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ABSTRACT

We present a method for finding correlated components in

audio and video signals. The new technique is applied to the

task of identifying sources in video and separating them in

audio. The concept of canonical correlation analysis is re-

formulated such that it incorporates nonnegativity and spar-

sity constraints on the coefficients of projection directions.

Nonnegativity ensures that projections are compatible with

an interpretation as energy signals. Sparsity ensures that co-

efficient weight concentrates on individual sources. By find-

ing multiple conjugate directions we finally obtain a compo-

nent based decomposition of both data modalities. Experi-

ments effectively demonstrate the potential and benefits of

this approach.

1. INTRODUCTION

In difficult auditory environments, where many talkers in-

terfere and their spectral characteristics overlap, humans of-

ten make use of visual cues to facilitate understanding. In

contrast to the auditory signal, the visual input is instan-

taneous, most often free of reflections, and regions of the

visual field can be uniquely assigned to a source. We there-

fore expect a benefit from incorporating video into a source

separation or signal enhancement algorithm. In [1] Yehia et

al. have shown that facial behavior and speech acoustics are

highly correlated, using infrared markers and a high-speed

tracker to obtain precise 3D coordinates of points on the

face. Slaney and Covell have shown in [2] that similar re-

sults are possible using pixel intensities from a video image

of the lower facial region. In this work, we show that trajec-

tories of interest points are another sufficient representation

of movement, without the need for specialized equipment

or explicit face detection and alignment. Furthermore, we

do not restrict our analysis to speech only. For example,

the relationship between movement and sound is straight-

forward with certain musical instruments such as a drum or

a strummed guitar. In principle, any auditory source that

has corresponding movement (or intensity change) observ-

able in video can be incorporated in the analysis.

In recent years, there have been several proposals to ex-

ploit the statistical dependence of synchronous audio and

video signals. Methods of this kind typically find projec-

tions of both data modalities that either maximize (approxi-

mate) mutual information [3, 4] or correlation [2, 5]. These

methods, however, have limitations in several aspects, e.g.

the restriction to differentiable L2 penalties [4], or the asym-

metric treatment of audio and video [5]. We propose a

method that identifies and separates several concurrently ac-

tive sources, by restricting projection directions to the non-

negative orthant and efficiently incorporating sparsity con-

straints in both modalities. Nonnegativity assures that pro-

jected signals define energies, which successively decom-

pose the total audio and video information. E.g. when us-

ing pixel intensities as the visual input, projections are valid

images themselves. On the audio side, nonnegativity con-

straints allow the interpretation of the projection direction as

time-varying filter weights, which amplify frequency bands

that correlate well to their visual counterpart and attenuate

others.

The key idea is to include these constraints in a gener-

alized version of canonical correlation analysis (CCA) that

is based on iterated regression. The method is highly flex-

ible in that it allows the choice of individual regularization

strategies for the different data modalities such as sparse-

ness constraints for video and smooth L2 penalties for au-

dio. Furthermore, it allows us to diminish the influence of

outliers by substituting least-squares with robust regression

procedures.

2. METHOD OVERVIEW

We perform canonical correlation analysis to locate sources

in video and separate their corresponding audio signals by

filtering. Modeling audio and video as random vectors, we

seek linear projection vectors that maximize the correlation

between the two projected signals. To locate a source in

the video signal, we identify those components (pixels or

interest points) that contribute most to the projection. On

the audio side, a properly defined projection onto frequency

bands may be interpreted as a frequency-domain filter, am-

plifying frequencies contained in the source and attenuating

others. Other representations of the audio signal, such as

mel-frequency cepstral coefficients (MFCCs) or line spec-
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tral pairs (LSPs), are of course possible. For the purpose of

source localization and separation, a spatial representation

of the auditory scene is of particular importance. Such rep-

resentations can e.g. be obtained from using a microphone

array together with a filter-and-sum beamformer, that com-

bines FIR filtered microphone signals such that a certain di-

rection is preferred. In this setting, projections of the input

stream associate groups of audio sub-band energies (or any

other set of grouped coefficients) with spatial coordinates.

If, in addition, these projections are sparse in the number of

groups, they might be used to localize individual sources in

the scene.

CCA maximizes the correlation of random vectors pro-

jected to one-dimensional subspaces. In practice, we as-

sume that we are given two samples A and V of obser-

vations from the audio and video random vectors. In the

context of joint audio-video analysis, these samples might

be mimicked by considering n subsequent frames of the

video/audio streams recorded at time points t1, . . . , tn. In

order to capture relevant aspects of the randomness in the

data, it is clear that one has to find a compromise between

the number of sample points (which would favor high sam-

ple rates and long time windows) and the absence of corre-

lations and scene changes (which means low sample rates

and short windows).

Even for low resolution video (e.g. 160x120 pixels) at

25Hz frame rate, the CCA problem will be severely under-

determined when considering reasonably short time win-

dows. Representing the video as pixel intensity vectors, we

end up with a few hundred “samples” of a 19200 dimen-

sional random variable, which means that we will always

find trivial projections that correlate perfectly. Using inter-

est points instead of pixel intensities, the deficit in number

of samples versus dimensions is reduced, but the fundamen-

tal problem of an under-determined setting remains.

In order to find meaningful projections, we need to in-

clude a regularization term. Concerning the video signal, it

is desirable to have sparse projection vectors β so that only

those components have nonzero weights, that are associated

with the source in question. Penalizing the L1-norm of β
as achieved in LASSO regression [6] is a promising can-

didate for such a learning method to generate sparse repre-

sentations. The L1 penalty naturally generalizes to a group

sparsity constraint [7] if there are several features per com-

ponent, e.g. the cartesian and polar coordinates of an interest

point. In that case, feature weights within the same group

are L2 penalized, whereas the between-group penalty is the

L1 norm.

On the audio side, the desired regularization properties

crucially depend on the data representation and on the ap-

plication context. If we are interested in reconstructions of

the audio signals and if we choose e.g. a frequency band

representation, sparsity is probably not desirable, because

omitting frequency bands will lead to undesired audible ar-

tifacts in the reconstructed audio streams. L2 regularization

or a smoothness penalty on coefficients αi, αi+1 of adjacent

frequency bands will be more adequate in such a situation.

If, on the other hand, we represent the audio signal by direc-

tionally grouped components computed from a beamform-
ing device, sparsity in the number of groups is again a de-

sired property since it makes it possible to locate individual

sources in the scene.

3. NONNEGATIVE CANONICAL CORRELATION
ANALYSIS

The classical CCA method finds directions α̂ and β̂, such

that the linear projections of two multidimensional random

vectors have maximum correlation

(α̂, β̂) = arg max
α,β

corr(Aα,Vβ). (1)

A and V are matrices of size n × da and n × dv , where

each row corresponds to one realization of the random vari-

able. In practice, these different realizations are mimicked

by using successive frames in the audio and video signal.

From the definition of the sample correlation between

two zero mean vectors x and y

corr(x,y) :=
x�y

‖x‖ · ‖y‖ , (2)

it follows immediately that (assuming centralized matrices,

see eq. (7) below) maximizing the correlation in (1) is equiv-

alent to finding α̂ and β̂ as follows:

(α̂, β̂) = arg min
α,β

‖Aα−Vβ‖2, (3)

s.t. ‖Aα‖2 = 1 ∧ ‖Vβ‖2 = 1, (4)

where ‖x‖2 =
∑d

i=1 x2
i denotes the squared L2 norm of

x. The solution is readily obtained using the eigenvalue de-

composition of the (sample) covariance matrix

C = n−1

[
A�A A�V
V�A V�V

]
(5)

=
[

Caa Cav

Cva Cvv

]
, (6)

where we have assumed that the columns of both matrices

are centered, i.e.

n∑
i=1

Aij =
n∑

k=1

Vkl = 0, ∀j = 1, . . . , da and l = 1, . . . , dv.

(7)

A full derivation of the procedure can be found e.g. in [8].
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From the eigenvalue decomposition of C we find all di-

rection pairs1

(α̂(k), β̂(k)), k = 1, . . . ,min
(
rank(A), rank(V)

)
(8)

that satisfy (1) under the condition that projection directions

are mutually conjugate, i.e. these vectors obey the following

relations ∀k �= l:

α̂�(k)Caaα̂(l) = β̂
�
(k)Cvvβ̂(l) = 0. (9)

One can show that if these conditions are satisfied, it also

holds that ∀k �= l:

α̂�(k)Cavβ̂(l) = 0. (10)

In order to simplify the notation, we will neglect the

subscripts (k) indicating the k-th projection direction in the

following. Unless explicitly stated, the equations are meant

to hold for all possible k.

3.1. Iterative regression solver

For a given α̂, the optimization criterion (3) is just the mini-

mum mean-squared error criterion for regression coefficients

β:

β̂ = argmin
β
‖Aα̂−Vβ‖2, (11)

followed by a rescaling step

β̂ ← β̂/‖Vβ̂‖. (12)

This formulation suggest an iterative solution approach to

the CCA problem: for iteration (t + 1), one set of param-

eters (for instance α̂(t)
) is held constant while a regression

step is performed to find the corresponding set of coeffi-

cients β̂
(t+1)

. Then β̂
(t+1)

is held fixed and we determine

the corresponding optimal α̂(t+1)
. This way of solving the

CCA problem has been proposed several times in the litera-

ture, see for example [9].

If the dimensionality of the data is larger than the num-

ber of samples, it is mandatory to regularize the fits. There-

fore an appropriate penalty term is added to constrain the

norm of the regression coefficients. If we, for instance,

choose group sparsity penalties [7] on the video and audio

side (with appropriate group size for each modality), the

1For the k-th projection vector we typeset the vector in boldface with

bracketed subscripts, i.e. α(k), in order to distinguish it from the k-th com-

ponent γk of vector γ.

following update scheme results:

β̂
(t+1)

= arg min
β

(
‖Aα̂(t) −Vβ‖2 + λ1

G∑
g=1

‖β[g]‖
)

β̂
(t+1) ← β̂

(t+1)
/‖Vβ̂

(t+1)‖

α̂(t+1) = arg min
α

(
‖Vβ̂

(t+1) −Aα‖2 + λ2

H∑
h=1

‖α[h]‖
)

α̂(t+1) ← α̂(t+1)/‖Vα̂(t+1)‖,

where β[g] = (βg1, . . . , βgk)� are the coefficients of the

g-th group of β. The group size cv = dv/G is chosen to

match the input representation, e.g. cv = 4 for the coor-

dinate quadruple of an interest point. This procedure is it-

erated until convergence of the projection directions α and

β.

The following three benefits can be realized in this up-

date scheme:

(i) Flexibility in choosing appropriate regularization mod-
els. We can perform ridge regression (L2 penalties), the

LASSO (L1 constrained regression) or combine both in a

group penalty, and separately choose an appropriate regular-

ization model for each data modality and each application

domain.

(ii) Handling of outliers via robust regression. Techniques

for robust regression can be readily incorporated: the qua-

dratic error term ‖ · ‖2 in (11) can be replaced with more ro-

bust measures such as the Huber loss function Lc(·) in order

to diminish the effect of outliers in the data. In our context,

such outliers might occur as audible pops and crackles or

temporary mismatches of the interest point tracker.

(iii) Nonnegativity constraints. Finally, it is straightfor-

ward to include nonnegativity constraints on the elements of

α and β, i.e. to optimize equation (3) under the additional

constraints αi ≥ 0, βj ≥ 0, ∀i, j. This problem can be

solved via quadratic programming algorithms. These addi-

tional sign constraints lead us to the desired model of non-

negative CCA which ensures that Aα̂ and Vβ̂ are them-

selves valid audio and video energy signals. It follows that

successively found correlation directions decompose the two

data modalities into additive energy components.

3.2. Sparse nonnegative regression techniques

Fast approximative techniques for nonnegative regression

have been proposed recently. One such method is the mono-
tone incremental forward stagewise regression (MIFSR) ap-

proach of Hastie et al. [10], which computes the monotone
LASSO solution. In this variant of standard LASSO, the co-

efficient weights βj monotonically increase when relaxing

the L1-constraint. The method inherently finds nonnegative
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weights, which for standard applications (where this non-

negativity property is undesirable) is compensated for by

replicating the input data with negative sign. For our pur-

poses, we simply omit this replication step. The algorithm

is readily extended to the group sparsity case by replacing

the L1 termination criterion
∑

j βj ≤ s by
∑

g ‖β[g]‖ ≤ t.
This algorithm is very efficient for sparse solutions, even

when the data dimensionality is high.

MIFSR for fitting the video data V against the target

projection Aα̂ proceeds as follows (ε is a predefined step-

width parameter):

Monotone incremental forward stagewise regression:

1. Start with r := Aα̂, β = 0.

2. Find the j-th column vector vj of matrix V most pos-

itively correlated with r.

3. Update the j-th component of β as βj ← βj + ε

4. Update r = r − εvj . Repeat steps 2 and 3, until

either a predefined constraint on the norm of β is vi-

olated, or the number of nonzero components of β
equals min(n, dv), or there are no columns with pos-

itive correlation left.

Note that for column-standardized V (i.e. every column

has zero mean and unit variance), finding the column vector

vj most positively correlated with r

j = argmax
i

v�i r
‖vi‖‖r‖ = argmax

i

(
v�i Aα̂− v�i Vβ

)
(13)

is equal to finding the maximum element of the negative

gradient of the least-squares problem. In other words, MIFSR

is a gradient descent method where at every iteration, β is

moved an ε-step along the coordinate axis where the least-

squares error declines most.

3.3. Finding all CCA projections

For the source separation task, we are naturally interested in

more than one projection, expecting that distinct sources are

retrieved in different projections. We incorporate the con-

straints (9) on subsequent projection directions by means of

an additional quadratic term in the regression function

β̂(k) = argmin
β
‖Aα̂−Vβ‖2 + λβ�Oβ (14)

s.t.
G∑

g=1

‖β[g]‖ ≤ t ∧ βj ≥ 0 ∀j, (15)

where

O =
∑
l<k

Cvvβ̂(l)β̂
�
(l)Cvv. (16)

Fig. 1. Simulated directivity response of the beamforming

architecture for target directions [+60◦, 0◦,−60◦]. Plotted

is the directional RMS energy for five bands of band-pass

filtered white noise centered at 500Hz, 1000Hz, 1500Hz,

2000Hz and 2500Hz.

This is still a convex problem that can be solved efficiently

by the kind of gradient descent we described in the last sec-

tion.

4. EXPERIMENTS

4.1. Signal representation

We have worked with pixel based and interest point based

representations of visual movement:

(i) intensity images were computed from the video frames

by converting them to gray-scale, smoothing with a Gaus-

sian mask (for noise reduction) and downsampling to the ap-

propriate size. The images were then linearized to form the

rows of V, where each row corresponds to one time point

in a sliding window. A pixel based representation is only

sensible if the scenes are fairly static or the window size is

small, so that a pixel corresponds to the same location on a

source (e.g. the chin) over the whole time window. Intensity

changes are due to local movement of a source only under

such restrictive conditions. To overcome this constraint,

(ii) Shi-Tomasi interest points [11] were tracked using a

sparse pyramidal Lucas-Kanade tracker [12]. We used both

cartesian and polar coordinates as features. High-pass filter-

ing of the trajectories rejects distracting global movement

(e.g. a translation of the whole body) while retaining rele-

vant local movement of lips, chin or hands. A median filter

of neighborhood size three was used to obtain smoother tra-

jectories. Here, the rows of V contain the coordinates of

every interest point at each timestep.

On the audio side, we also examined two different rep-

resentations:

(i) a frequency-domain representation is built from 50

frequency bands equally spaced in mel scale in the range

100 Hz - 8kHz. The signals in each of the bands were rec-
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Fig. 2. Three frames from a movie showing one speaker and

one moving person. The identified pixels are overlayed as

white points in the frames, where intensity is proportional

to the corresponding weight βj . Nonnegative CCA clearly

identified the audio source in the presence of uncorrelated

movements.

tified, filtered and subsampled to the video frame rate of

25 Hz. Low-pass filtering before the subsampling process

avoids aliasing effects in the sampled energy signals.

(ii) A spatial representation of the audio data was derived

from a microphone array with a filter-and-sum beamformer.

We used a linear array of 4 omni-directional microphones

with 6cm spacing between the microphones. We trained

a multi-channel Wiener filter with simulated pilot signals

from fixed target and interferer directions. The directivity

response for this architecture is plotted in figure 1. This

very limited architecture provided sufficient separation for

three equiangular target directions of the frontal hemisphere

in the range of 500Hz to 3000Hz, and serves as proof of

concept. Any state-of-the-art fixed beamformer architec-

ture could be used instead for better directivity and more

bandwidth. For every target direction, we again extracted

sub-band energies equally spaced in mel scale to allow both

spatial and spectral filtering. Alternatively, we also worked

with a set of LSP coefficients and RMS energy (as motivated

in [1]) for every target direction. In that case, the projection

coefficients α can be used in a voting scheme to identify the

most likely direction of a source.

4.2. Identification in frequency domain

In a first experiment, we used the frequency domain repre-

sentation and tested our method on a sequence where one

person sits and speaks and another person moves around.

Nonnegative CCA was performed on sliding windows of

size 50 frames. We used L1 regularization for video in or-

Fig. 3. A frame from a movie showing the left speaker

counting and the right reciting a poem. The identified in-

terest points are marked with circles, squares and trian-

gles, corresponding to the first, second and third projection.

Filled markers with black outline are the weighted centroids

of the projections.

der to identify single pixels, and L2 regularization on the

audio side. Three frames from this sequence are depicted in

figure 2. Positive projection coefficients are highlighted as

white circles centered at the corresponding pixel (the mag-

nitude of βj determines the brightness of the spot). One can

clearly see that the method was able to discriminate between

the sound source and uncorrelated movements.

Using the same audiovisual representation, we have also

conducted experiments with two speakers (details omitted

due to space restrictions). The first two projections success-

fully identified the speakers, i.e. coefficient weight for each

projection concentrated on a single source. While these re-

sults show that nonnegative CCA performs well in finding

distinct areas in the image which correspond to different au-

dio sources, the reconstructed audio signals did not provide

a good source separation. Such a separation, however, could

probably not be expected by solely using frequency bands

to represent the audio signal. On a time scale of several

seconds (necessary at 25Hz frame rate), the frequency rep-

resentation alone is no longer discriminative for separating

concurrent speakers in audio.

4.3. Identification and separation in spatial domain

In a third experiment, we addressed this problem by using

a spatial audio representation derived from a microphone

array with beamforming. For each preferred direction of

the beamformer, we extracted RMS energy and 10th order

LSP coefficients. On the video side, we tracked 560 inter-

est points. Sliding window size was ten seconds. Figure

3 shows the result for two speakers, the left counting num-

bers and the right reciting a poem. The positive coefficients

of the first three projections are depicted as circles, squares

and triangles, where the marker size is proportional to co-

efficient weight. Filled markers with black outline depict
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Fig. 4. One person strumming the guitar and one person

counting. The first projection correctly identifies the strum-

ming hand. The second and third projections concentrate on

the speaker.

the weighted centroids of the projections. The results show

that the first two centroids identify the left talker, while the

third concentrates on the right talker. There is also one

nonzero coefficient from the second projection on the right

person. This might be due to the fact that in this case, the

second projection corresponds to the center direction of the

beamformer, where there is no clear separation between the

sources. There are also two more coefficients with small

positive weights located in the background.

In a fourth experiment we show that our method makes

no strong assumptions about the nature of the source, and

can also correctly identify a strummed guitar (see figure 4).

The input representations were identical to the third exper-

iment, except for a shorter sliding window of six seconds

length. Note that our method does not rely on any geomet-

ric information or camera calibration, and can cope with a

significant amount of distortion. Furthermore, camera and

beamformer position don’t have to coincide.

Videos of all experiments can be found at

www.inf.ethz.ch/personal/chrsigg/mlsp2007.

5. CONCLUSION

We have presented the nonnegative CCA method for jointly

analyzing audio and video streams. This technique finds a

series of orthogonal projections which successively decom-

pose the signal into a series of additive components. We

demonstrate in several experiments that concurrent sources

(speech and non-speech) are correctly identified in video

and separated in audio.

Although maximizing linear correlation suffices to sep-

arate two concurrent speakers, the necessary window size

is on the order of several seconds. Clearly, humans not

only make use of movement, but integrate other cues such

as lip shape. Nonlinear regression could capture higher or-

der dependencies between the two modalities, but reliable

parameter estimation would be even more difficult in this

setting where dimensionality is far larger than sample size.

As another direction of further research, we might seek pro-

jections that not only maximize correlation, but also max-

imize a measure of non-Gaussianity, thus integrating con-

cepts from independent component analysis into CCA.
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