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Abstract We present a two-stage approach to the simulta-
neous detection and registration of multiple instances of in-
dustrial 3D objects in unstructured noisy range data. The
first non-local processing stage takes all data into account
and computes in parallel multiple localizations of the object
along with rough pose estimates. The second stage computes
accurate registrations for all detected object instances indi-
vidually by using local optimization.

Both stages are designed using advanced numerical tech-
niques, large-scale sparse convex programming, and second-
order geometric optimization on the Euclidean manifold, re-
spectively. They complement each other in that conflicting
interpretations are resolved through non-local convex pro-
cessing, followed by accurate non-convex local optimization
based on sufficiently good initializations.

As input data a sparse point sample of the object’s sur-
face is required exclusively. Our experiments focus on in-
dustrial applications where multiple 3D object instances are
randomly assembled in a bin, occlude each other, and un-
structured noisy range data is acquired by a laser scanning
device.

1 Introduction

1.1 Overview and Motivation

We focus on computer vision techniques for industrial tasks
as illustrated in Fig. 1. Multiple instances of an arbitrary,
rigid 3D object are randomly assembled in a bin. A laser
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scanning device acquires unstructured and noisy point mea-
surements. The objective is to detect reliably and to deter-
mine accurately the pose of the object instances in terms
of rigid body transformations for subsequent tasks, such as
picking individual objects by a robot.

In this context, we focus on the following requirements:

(a) The approach should not rely on properties ofspecific
objects, such as the geometry of flat disks, for instance.
Rather, we only require as input a sparse point sample
of the object’s surface, obtained from a CAD model if
available or by direct measurements if not. This enables
flexible adaption to novel scenarios by non-experts as
user.

(b) Numerous ambiguities due to object symmetries and oc-
clusion require a non-local contextual first processing
stage in order to reliably detect multiple object instances
and rough pose estimates. The latter should be suffi-
ciently accurate to avoid problems with local minima
of subsequent pose estimation which is an intrinsically
non-convex problem.

(c) The subsequent numerical pose estimation should ad-
equately take into account the geometry of the mani-
fold of Euclidean transformations so as to minimize the
number of iterations while having a large basin of at-
traction to the correct local minimum.

This paper elaborates our conference contribution [11] which
contains an abridged version of (c) to optimize an objective
functional proposed in [12], and additionally presents the
non-local first processing stage (b). Our specific contribu-
tions are detailed in Sect. 1.3.

1.2 Related Work

There is a vast literature on the processing of range data and
on object registration. We confine ourselves to recent related
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Fig. 1 Visualization of industrial scenarios motivating our work. A laser scanner is mounted on a linear axis and records the scene containing
multiple objects randomly assembled in a bin. Substantial self-occlusion, noise, and unstructured sparse measurements render the task of multiple
object detection and registration difficult.

work in order to elucidate the specific properties of our ap-
proach discussed under (b) and (c) above, and the way these
processing stages complement each other.

Robust Iterative Registration The problem to register two
point sets amounts to the chicken-and-egg problem of de-
termining simultaneously point correspondences and a rigid
transformation. Having solved either problem, the other one
becomes trivial. Consequently, most approaches proceed in
an alternating fashion: given an estimate of the transforma-
tion, correspondence can be determined followed by im-
proving the estimated transformation, and so forth. The pro-
totypical representant is the Iterative Closest Point (ICP) al-
gorithm [8] that is due to its simplicity still a state-of-the-art
algorithm [47,49,59].

It is well known that this two-step iteration is suscepti-
ble to noise and poor initialization, and numerous variants
including [25,43,46] have been suggested in order to en-

large the region of attraction. A major drawback concerning
the representationof the problem remains, however, in par-
ticular when dealing with unstructured point sets: explicit
correspondences increase both the non-convexity and the
non-smoothness of the objective function, and gaining in-
sight into the optimization problem is hampered by the com-
plicated structure of the domain of optimization comprising
bothEuclidean transformations and correspondence.

In order to obtain an optimization criteria that avoids
computing corresponding points in each iteration, Mitra et
al. [37] as well as Pottmann et al. [42] approximate the ob-
jective distance by local quadratic functions that represent
the distance of certain points to the scene. Another way to
avoid the explicit determination of correspondence has been
suggested by Tsin and Kanade [54], Jian and Vemuri [31],
and Wang et al. [56]. By representing point clouds of both
the scene and the model by mixture distributions, registra-
tion can be achieved by minimizing the squaredℓ2 distance
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[54,31] or the Jensen-Shannon divergence [56] between two
distributions. Compared to [37,42] this avoids exhaustive
pre-computation of the local distance approximation at the
cost of more expensive function evaluations.

As we prefer this class of approaches due to dealing with
unstructurednoisy point sets, we adopt mixture distributions
to model scene and object measurements in this paper. The
advantage of the resulting correspondence-independent ob-
jective function for registration is gained by loosing the pos-
sibility of closed-form local optimization, however. More-
over, the intrinsic non-convex nature of the overall problem
still prevails, rendering sufficiently accurate initializations
essential, similar to ICP.

To obtain initial estimates of the objects’ pose, a natural
approach is to identify parts of the model like cones, tubes,
lines, etc., in the scene and to infer objects’ pose accordingly
[7,15,34]. Although such approaches can dramatically limit
the amount of potential pose estimates, in view of self oc-
clusions, noise, and the ability to uniformly deal with a large
variety of objects, basing the approach on the accurate de-
tection of a limited number of specific parts is less attractive,
however. Instead, more recent work [3,16,26,27,32,48] fo-
cused on the extraction of local salient features from scene
and model. Feature extraction and correspondence is quite
difficult to establish, however, if objects exhibit symmetries
as commonly occur in industrial settings, and if noisy and
sparsely distributed samples are only available as measure-
ments.

Another established line of research in this context con-
cerns hypothesis generation and verification techniques [2,
24,58] to obtain rough estimates of the pose [47]. Recent
work [29,57] include accurate data structures to speed up the
recognition process at the cost of exhaustive pre-computation,
or randomized algorithms [40] along with clustering tech-
niques to efficiently explore the corresponding voting space.

To this end, we also refer to closely related field of ten-
sor voting, see [44] and the references therein. Due to the
efficient propagation of local correspondence information,
such approaches are typically superior to standard hypothe-
sis generation approaches.

In general, however, these approaches are designed to
generate hypotheses aboutsingleobject instances matching
the scene. Consequently, concerning applications withmul-
tiple object instances, iterative “search and pick” approaches
or sequential object removal based on local strategies [34]
have to be applied, where every incorrect detection, how-
ever, affects the entire subsequent process.

In contrast, we consider in this work an approach that
jointly estimates the pose ofmultiple object instances and
resolves conflicting hypotheses throughnon-local contex-
tual processing. Furthermore, weadaptivelyprune the cor-
responding parameter space based on the given data in order
to drastically reduce the otherwise huge problem size in an

on-line manner. As detailed in Sect. 2, both objectives are
accomplished by convex optimization.

Large-Scale Convex ProgrammingConvex programming
and models pervade most disciplines and current work on
empirical data processing, including reasoning with dictio-
naries [14], compressed sensing [20], graphical models and
inference [55], and machine learning [5]. Discrete and con-
tinuous graph cuts [10,13] and numerous applications pro-
vide prominent examples in the field of computer vision.
The relevance of globally optimal inference for model evalu-
ation and the guidance of convex modeling for the relaxation
of more intricate models can hardly be overestimated. Ac-
cordingly, algorithms for efficiently coping with large prob-
lem sizes attract more interest in applied research.

In this paper, we aim at taming the optimization of a
highly non-convex objective function for the registration of
noisy unstructured point sets by detecting in parallel multi-
ple objects together with rough pose estimates in a prepro-
cessing step through large-scale convex programming. By
inspecting and evaluating the optimality condition, a simple
and efficiently computable criterion is obtained that can be
applied to any problem instance in order to drastically re-
duce the problem size in an on-line fashion. For numerically
solving the remaining and still large optimization problem,
we competitively evaluate two different state-of-the-artap-
proaches to sparse convex programming [9,39].

We demonstrate that in this way sufficiently accurate ini-
tializations are obtained that can be refined in a subsequent
processing stage by more sophisticated local geometric op-
timization.

Geometric Optimization Although there are geometric op-
timization problems [8] that can be solved with respect to
Euclidean transformations in closed form, assuming proper
initializations are given, distance measures between mixture
distributions representing unstructured point sets have to be
minimized using methods of continuous optimization like
gradient descent or Newton-like schemes. This task differs
from standard applications because the underlying domain
where an optimum has to be computed is a curved space
(manifold).

Concerning manifolds related to the orthogonal group
(Grassmann and Stiefel manifolds) continuous optimization
methods are considered in [23]. Adler et al. [1], for instance,
proposed a corresponding Newton-like algorithm for human
spine alignment.

Pottmann et al. [42] suggested an iterative registration
algorithm based on successive local first- and second-order
approximations of the manifold of Euclidean transforma-
tions at the current iterate. Related problems of computer
vision, including multiple point set alignment and tracking,
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were studied e.g. by Krishnan et al. [33], Taylor and Krieg-
man [51], Benhimane and Malis [4], and Drummond and
Chipolla [22]. We consider the closely related geometric op-
timization approach [42] in more detail below and work out
differences to our approach (Sect. 3).

Finally, we refer to very recent work [30,35,41] on global
optimization approaches to the pose estimation problem, thus
making the initialization problem obsolete in principle. While
all of them apply Branch and Bound techniques in order to
explore the pose parameter space, Hartley and Kahl [30] as
well as Olsson et al. [41] require explicit correspondencesof
scene points to convex model parts, whereas the approach of
Li and Hartley [35] works without point correspondences.

Concerning our own work, the major problem with these
approaches is that run-time scales badly with the problem
size, e.g. about 20min. for 200 points. Unfortunately, there-
fore, these sophisticated approaches are not currently appli-
cable to realistic industrial settings with hundreds of points.

1.3 Contribution

We introduce a novelinitialization and refinementapproach
for the model-based detection and determination of the rigid
transformations of multiple objects in industrial bin-picking
scenarios where the scene is represented by noisy, unstruc-
tured, and sparse point measurements.

The initialization stagein terms of a global convex ob-
jective function

– describes thegeometrical constraintsof the pose estima-
tion problem accurately,

– allows efficient preprocessingtechniques derived from
the optimality conditions as well as application of dedi-
cated algorithms of convex optimization, and

– yields promising performancemaking the approach at-
tractive for solving real world applications with tight
run-time constraints.

At the subsequentrefinement stagea Newton algorithm
is individually applied to each detected object that

– fully exploits the intrinsicgeometryof the underlying
space of Euclidean transformations,

– convergences fastto the local optimum, and
– exhibits a sufficientlylarge region of attractionmatch-

ing the output of the preceding initialization stage.

A thorough numerical evaluation demonstrates the po-
tential of our approach to meet the accuracy and run-time
constraints of the industrial scenario. Additionally, we be-
lieve that adopting our approach might be attractive in other
related scenarios of computer vision as well.

1.4 Organization

In Sect. 2, we formulate the problem of multiple rough pose
estimation as a global convex optimization problem. This in-
cludes the derivation of a criterion for efficient preprocess-
ing by inspecting the corresponding optimality condition.

To refine the initial hypotheses, we devise in Sect. 3 two
different Newton procedures for geometric optimization that
yield accurate results after short processing times.

In Sect. 4, we validate each steps of the overall approach
by numerical experiments on synthetic data examples with
ground truth. We compare two different state-of-the-art al-
gorithms for solving the corresponding large-scale convex
initialization problem and assess important properties, like
the basin of attraction of geometric pose estimation.

The applicability of the complete approach to real world
scenarios is demonstrated in Sect. 5. Numerous experiments
show that our two-step scheme accurately detects multiple
object instances along with their pose. We finally discuss
pros and cons of our approach in Sect. 6 and point out further
directions of research.

1.5 Notation

For readers’ convenience, we briefly summarize the notation
used within this work. The space of Euclidean transforma-
tions is denoted bySE(3), where the associated Lie algebra
(cf. Sect. 3) reads asT = se (3). A Euclidean transforma-
tion in terms of a rotation matrixR ∈ R

3×3 and a translation
vectort ∈ R

3 is written asY = {R, t} ∈ SE(3). A sam-
ple of the Euclidean manifold is given byS = {Yj , j =
1, . . . , n} ⊂ SE (3).

Data in terms of scene samples (point measurements)
obtained by a scanning device is denoted by{ui} ⊂ R

3,
wherei = 1, . . . ,m. The object (model) is given by point
measurementsO = {v1, v2, . . . } ⊂ R

3. An objectO in
poseY is denoted byOY .

Finally, a matrixA = {Aij} = (a1, . . . , an) ∈ R
m×n

is given in terms of its entriesAij , or column vectors{ai},
respectively.

2 Multiple Object Detection and Pose Initialization by
Sparse Convex Programming

In this section, we describe the first stage of our approach.
Given point measurements of the scene, we wish to detect in
parallel object instancesOYl

, l = 1, 2, . . . , and determine
rough estimates of their posesYl , l = 1, 2, . . . , as input
for the subsequent registration stage refining these estimates
(Sect. 3).

To this end, we adopt the basis pursuit approach [14]
based on convex programming, as illustrated in Fig. 2 for
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Fig. 2 Sketch of the sparse signal recovery problem. A given input
signal (thick line) is approximated by a linear combination of only few
basis functions (dashed lines). The selection of these basis functions
is accomplished by solving for a sparse coefficient vector by convex
programming. In this paper, we model the problem of multiple object
detection as a sparse signal recovery problem – see Fig. 3

the original setting, and for our setting in Fig. 3. The “dictio-
nary” in our case corresponds to a sampleS of the Euclidean
manifold and the corresponding object instancesOYl

, Yl ∈
S. Formally, this dictionary becomes quite large. Yet, we
will show that by inspecting the optimality condition be-
forehand, the convex optimization problem can be consid-
erably reduced such that applying a state-of-the-art solver
computes the solution in few seconds only.

The approach delivers a sparse solution that effectively
resolves conflicting object hypotheses due to mutually over-
lapping supports. A numerical evaluation of all relevant as-
pects will be provided in Sect. 4.

2.1 Objective Function

The distance between a scene pointui and an objectOYj
in

terms of transformed model pointsvk (see Sect. 1.5) is given
by

d(ui,OYj
) = min

k
‖ui − Yj(vk)‖ . (1)

Evaluating this distance function requires a careful imple-
mentation to be computationally efficient, like pre-computed
look-up tables [37] or search trees [46]. An often feasible
option is to separate the objectO into simple geometric parts
Ol , l = 1, 2, . . . , such that the distance can be evaluated in
closed form. See Sect. 5.1 discussing further implementa-
tion aspects.

Based on the distance (1), we require that a scene point
ui votes for an object instanceOYj

only if its distance is
small within a localneighborhood. Using indicator variables

ηij =

{
1 , if d(uk, OYj

) ≤ δ , ∀uk ∈ N (ui) ,

0 , otherwise,
(2)

whereδ > 0 is a user parameter andN (ui) denotes a local
neighborhood ofui computed in a preprocessing step, we
define the similarity measureAij ∈ [0, 1] betweenui and
OYj

by

Aij = exp

(
−
1

σ
d(ui, OYj

)

)
ηij , (3)

whereσ > 0 controls the sensitivity to noise.
Let x ∈ {0, 1}n collect indicator variablesxj represent-

ing the presence of object instanceOYj
in the scene. The

termAijxj then indicates how likely observationui belongs
to OYj

. Unique “explanation” for each observation in terms
of an object instance, as geometry suggests, leads to the con-
straint
∑

j

Aijxj = 1 , ∀i = 1, . . . ,m . (4)

As a small fraction of the measurements is caused by
background, we sum up the squared residual of (4) for each
scene sample to obtain the objective function

‖Ax− e‖2 , (5)

whereA ∈ R
m×n , m ≪ n, defines in (4) a large underde-

termined system ande⊤ = (1, 1, . . . )⊤ denotes the vector
of ones.

2.2 Sparseness Prior

Ruling out conflicting object instances that may have caused
the same observation amounts to penalize the support of so-
lution x to (5) in terms of the (pseudo)ℓ0-norm [21]

‖x‖0 = |{xj , xj 6= 0}| , (6)

where| · | denotes the cardinality of a finite set. Supplement-
ing (5) accordingly, we obtain the objective function

min
x∈{0,1}n

h(x) , h(x) = µ‖x‖0 + ‖Ax− e‖2 , (7)

whereµ > 0 denotes the regularization parameter.

2.3 Problem Reduction and Relaxation

Finding the global optimizer of problem (7) is combinatori-
ally complex [38] and elusive as in our applicationsn is very
large in general. We therefore consider in this section two
simplifications: Firstly, by checking the optimality condi-
tions corresponding to (7), we can safely remove a substan-
tial part of the variables{xi}i=1,...,n. Secondly, we solve the
resulting much smaller problem by replacing in (7) the in-
tricate penalty term‖x‖0 by theℓ1-norm‖x‖1, which is the
“closest” convex function. We detail these two steps next.
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Fig. 3 Extending the principle of sparse signal recovery (see Fig. 2) tothe problem of3D template matching – here in 2D for illustration – amounts
to approximate the scene (left) by a small subset selected from a large collection of candidates (right panel). Again this can be done by convex
programming – cf. figures 2 and 7.

2.3.1 Evaluating the Optimality Condition

Elimination of variablesxj in a preprocessing step is based
on the following

Proposition 1 Let x∗ ∈ {0, 1}n be a global minimizer of
the objective functionh(x) stated in(7). Then, for allk ∈
{1, . . . , n}, x∗k = 0 if

−µ+ 2(1⊤ak)− ak
⊤ak < 0 . (8)

Proof Assumex∗k 6= 0. Due to global optimality

h(x) ≥ h(x∗) , (9)

holds true for allx ∈ {0, 1}n, in particular forx̃ given by
x̃j = x∗j , ∀j 6= k, andx̃k = 0. By insertingx̃ into (9) and
insertingh from (7), we obtain

µ‖x̃‖0 + ‖Ax̃− e‖22 ≥ µ‖x∗‖0 + ‖Ax∗ − e‖22 . (10)

By construction,x∗ andx̃ are equal except for a single entry.
Thus, (10) simplifies to

−µx∗k + 2(e⊤ak)x
∗
k − 2x∗kak

⊤Ax∗ + ak
⊤akx

∗
kx

∗
k ≥ 0 ,

(11)

and dividing byx∗k gives

−µ+ 2(e⊤ak)− 2ak
⊤Ax∗ + ak

⊤akx
∗
k ≥ 0 . (12)

SinceAij ≥ 0, the left hand side of (12) is upper bounded
by

−µ+ 2(e⊤ak)− ak
⊤akx

∗
k . (13)

Then, due to the hypothesisx∗k 6= 0 andx∗k ∈ {0, 1}, we
finally obtain

−µ+ 2(e⊤ak)− ak
⊤ak ≥ 0 , (14)

contradicting (8).

Condition (8) roughly reflects that an object in a spe-
cific pose may be present in the scene only if it “explains”
a certain number of points encoded byµ. Although unlikely
candidates can be removed safely according to Prop. 1, the
set of candidates still contains outliers and large pose varia-
tions, see Fig. 4. Thus, the subsequent convex optimization
step is essential.

Nonetheless, as we will see in Sect. 5, Prop. 1 provides
the basis for drastically reducing the number of unknown
variables efficiently, because the evaluation of (8) only re-
quires simple vector operations.

2.3.2 Relaxation and Convex Optimization

A straightforward approach to optimizing problem (7) is to
devise a greedy strategy. However, this would require about
O(mkn2) function evaluations, wherek is the number of
model instances. Even after a substantial reduction of the
number of free variables according to Prop. 1, such a proce-
dure would be too inefficient to meet industrial time restric-
tions, in particular ask is unknown.

A more reasonable strategy to tackle (7) is to use the
convexsparse regularizer‖x‖1 instead of the non-convex
penalty‖x‖0 [21,53], and to relax the integer constraintx ∈
{0, 1}n to x ∈ [0, 1]n:

min
x∈[0,1]n

f(x) , f(x) := µ‖x‖1 + ‖Ax− e‖22 . (15)
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Fig. 4 Visualization of the set of candidate poses remaining after ap-
plication of Prop. 1 using the set-up of Fig. 3. Although, the amount of
possible candidates is reduced dramatically, there are still outliers and
large pose variations that have to be removed in a subsequent convex
optimization step.

The evaluation of two state-of-the-art solvers for solving
(15) will be reported in Sect. 4.1.1, and the issue to con-
vert the corresponding solutionx into a binary solution is
addressed in Sect. 4.1.2.

3 Pose Refinement by Geometric Optimization

The solutionx to problem (15) yields both the number of
detected objects and an estimate of their pose. As these es-
timates are related to the finite setS of samples of the Eu-
clidean manifold, their accuracy is necessarily limited.

Consequently, we refine these estimates in a subsequent
second processing step described in this section. Specifi-
cally, based on the initializations delivered byx, we opti-
mize each pose individually by continuous geometric opti-
mization on the Euclidean manifoldSE(3), using an objec-
tive function that does not rely on explicit point correspon-
dences, in view of the discussion following below.

We employ second-order approximations for fast con-
vergence while providing a sufficiently broad basin of at-
traction that enables to converge to the correct local mini-
mum. These properties will be demonstrated by numerical
experiments and compared to related work in Sect. 4.

3.1 Alignment of Point Sets without Correspondence

The common objective criterion for the registration of two
point sets is

min
Y={R,t}∈SE(3)

∑

i=1

‖ui −Rvµ(i) − t‖22 , (16)

whereµ(i) denotes theunknowncorrespondence function
assigning model points to measured scene points. Rather
than solving alternatingly for the transformation parame-
tersR, t and correspondences{µ(i)} [8,46], which suffers
from the pronounced non-convexity of the objective func-
tion (16), a smoothing procedure is advisable.

To this end, we apply a standard device well known from
clustering (cf. e.g. [52] and references therein), and registra-
tion [31,54]. We represent model points by a smooth func-
tion in terms of the kernel density estimate

m(x;Y ) :=
1

m

m∑

j=1

K
( 1

2σ2
m

‖x−Rvj − t‖22
)
, (17)

whereK(·) denotes a smoothing kernel integrating to1, and
σm is a scale parameter.

A natural replacement for (16) in order to measure the
distance between a model instance and the scene, is the dis-
tance between the distribution (17) and the empirical distri-
bution of the observations

s(x) :=
1

n

n∑

j=1

δ(x− uj) (18)

in terms of the relative entropy [18]

D
(
s‖m(Y )

)
=

∫
s(x) log

s(x)

m(x;Y )

=

∫
s(x) log s(x)−

∫
s(x) logm(x;Y ) .

(19)

Ignoring the first term as it does not depend on the poseY ,
inserting (18), and using Gaussian kernel functions in (17),
we obtain1

f(Y ) = −
n∑

i=1

log
1

m

m∑

j=1

exp
(
−

1

2σ2
m

‖ui −Rvj − t‖22
)
,

(20)

where we dropped1/n and the constant normalizingK.
In order to see the connection to (16), note that (20) cor-

responds up to the constant1/m to the log-exponential func-
tion having well-known properties [45]. Correspondingly,
∀σm > 0, we immediately obtain the estimate

σ2
m log

m∑

j=1

exp

(
−

1

2σ2
m

‖ui −Rvj − t‖2
)
− σ2

m logm

≤ max
j=1,...,m

{
−

1

2
‖ui −Rvj − t‖2

}
(21)

≤ σ2
m log

m∑

j=1

exp

(
−

1

2σ2
m

‖ui −Rvj − t‖2
)
,

that depicts

1 We deliberately denote this objective function again withf , as in
(15). By inspecting the argument and from the context, the meaning of
f will be clear.
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(i) that the maximum in (21) is uniformly approximated
as the scaling parameterσm goes to zero, and conse-
quently,

(ii) that (20) implicitly encodes the unknown correspon-
dence functionµ(i) in (16) in terms of the closest point
of the smoothed model representation to the observa-
tion ui.

The effectiveness of this smoothing procedure for dealing
with unstructured point sets is further illustrated in Fig.5.

We next focus on a numerical optimization procedure
for evaluating the objective function (20).

3.2 Geometric Optimization

Newton’s method is the method of choice for minimizing a
smooth functionf : Rn → R because it converges quadrat-
ically provided the initial pointx0 is sufficiently close to a
local minimum. Based on a second order approximation of
f aroundx0 ∈ R

n, f(x) can be written as

f(x0)+(∇fx0
)
⊤
(x−x0)+

1

2
(x− x0)

⊤
Hx0

(x−x0) , (22)

where∇fx0
, Hx0

denote the gradient and Hessian off eval-
uated atx0, respectively. Hence, the equation for determin-
ing the solution of the sufficient optimality condition is given
by

Hx0
x = ∇fx0

(23)

and can be solved numerically. In order to apply this scheme
to the minimization of (20), we have to take into account that
Y ∈ SE (3) is a curved space, however.

In this section, we work out two algorithms for geomet-
ric optimization that utilize second-order information, based
on [42] and another variant suggested by ourselves. For the
mathematical background, we refer to e.g. [19,23,36].

3.2.1 The Manifold of Euclidean Transformations

The Lie Group SE (3) Euclidean transformations in terms
of Y = {R, t} ∈ SE (3) map a pointx to Y x = Rx+ t and
form a group via concatenation:Y1Y2 = {R1, t1}{R2, t2} =

{R1R2, t1 + R1t2}. The inverse elementY −1 is given by
{R−1,−R−1t}.

For the purpose of optimization and numerical analysis,
it is common to identifySE (3) ⊂ GL(4) with a subgroup of
all 4× 4 regular matrices with respect to matrix multiplica-
tion. Keeping the symbolY for simplicity, this representa-
tion reads

Y =

(
R t

0⊤ 1

)
, Y −1 =

(
R⊤ −R⊤t

0⊤ 1

)
. (24)

In this waySE (3) becomes a differentiable manifold em-
bedded intoGL(4), hence a Lie group.

Tangents With each Lie group is associated its Lie alge-
bra, the vector space tangent to the manifold atI. In case of
SE (3), the tangent spaceT reads

se (3) =

{(
ΦR Φt

0⊤ 0

) ∣∣∣∣ΦR
⊤ = −ΦR , Φt ∈ R

3

}
, (25)

which is easily deduced from the fact thatse (3) contains all
matricesΦ such that for allτ ∈ R, the matrix exponential
exp(τΦ) ∈ SE (3) is a Euclidean transformation, andR =
exp(ΦR) for some skew-symmetricΦR. The latter is just
Rodrigues’ formula for 3D rotations.

Vector space (25) is equipped with the Riemannian met-
ric inherited from the canonical inner product〈Φ1, Φ2〉 =
tr(Φ1

⊤Φ2) of the ambient Euclidean matrix spaceR4×4.
Furthermore, functions and the corresponding derivativesde-
fined onSE (3) are evaluated atY = I without loss of gen-
erality, because during iterative optimization the current iter-
ateY can be regarded as offset redefining the model’s orig-
inal pose.

Gradients The gradient∇f ∈ T of a functionf : SE (3) →
R is uniquely defined by the relation

〈∇f, Φ〉 = 〈∂f, Φ〉 , ∀Φ ∈ T , (26)

where∂f is the usual matrix derivative given by(∂f)ij =
∂

∂Yij
f . Eqn. (26) shows that∇f − ∂f is orthogonal to all

Φ ∈ T . Hence∇f is the orthogonal projectionΠT (∂f) of
∂f ontoT . Using the same block-factorization as in (25),

∂f =

(
∂f11 ∂f12
∂f21 ∂f22

)
, (27)

this projection can be computed in closed form

∇f = ΠT (∂f) =

(
1
2

(
∂f11 − ∂f11

⊤
)
∂f1,2

0⊤ 0

)
. (28)

Hessian The Hessian of a functionf : SE (3) → R, evalu-
ated atY = I, is a linear mapping fromT onto itself given
by ∇Φ(∇f) , ∀Φ ∈ T , where the gradient∇f is given by
(28) and∇ is the Levi-Civita connection defining the co-
variant derivative∇Φ of the vector field∇f with respect to
Φ ∈ T .

To obtain a more explicit expression in terms of the ordi-
nary first- and second-order derivatives, we denote by{Lk}
with k = 1, . . . , 6 the canonical basis spanning the trans-
lational and skew-symmetric components of tangentsΦ =∑

k φkLk ∈ T defined by eqn. (25). Then, the quadratic
form of the Hessian with respect to anyΦ is given by

〈∇Φ(∇f), Φ〉 = ∂2f (Φ,Φ)− 〈∂f, Γ (Φ,Φ)〉 , (29)

with ∂2f (Φ, Ψ) =
∑

ij,kl
∂2f

∂Yij∂Ykl
ΦijΨkl and

Γ (Ψ,Φ) =
∑

i,j,k

ψiφjΓ
k
ijLk . (30)

The Christoffel symbolsΓ k
ij are listed in appendix A.
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Fig. 5 Comparison of the smooth objective functional (20) with the criterion (16) where the correspondence functionη(i) assigns the observation
ui to theclosestmodel pointvη(i). The “model” consists of two scalar valuesv1 = 0 , v2 = 1, and we assume to have observed the same two
values asu1, u2, and a single additional valueu3 ∈ (0, 1) at some arbitrary position in between. We inspect both objectivefunctions depending on
the unknown translational pose parametert, with t = 0 being the true unknown parameter value. Top left: Objective function (16) not only is non-
convex but also shifts the global minimum. Top right, bottom left:For increasing values ofσm objective function (20) is not only “convexified”
but also exhibits a less biased global optimum. Bottom right: Position of the global optimum as a minimum, depending onσm. For a significant
range of this parameter value, minimizing (20) gives a more accurate result. The constant value on the top corresponds to the global minimum of
(16) depicted on the upper left panel.

3.2.2 Newton Optimization by Motion Approximation

Transforming a pointx ∈ R
3 according to the Euclidean

transformation specified by (24) amounts to computeY x =

Rx + t, whereY ∈ SE (3) can be uniquely specified by a
corresponding tangent elementΦ ∈ se (3) such that

Y = exp(Φ) =
∞∑

k=0

Φk

k!
. (31)

Accordingly, it makes sense to consider local approxi-
mations

Ylin ≈ I + Φ (32a)

Yquad ≈ I + Φ+
1

2
Φ2, (32b)

respectively, as suggested by Pottmann et al. [42], and to
determine the optimal tangent vectorΦ. By inserting the ap-
proximations (32a) and (32b) intof(Y ), and by expanding
Φ with respect to the basis{Lk}k=1,...,6 introduced above,

the objective functionf(Y ) is restricted to the 6-dimensional
vector spaceT in terms of the coefficients(φ1, . . . , φ6)

⊤ as
variables.

As a result, the linear system (23) defining the Newton
iteration is replaced by (we keep the symbolsH and∂f for
simplicity)

H(φ) = −∂f, (33)

where(∂f)i = ∂
∂φi

f andHij = ∂2

∂φi∂φj
f are evaluated at

φ = 0.
As (32a) and (32b) are local approximations of the Eu-

clidean group, the solutionΦ =
∑

k φkLk of the linear sys-
tem (33) will not be an element ofSE (3) in general. Rather,
the Newton updateY ∈ SE (3) is determined by insertingΦ
into the exponential map (31).

3.2.3 Intrinsic Newton Updates

Instead of restricting first the objective functionf to the
tangent spaceT through the local manifold approximations
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(32), and then computing Newton updates by solving (33),
we may base the Newton iteration directly on the intrinsic
gradient and Hessian of the manifoldSE (3).

This means that the linear system (23) in the Euclidean
case is replaced by the linear system defined by the varia-
tional equation

〈∇Φ(∇f), Ψ〉 = −〈∇f, Ψ〉 , ∀Ψ ∈ T , (34)

with the gradient∇f given by (28) and the Hessian defined
in (29). While system (34) is slightly more expensive to
solve than (33), it better reflects the geometry of the under-
lying manifold. We will consider this aspect in more detail
in the following subsection and demonstrate favorable prop-
erties of (34) also below in the evaluation part of this paper.

As in the case of (33), the tangent vectorΦ solving (34)
does not directly results in a Euclidean transformationY as
Newton update. Rather, we have to apply the exponential
mappingY = exp(Φ) defined by (31), too.

3.2.4 Local vs. Intrinsic Approximation

While both schemes, (33) and (34), require to solve linear
systems in each iteration, respectively, as well as retracting
the obtained solution back to the manifold, there are major
differences in terms of convergence properties. We address
this issue in this section and take it up again in connection
with discussing experimental results in Sect. 4, see in partic-
ular Sect. 4.2.2.

Recall that the objective function to be studied in this
paper reads

f(Y ) = −
n∑

i=1

log
( 1

m

m∑

j=1

exp
(
− hij(Y )

))
, (35)

wherehij(Y ) = 1
σ2 ‖ui −Rvj − t‖22 andY ∈ SE (3).

Approximating the rigid body transformation by trun-
cating (31) after the linear term (32a) yields a redefinition
of hij such that optimization off is restricted to the tangent
spaceT . As this approach provides an accurate approxima-
tion only within a small neighborhood around the current
iterate, however, convergence to the correct local optimum
is unlikely if it lies outside this neighborhood [42].

In contrast, second order truncation (32b) provides a more
accurate local approximation of the manifoldSE (3). On the
other hand, inserting the quadratic approximation intohij
mapsRvj + t to

vj + Φt + ΦRvj +
1

2
ΦR

(
Φt + ΦRvj

)
. (36)

Using the fact thatΦR is skew symmetric, the latter part
rewrites as

1

2

(
ΦRΦt + (φ⊤vj)φ− (φ⊤φ)vj

)
, (37)

whereφ are the coefficients of the expansionΦR =
∑

k φkLk.
As a consequence, when the rotation components of New-

ton updates happen to become large in magnitude, the non-
convexity of the objective function due to the quadratic terms
in (37) may cause Newton updates to step into wrong direc-
tions. This will be confirmed by numerical experiments in
the following section.

This argument can be underlined by considering the Ro-
drigues’ formula, the closed form expression of the expo-
nential map

R = I + ΦR

sin(‖ΦR‖)

‖ΦR‖
+ Φ2

R

1− cos(‖ΦR‖)

‖ΦR‖2
. (38)

Approximating the trigonometric function by its first and
second order Taylor expansion in‖ΦR‖, given by

sin(‖ΦR‖) ≈ ‖ΦR‖ , cos(‖ΦR‖) ≈ 1 , (39a)

sin(‖ΦR‖) ≈ ‖ΦR‖ , cos(‖ΦR‖) ≈ 1−
1

2
‖ΦR‖

2 , (39b)

respectively, insertion into (38) directly results in (32a) and
(32b). Thus, with increasing‖ΦR‖ the approximation fails
to be accurate. Moreover, as this approximation affects the
translation part too, large magnitudes in rotation affectsthe
accuracy int.

Another issue concerns the choice of the metric. While
we suggest the canonical metric in the ambient space [23],
embeddings of the Euclidean transformations intoR

6 and
using the corresponding metric, i.e. the standard inner prod-
uct inR6, results in a different scaling of the rotational part.

Moreover, representingΦ in terms of its basis expansion,
first and second order approximation yield the restriction of
f : SE (3) 7→ R to f : R6 7→ R. Consequently, second-
order derivatives are symmetric in the latter Euclidean space,
i.e. ∂2

∂φi∂φj
f = ∂2

∂φj∂φi
f . As in general the Lie bracket of

two elementsLi,Lj ∈ se (3) does not vanish, however,
using standard second-order derivatives only yield approxi-
mations to the correct Hessian. Thus, if the components of
the transformation become large in magnitude, the result-
ing approximation of the Hessian in (33) becomes worse,
whereas (34) is based on (29) that includes corrective terms
and thus better reflects the geometry of the underlying space.
Our numerical evaluation discussed in the subsequent sec-
tion demonstrates that this difference is relevant to applica-
tions.

4 Numerical Evaluation

Accuracy, robustness and speed are of primary importance
for industrial applications. In this section, we thereforeana-
lyze our proposed two-step approach accordingly using syn-
thetic data samples with ground truth. Real-world applica-
tions will be discussed in Sect. 5.
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4.1 Initialization Estimation by Convex Optimization

Finding proper initializations amounts to solve the convex
optimization problem (15). In the following two subsections,
we separately discuss the two major issues involved in this
connection: the large problem size of the convex relaxation,
and the conversion of the global optimum to a binary solu-
tion in a post-processing step.

4.1.1 Convex Optimization

We study two different state-of-the-art approaches to solve
(15): theSpectral Projected Gradient (SPG)method [9] and
Nesterov’s algorithm[39]. Both algorithms only require eval-
uations of the objective function and its gradient, hence are
suited for large-scale sparse convex programming.

Spectral Projected Gradients (SPG)The general idea un-
derlying SPG [9] is to successively approximate the objec-
tive f(x) in terms of the current iteratexk by the simplified
Taylor series

f(xk) + (∇f(xk))
⊤
(x− xk) +

1

2
(x− xk)

⊤
λI(x− xk) ,

(40)

whereλI with λ ∈ R corresponds to a simplified approxi-
mation of the Hessian.

A non-monotone line search allows to temporarily in-
crease the objective such that variables of the optimal con-
figuration can be fixed in early iterations. Due to the second-
order approximation of the objective in terms of the Hessian
λI, SPG belongs to the class of quasi-Newton methods that
typically exhibit fast convergence to the global optimum.

A drawback of the method is that no accuracy bound can
be guaranteed depending on the number of iterations.

Nesterov’s Algorithm Accuracy bounds are provided by
Nesterov’s optimization procedure [39]. This approach is
based on the Lipschitz continuity of the gradient off (con-
stantL) and computes the optimal configuration by subse-
quently solving simple minimization problems of the form

yk = min
y∈[0,1]n

(
〈∇f(xk), y − xk〉+

1

2
L‖y − xk‖

2

)
(41a)

zk = min
x∈[0,1]n

(
1

σ
Ld(x) +

k∑

i=0

αigi(x)

)
(41b)

wheregi(x) = f(xi) + 〈∇f(xi), x− xi〉 corresponds to an
approximation off atxi, d(·) being a proper prox-function,
σ the corresponding convexity parameter and the next iterate
xk+1 is given by 2

k+3zk + k+1
k+3yk. While (41a) bounds the

deviation from the current iterate, (41b) takes into account

previous iterates in order to model the objective function lo-
cally. For further details, we refer to [39] and the references
therein.

Let x∗ ∈ [0, 1]
n denotes the global optimum of the con-

vex functionf . Then the error bound

f(yk)− f(x∗) ≤
4Ld(x∗)

σ(k + 1)(k + 2)
(42)

holds depending on the number of iterationsk. We point out
that the Lipschitz constantL of the objective function’s gra-
dient appears in both problems (41a) and (41b). As a con-
sequence, having a tight estimate ofL is essential for the
performance of this method.

Comparison In order to competitively evaluate the perfor-
mance of SPG and Nesterov’s approach, we consider the2D
setup depicted in Fig. 3. Using a total of1 335 840 candidate
transformations, application of Prop. 1 fixes≈ 99.7%(!)
of the variables beforehand. The remaining3497 variables
were determined using SPG and Nesterov’s algorithm, re-
spectively.

Concerning Nesterov’s approach, we used three methods
to numerically determine or estimate the Lipschitz constant
L = ‖A⊤A‖2 of the gradient off : the power iteration [28]
to computeL, application of Gerschgorin’s disk theorem to
obtain an upper bound, and evaluating the trace ofA⊤A re-
turning the sum of all eigenvalues as upper bound.

While the power iteration converges within few itera-
tions it has to perform multiple matrix-vector multiplica-
tions and therefore took about0.75 seconds. In contrast Ger-
schgorin’s disk theorem only requires inspection of the data
matrix and computed an upper bound in0.11 seconds. Fi-
nally, the trace operator returned an upper bound within0.02

seconds whose quality highly depends on the number of
dominant eigenvalues that increase with the number of ob-
jects in the scene.

Our numerical experiments confirmed that the value cho-
sen forL highly influences the performance of Nesterov’s
algorithm, see Fig. 6. SPG on the other hand outperforms
Nesterov’s approach in terms of the number of iterations.
This however is primarily due to the line search involved
and at the cost of additional function evaluations such that
the time per iteration is significantly smaller for Nesterov’s
approach, resulting in an overall faster convergence.

As a consequence, for our real world experiments sum-
marized in Sect. 5, we throughout used Nesterov’s algorithm
to determine the solution of (15).

4.1.2 Binarization of the Solution

Due to the relaxation of the integer constraint, the global
optimumx∗ of (15) in not an element of{0, 1}n in general
but has real-valued components0 < xi < 1.
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Fig. 6 Comparison of optimization algorithms using the experimental setup of Fig. 3: While the SPG algorithm typically requires less iterations
to converge to the global optimum (left: energy vs. iterations), due to the line search involved, more time per iteration (in seconds) is spent in
comparison to other approaches (right: time [sec.] vs. iterations).

To infer a corresponding high-quality discrete configu-
ration, we studied two post-processing steps described next.
Neither of them guarantees to return thediscreteoptimal so-
lution to (7), of course.

Clustering Regarding the results of the convex optimiza-
tion procedure as probabilitiesx∗i indicating the presence
of an object with poseYi, the components ofx∗ typically
form compact clusters in the model-pose space and are well-
localized in the image domain – see Fig. 7.

Consequently, a simple clustering post-processing step,
where nearby poses are assigned to the same cluster, fol-
lowed by averaging the elements within each cluster pro-
vides a high-quality solution. Strictly speaking, this cluster-
ing step should take into account the underlying manifold
geometry (cf., e.g. [50]). Due to the clusters’ compactness,
however, simple Euclidean clustering turned out to work
very well for computing a reasonable initialization of the
subsequent geometric optimization procedure (Sect. 3.2 and
4.2), thatdoestake into account the underlying geometry.

Randomized Rounding This method proceeds by exclud-
ing in turn each variablexi for a candidate posei and solv-
ing the convex relaxation for the remaining variables. Again,
interpreting the globally optimal valuesx∗j as probabilities,
we setxi to 0 if

E [f(x)|xi = 0, xi−1, . . . , x1]

≤ E [f(x)|xi = 1, xi−1, . . . , x1]
(43)

and to1 otherwise, whereE denotes the expected value of
f(x) with respect to the probability distribution, estimated
by averaging samples.

The binary solution obtained by this procedure is guar-
anteed to differ from the global continuous configuration
only by a fixed constant [6]. Yet, due to the need to solve the
large-scale optimization problem multiple times, the clus-
tering procedure sketched above turned out to be a better
compromise between accuracy of initialization and compu-
tational speed.

4.2 Geometric Fine Alignment

Next, we evaluated the geometric optimization algorithms
presented in Sect. 3 by applying it to computer-generated
point sets, and analyzed the performance with respect to run-
time and robustness to inaccurate initializations.

4.2.1 Speed of Convergence

Algorithms like ICP [8] or Softassign [43] return less accu-
rate registrations in cases where the underlying point set has
no or only few salient regions. This often occurs in indus-
trial applications where smooth surfaces have to be regis-
tered accurately. To compare the ability of the approaches to
cope with such scenarios, we generated2500 data points by
randomly sampling from the smooth function3(x − 1)2 +
3 sin(2y) on the unit interval[0, 1]2.

We transformed a copy of the model only slightly (about
4 degree in each rotation and by a total of0.12 in trans-
lation), such that all approaches including ICP [8], Softas-
sign [43], the Newton schemes based on local approxima-
tion [42] and the approach proposed in this paper converged
to the true solution. Figure 8 reveals that the convergence
rates differ significantly.
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Fig. 7 Despite of a substantial amount of noise and background clutter, poses indicated byx after convex optimization are compactly located
(left). A close-up view is shown top left. Dots indicate the center of the model and colors their orientation. The correct object instances in the scene
(red shapes) can be determined quickly by a clustering post-processing step.

While for varyingσm the Newton procedures based on
local approximations of the Euclidean group (Sect. 3.2.2)
converge slightly faster than the approach presented in this
paper, all of them exhibit quadratic convergence. In contrast,
ICP and Softassign only converge linearly to the optimal
configuration. As a result, they return less accurate regis-
trations under tight run-time constraints (fixed number of it-
erations).

The superior performance of the Newton schemes is at
the cost of more expensive computations for determining the
Hessian in each iteration. While ICP requiresO(M logN)

computations in each iteration using K-D trees, the evalua-
tion of the gradient and the Hessian of (20) causes costs of
O(MN). As a result, a single round of ICP requires about
1 second. In contrast, the computation of the derivatives,
using MatLab research code, needs between8 (linear and
quadratic approximation [42]) and12 seconds (our approach).
This difference is primarily due to the higher dimension of
the ambient space in which the gradient and the Hessian are
computed. We expect however that when using a C-tuned
implementation the Newton approaches will considerably
catch up with ICP.

4.2.2 Region of Attraction

Fast convergence is immaterial if the algorithm gets stuck or
converges to the wrong local minimum. Robustness to poor
initializations is therefore important. The region of attraction
for ICP [8] has already been analyzed in [37]. We therefore
only consider Newton procedures here.

For comparison, we used the same initial setup as [37],
i.e. a model of the Stanford Bunny rotated around the z-axis
and shifted in the x-y plane by the size of the model. As
scene we used a copy of the model placed in the origin. Be-

cause we are primarily interested in quadratic and fast con-
vergence and the resulting accuracy after a fixed run-time,
we terminated all second-order algorithms after25 itera-
tions.

We observed that especially for transformations with ro-
tational initialization error, the Newton approach proposed
in this work has a significantly larger domain of attraction to
the correct solution than the procedures based on local ap-
proximations of the Euclidean group, as visualized in Fig. 9.
This finding confirms the discussion in Sect. 3.2.4.

5 Industrial Application

In this section, we apply and evaluate our two-stage ap-
proach to the real-world bin-picking scenario. To this end,
we used both computer-generated data allowing for full con-
trol of the evaluation by simulating the scanning device and
noise, and real industrial data as shown in Fig. 1.

5.1 Efficient Initialization

Short processing times are important for many industrial ap-
plications. We briefly point out properties of our approach
enabling fast on-the-fly computations of some steps of the
overall approach.

Concerning the preprocessing based on Prop. 1, only the
object in positionOYk

is required to compute the corre-
sponding column vectorak and to determine if the related
indicator variablexk can be set to zero (i.e. ignored) im-
mediately. Furthermore, each entry ofak can be computed
in parallel. Finally, each entry inak is given by (3) that only
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Fig. 8 Evaluation of the performance of Newton algorithms based on linear and quadratic motion approximation [42], the approach proposed in
this paper (manifold Newton) as well as ICP [8] and Softassign [43], for different values ofσm (left: 0.3, right: 0.15). Each plot visualizes the
objective function values for subsequent iterates. ICP and Softassign converge linearly while the remaining approaches converge quadratically.

Fig. 9 Evaluation of theregion of quadratic convergencefor Newton’s algorithm based on linear (left), quadratic (middle) local approximation
[42], and on the intrinsic local approximation (this paper, right), for fixedσm = 0.1. Each circle center together with the circle center in the middle
shows the initial translation offset of the model vs. the scene in thex− y plane. Slices in each circle refer to the initial rotation around thez-axis.
They are colored black if the model converges to the scene within the first few iterations and otherwise remained white. The results illustrate that
the approach proposed in this paper is significantly and uniformly more robust against inaccuracies of initialization.

requires to compute the shortest distance (1). Using precom-
puted distance maps [37], this evaluation amounts to inspect
a look-up table.

As a consequence, the only remaining costly part is the
computation of the local neighborhood for which a range of
established efficient algorithms and data structures such as
kd-trees are available.

5.2 Computer-Generated Data

To evaluate the accuracy of our approach in a fully con-
trolled environment, we generated different “realistic” data
sets by simulating the real world scanning device of Fig. 1
and noise, for real objects.

Each object instance was randomly placed in the scene
including partially overlapping objects. Additionally, to cover
a wide range of applications with different input data, we
used both object models exclusively based on edge data as
well as models obtained by reference scans, as depicted in
Figs. 10, 11, and 12, respectively. Again, we point out that
different input formats are uniformly handled by our ap-
proach.

Link Hook Mech-part
# candidate instances 1 524 600 2 413 675 394 975

# instances pruning 228 336 681 4 597
# instances optimization 9 47 11

# instances clustering 5 5 5

Table 1 Quantitative evaluation of the initialization phase and of the
first processing stage (non-local multiple object detection through con-
vex optimization) for the data sets shown in Figs. 10,11, and 12 where
the rows refer to the number of candidate instances in total, the number
of non-zero instances remaining after pruning, the number of non-zero
instances remaining after convex optimization, and the number of non-
zero instances remaining after clustering, respectively

The collection of candidate poses for multiple object de-
tection was compiled by discretizing the space of possible
rotations in intervals of15◦ and ranges of the translation
vector such that at least a single point in the scene can be
fitted accurately. This resulted in a total of up to2 413 675
possible candidate instances. Table 1 displays all relevant
numbers.

Our current research code does not exploit the measure-
ments listed in Sect. 5.1 to accelerate the initialization phase,
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Fig. 10 Object detection and localization with real world objects (top left) in 3D scanning data obtained by simulating a SICK LMS 400 scanning
device (top right). While the convex initialization step simultaneously gives proper estimates of the number of objects as wellas the corresponding
transformations (bottom left), running subsequently few iterations of the geometric optimization approach yields accurateregistration results
(bottom right).

yet. Rather, we computed the full matrixA off-line which
took several minutes.

Parametersδ, eqn. (2),σ, eqn. (3), andµ, eqn. (15), of
our approach are set by hand for each scenario. These values
reflect the characteristics of thescenario, i.e. the noise level
and the spacing of themodelpoints. Their choice is therefore
straightforward and does not require elaborate tuning. We
point out that they only depend on the scenario (noise, object
models), andnot on the specific given scene (data)of a fixed
scenario to be analyzed.

The elimination of variables in the preprocessing step
(Sect. 2.3.1) reduced the dimension by86% to 99.9% such
that the final convex optimization procedure returned multi-
ple objects within few seconds only.

Pose clustering according to Sect. 4.1.2 provides rough
initializations used for subsequent fine alignment through
geometric optimization. In case of the mechanical part (Fig-
ure 11) the deviation of the estimated position from ground
truth was at most5◦ rotation and≈ 5.3% translation of the
model size. Similar results have been obtained for the link
(rotation error≤ 4.5◦, translation error≤ 1.8%) and the
hook data set (rotation error≤ 5◦, translation error≤ 2.4%).
The trade-off between the computational costs of the first
non-local convex processing stage and the subsequent geo-
metric optimization depends on how finely the pose space is
discretized (problems size vs. inaccurate detection) and can
certainly be optimized for fixed industrial scenarios.

Running the geometric optimization algorithm (Sect. 3)
for each detected object returns a final pose estimate within
few iterations. At this second stage of the overall approach,
we used an additional background kernel in (17) with a large
scale parameterσm to cope with structured outliers [17], i.e.
nearby objects.

Because geometric optimization converges to alocal op-
timum, occlusion configurations may occasionally lead to
erroneous updates of the corresponding Newton algorithm.
Figure 12 depicts such a scenario where due to locally “look-
ing through holes” no consistent match of the sparse model
points to scene points is possible.

5.3 Real World Industrial Data

We applied our approach to the real-world industrial scenar-
ios depicted in Fig. 1, comprising 3D noisy and unstructured
scanning data of brake-discs and flanges, respectively. Sim-
ilar to the synthetic scenario, we set the parametersδ, σ, µ

by hand according to the noise level and the spacing of the
model points and kept these values for all corresponding ex-
periments. At the second stage, i.e. the refinement, we also
used an additional background kernel to cope with struc-
tured outliers [17]. Furthermore, we used a machine with a
Pentium 4, 3.00 GHz processor.

Based on expert’s knowledge, i.e. knowing that brake-
disc objects are never located upside down, we sampled the
model at10 different points for each circle and discretized
the space of rotations within the interval of[−15, 15] de-
grees for each free axis (the model is rotation invariant with
respect to the third axis). This resulted in a total of1420 can-
didate objects poses that can yield a single scene point and
took about0.2 seconds computation time.

The preprocessing step reduced the problem size by elim-
inating≈ 99.5% of the variables immediately. The subse-
quent global convex optimization determined the remaining
4320 variables in14 seconds. Even highly occluded model
instances are detected accurately as indicated by the blobs
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Fig. 11 Object detection and localization with real world objects in 3D scanning data obtained by simulating a SICK LMS 400 scanning device.
While the convex initialization step simultaneously gives proper estimates of the number of objects as well as the correspondingtransformations
(bottom left), running subsequently few iterations of the geometric optimization approach yields accurate registration results (bottom right).

on the right hand side of Fig. 13 marking the hypotheses
corresponding to the objects’ pose.

Applying the subsequent geometric optimization for at
most5 iterations where each iteration required about1 sec-
ond, turned out to be sufficient to accurately locate all object
instances located in the bin.

For the complex objects shown in the lower panel of
Fig. 1 the approach was able to detect the objects and to
determine proper initial pose estimates in the corresponding
highly unstructured point set – see Fig. 14, left panel. Again,
subsequent geometric optimization determined the final ob-
ject positions within few iterations.

However, geometric optimization may fail if the initial
pose estimate does not fall into the region of convergence of
the Newton updates on the manifold, as indicated in Fig. 9.
This fact is well known from standard Newton-based op-
timization in Euclidean spaces, too. We cope with this is-
sue by resorting tofirst-order optimization techniques on the
group of Euclidean transformations [12] if the initial New-
ton updates do not sufficiently decrease the objective func-
tion value. The object marked with red in Fig. 14 shows such
an example, where the Newton method failed and switching
to first-order optimization safely converged, at the cost ofa
higher number of iterations.

Finally, we demonstrate the robustness of the non-local
detection stage with respect to similar looking butdifferent
objects. Fig. 15 shows a single disc embedded into other
discs, and whose radius of the inner ring is slightly larger
than that of all other discs. Although this disc is very similar

to the other discs, multiple object detection through convex
programming only return this single object instance.

6 Conclusion and Discussion

We presented a novel two-stage approach for the model-
based detection and localization of multiple objects in in-
dustrial bin-picking scenarios from noisy, unstructured and
sparse point measurements.

We formulated the problem of finding good initializa-
tion hypothesis in terms of a global convex objective func-
tion that reflects geometric constraints and provides a ba-
sis for efficient preprocessing techniques that drastically re-
duce the problem size. We evaluated state-of-the-art sparse
solvers for the corresponding large-scale convex programs
and demonstrated promising performance in terms of accu-
racy of multiple object detections and in view of industrial
runtime constraints. We pointed out techniques for consid-
erably speeding up the preprocessing stage for which, ob-
viously, modern graphics hardware may be used to achieve
further accelerations.

To refine the hypothesis individually, we suggested a
Newton algorithm that fully exploits the intrinsic geometry
of the underlying space of Euclidean transformations and
exhibits fast convergence to a local optimum as well as a
significantly enlarged region of attraction.

Although the presented approach is designed to handle
single rigid models, it can be extended to cope with multiple
rigid object models straightforwardly.
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Fig. 12 Object detection and localization with real world objects in 3D scanning data obtained by simulating a SICK LMS 400 scanning device.
Due to the use of edge images, wrong edge detections due to noise (“looking through holes”) yields Newton’s algorithm to fail toconverge. While
the convex initialization step simultaneously gives proper estimates of the number of objects as well as the corresponding transformations (bottom
left), running subsequently the geometric optimization approach fails to converge for the two objects marked red. The reason is that the ability of
“looking through holes” complicates the objective function and narrows down the region of attraction to the local minimum.

Further work also includes to work out criteria for se-
lecting the discretization of the pose space automatically.
Too coarse discretization yields inaccurate initial pose esti-
mates for the subsequent geometric optimization procedure.
Too fine discretization leads to unnecessarily large problem
sizes. A convenient feature for the user therefore would be
to derive this parameter from given object models directly.

A more straightforward extension concerns the interplay
between first- and second-order optimization methods on the
manifold of Euclidean transforms in order to optimized the
speed of convergence while guaranteeing convergence to a
local optimum. As discussed above, the latter sometimes
requires to temporarily switch from second- to first-order
methods. This objective can be accomplished by adopting
numerical trust-region strategies to the manifold setting.

Finally, evaluation of the objective functional proposed
in this work is slightly more expensive than related work
based on sophisticated extensions of ICP. Here, it is apparent
that our approach might benefit from established techniques
for accelerating multiple kernel evaluations.
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A Christoffel Symbols Defining the Connection∇

The non-zero Christoffel symbols of (30) are

Γ 3
12 = Γ 1

23 = Γ 2
31 =

1

2
, (44a)

Γ 2
13 = Γ 3

21 = Γ 1
32 = −

1

2
, (44b)

Γ 6
15 = Γ 4

26 = Γ 5
34 = 1, (44c)

Γ 5
16 = Γ 6

24 = Γ 4
35 = −1. (44d)
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