIO � LNIO,IO

The first index gives the true class, the second one the estimated class, with
IO faultless, and NIO defective. The aim is to find a decision function which
minimizes the Bayes risk r = E{L}. A missed NIO part makes for a large
contribution to the risk r̂.

The generalization error of a given feature subset and classifier is esti-
mated from the bins that are held out in a k-fold cross-validation (CV). 5-
or 10-fold CV is computationally faster than leave-one-out and is a viable
choice in the framework of a wrapper algorithm; moreover, these have per-
formed well in a study by Breiman and Spector (1992).
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3.1 Wrapper approach

We see great potential in the testing of different feature subsets. In earlier
applications the filter approach (which eliminates highly correlated variables
or selects those that correlate with the response) was the first step in finding
the relevant features. The filter approach attempts to assess the importance
of features from the data alone. In contrast, the wrapper approach selects
features using the induction algorithm as a black box without knowledge of
feature context (Kohavi and John (1997)). The evaluation of a large number
of different subsets of features with a classifier is possible only with computa-
tionally efficient procedures such as the PC. We use the wrapper approach to
simultaneously choose the feature subset, the polynomial degree G, the oper-
ator in the aggregation function a, the window width w and the threshold Θ.
Evaluating a range of polynomial degrees 1, . . . , G is expensive; in section 3.3
we show how PCs with degree < G can be evaluated at little extra cost.

3.2 Search strategies in feature subsets

The evaluation of all 2n combinations of n individual features is usually
prohibitive. We need smart strategies to get as close as possible to the global
optimum without an exhaustive search. Greedy sequential search strategies
are among the simplest methods, with two principal approaches, sequential
forward selection (SFS) and sequential backward elimination (SBE). SFS
starts with an empty set and iteratively selects from the remaining features
the one which leads to the greatest increase in performance. Conversely, SBE
begins with the complete feature set and iteratively eliminates the feature
that leads to the greatest improvement or smallest loss in performance. Both
SFS and SBE have a reduced complexity of O(n2). Both heuristics can miss
the global optimum because once a feature is selected/eliminated, it is never
replaced again.

A less greedy strategy is required to reach the global optimum. In particu-
lar, locally suboptimal steps can increase the search range. We use a modified
BEAM algorithm (Aha and Bankert (1995)) in which not only the best, but
the q best local steps are stored in a queue and explored systematically. De-
viating from the original BEAM algorithm, we allow either the adding of an
unused feature or the exchange of a selected with an unused feature.

Another global optimization method are genetic algorithms (GAs), which
represent each feature subset as member of a population. Individuals can
mutate (add or lose a feature) and mate with others (partly copy each other’s
feature subsets), where the probability of mating increases with the predictive
performance of the individuals / subsets involved. It is thus possible to find
solutions beyond the paths of a greedy sequential search. A disadvantage is
the large number of parameters that need to be adjusted and the suboptimal
performance that can result if the choice is poor.
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3.3 Efficiency

The analysis of the runtime is important to understand the potential of the
PC for speed-up. A naive measure of the computational effort is the total
count of multiplications. Although it is just a “quick and dirty” method
ignoring memory traffic and other overheads, it provides good predictions.

Solution of the normal equation

E{xxT } · A = E{xyT } (2)

with x a column vector specifying the basis functions (i.e. the monomials built
from the original features) of an individual observation, y a vector which is
[1 0]T for one class and [0 1]T for the other, and A the coefficient matrix.
The expectation values are also called moment matrices.

The computational effort mainly consists of two steps: estimation of the
moment matrix E{xxT } and its inversion. The former requires D2N multi-
plications, with N the number of observations and D =

(
F+G

G

)
the dimension

of x, that is the feature space obtained by using all F original features as
well as all monomials thereof up to degree G.

In CV, the data is partitioned into k bins; accordingly, the N ×D design
matrix X can be partitioned into Ni × D matrices Xi, with

∑k
i=1 Ni = N .

The moment matrices are estimated for each bin separately by XT
i Xi. For

the jth training in the course of a k-fold CV, the required correlation matrix
is obtained from

XT
−jX−j =

∑

i�=j

XT
i Xi (3)

that is, D × D matrices are added only.
In summary, while the correlation matrices need to be inverted in each

of the k runs in a k-fold CV (requiring a total of k 2
3D3 multiplications for a

Gauss-Jordan elimination), they are recomputed at the cost of a few additions
or subtractions only once the correlation matrices for individual bins have
been built (requiring a total of D2N multiplications).

In addition, once the correlation matrix for a full feature set F and poly-
nomial degree G has been estimated, all moment matrices for F ′ ⊆ F and
G′ ≤ G are obtained by a mere elimination of appropriate rows and columns.

4 Experimental results

The system has been tested on a dataset of 633 IO and 150 NIO image
sequences which comprise a total of 5294 object hypotheses that have been
labeled by a human expert. A large part of the IO sequences selected for
training were “difficult” cases with sputter look-alikes. The loss function used
was LIO,NIO = 1 and LNIO,IO = 100 and generalization performance was
estimated using a single 10-fold CV. A total of 19 features were computed for
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Fig. 2. Each point gives the generalization performance, as estimated by CV, for
a particular subset of features and an optimized classifier. For a given subset, all
classifier parameters such as aggregation function operator and its window width,
degree of polynomial, and threshold Θ, were optimized using a grid search.

each object hypothesis. The four subset selection strategies described were
tested. For the modified BEAM algorithm, the parameter q = 5 and 20
generations were used. The GA ran for 50 generations with 60 individuals
each.

Results are shown in Fig. 2. SBE works better than SFS on average,
though their best results are similar (r̂ = 0.015 and 0.014). BEAM and GA
offer minor improvements (r̂ = 0.010 and 0.012) only.

Surprisingly, the final optimized system recognizes individual object hy-
potheses with a low accuracy: r̂ = 0.341 with LNon−Sputter,Sputter = 10 and
LSputter,Non−Sputter = 1. The high performance obtained in the end is en-
tirely due to the temporal aggregation of evidence from individual frames.

Figure 3 shows the results obtained when the membership index d(Ot,i)
is not given by the object estimate obtained from the PC, but by the lower
bound of an interval estimate to reflect the strongly asymmetric loss function.
Overall classification accuracy is not improved, but the magnitude of the
interval can help identifying sequences that ought to be labeled manually
and should be included in future training sets.

5 Conclusion and outlook

Since the number of objects, N , is typically much larger than the number of
basis functions, D, the most expensive part in training a PC is the compu-
tation of the correlation matrix and not its inversion. Recomputations of the
former can be avoided in the framework of cross-validation, as illustrated in
section 3.3 For our particular data set, advanced subset selection strategies
did not lead to a much improved performance.
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Fig. 3. Results obtained when replacing object estimates of class membership in
individual images with the lower bound of interval estimates, see section 2.4.

Even though all features computed on object hypotheses were chosen with
the aim of describing the phenomenon well, the generalization performance
varies greatly with the particular subset that is chosen in a specific classifier.
A systematic search for the optimal subset is thus well worth while, and is
made possible by the low computational cost of the PC which allows for a
systematic joint optimization of parameters and feature subset.
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